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Abstract
Meta-analysis is a powerful tool for assessing drug safety by combining treatment-related toxicological findings across

multiple studies, as clinical trials are typically underpowered for detecting adverse drug effects. However, incomplete
reporting of adverse events (AEs) in published clinical studies is frequently encountered, especially if the observed number
of AEs is below a pre-specified study-dependent threshold. Ignoring the censored AE information, often found in lower
frequency, can significantly bias the estimated incidence rate of AEs. Despite its importance, this prevalent issue in
meta-analysis has received little statistical or analytic attention in the literature. To address this challenge, we propose
a Bayesian approach to accommodating the censored and possibly rare AEs for meta-analysis of safety data. Through
simulation studies, we demonstrate that the proposed method can improve accuracy in point and interval estimation of
incidence probabilities, particularly in the presence of censored data. Overall, the proposed method provides a practical
solution that can facilitate better-informed decisions regarding drug safety.

keywords and phrases: Adverse drug reaction, Bayesian inference, Drug safety, Incomplete reporting, MAGEC, Meta-
analysis.

1. INTRODUCTION
This paper focuses on statistical modeling strategies for

analyzing drug safety data across multiple studies. Our
motivation stems from a systematic review of treatment-
related adverse events (AEs) of programmed cell death 1
(PD-1) and PD-1 ligand 1 (PD-L1) inhibitors for cancer
immunotherapy [54]. The PD-1 pathway is up-regulated in
many tumors and in their microenvironment. Blockade of
this pathway with antibodies to PD-1 or its ligands has led
to remarkable clinical responses in various types of cancer
[29], and is considered one of the most important break-
throughs in the treatment of cancer. These novel immune
checkpoint inhibitors are clinically less toxic than traditional
cancer treatments such as chemotherapy and radiation ther-
apy, but can occasionally cause serious and sometimes life-
threatening immune-related AEs. Because individual clini-
cal trials are often underpowered for detecting adverse drug
effect, combining evidence from multiple studies is an attrac-
tive approach to examine the toxicological profile of PD-1
and PD-L1 inhibitors.

Meta-analysis synthesizes findings from multiple indepen-
dent clinical studies and provides a more powerful analy-
sis than from a single study [51, 20]. However, one unique
challenge in meta-analysis of drug safety is the incomplete-
ness of AE reporting, which hinders the accuracy to quan-
tify and understand the incidence of treatment-related AEs
[13]. A significant portion of treatment-related AEs, despite
having been counted in individual clinical trials, may not
∗Corresponding author.

be publicly reported due to the rarity of such events. In
the motivating anti-PD-1/PD-L1 example, many AEs were
missing if their study-level observed frequencies were lower
than a pre-determined reporting cutoff (e.g. 3% or 5% of the
study sample size). Table 1 provides several sample studies
on reporting of pneumonitis, a type of AE regarding lung in-
flammation, to illustrate the AE data structure in a typical
meta-analysis. For instance, Powles et al. [44] conducted an
open-label randomized controlled trial to assess the safety
and efficacy of Atezolizumab. Among 459 patients treated
with Atezolizumab, the AE reporting criteria was ≥ 5% for
all-grade and ≥ 2% for grade 3 or higher, suggesting the
missing pneumonitis count could be any number from 0
to 22 for all-grade and from 0 to 9 for grade 3-5. In an-
other small multicenter study of Pembrolizumab, Nanda et
al. [37] only listed the exact count of all grade AEs occurring
in at least two patients (implying the reporting cutoff of 1
for censored AEs). Because pneumonitis wasn’t reported in
their results, it implies 0 or 1 case of all grade pneumonitis
rather than the absence of pneumonitis. Likewise, Nanda et
al. [37] only listed grade 3-5 AEs occurring in at least one
patient, which indicates a reporting cutoff of 0 and implies
that the actual grade 3-5 pneumonitis count, though unre-
ported, was 0. Subsequently, if the analysis was conducted
only based on the likelihood of the reported AE frequen-
cies but ignoring all the left censored data, the inferences
on incidence rates could be significantly overestimated.

Although censored AE data is a common issue in drug
safety analysis, it has been largely overlooked in the de-
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Table 1. A sample of AE observations for the motivating real-data application in Section 4. “–” indicates the missing data
(i.e., unreported in publicly available data). The left-censored cutoffs for all grade AEs and grade 3-5 AEs could be different
within a study. Given the cutoff of 0 for grade 3-5 AEs in 2016-Nanda-J Clin Onco study, the actual grade 3-5 pneumonitis

count, though unreported, was exactly 0. In the proposed Bayesian modeling framework, identical inferences are generated by
either treating it as a censored observation or observed.
No. of Treated Cutoff Pneumonitis Cutoff Pneumonitis

Study Source Patients Drug (all grade) (all grade) (grade 3-5) (grade 3-5)
2015-Robert-N Engl J Med2 [46] 206 Nivolumab 4 – 4 –

2018-Lee-Lung Cancer [30] 100 Nivolumab 0 3 0 2
...

...
2016-Nanda-J Clin Oncol [37] 32 Pembrolizumab 1 – 0 –
2017-Hsu-J Clin Oncol [23] 27 Pembrolizumab 1 3 1 2

...
...

2018-Horn-Eur J Cancer [22] 89 Atezolizumab 4 – 4 –
2018-Powles-Lancet [44] 459 Atezolizumab 22 – 9 –

...
...

velopment of meta-analysis methodology. In fact, the fo-
cus of attention in meta-analyses of treatment-related AEs
has been mostly on the rarity of such events [2]. Stan-
dard methods to model binary patient outcomes such as
AE incidences rely on either approximation methods based
on the normal distribution or exact methods based on the
binomial distribution [18]. When the observed events are
rare, approximation approaches may provide poor estimates
of the true incidences and lead to significantly biased re-
sults [33, 7, 3, 28]. Some recent efforts have been made
to overcome this limitation, including the Poisson random-
effect model to estimate relative risk between two treat-
ment groups [6], and asymptotically unbiased estimation
for the treatment effect and heterogeneity parameter in the
random-effect model [2]. However, these methods were all
developed for meta-analysis without missing data.

Most of the research on missing data in meta-analysis fo-
cuses on situations when the estimate from the whole study
is missing [39], or on the analysis of treatment efficacy in
different patterns [56, 57, 19, 36]. Due to the lack of ap-
propriate analytic methods to address the problem of cen-
sored AE data, in current meta-analytic applications, most
studies either totally ignored the AEs with low incidence,
or completely discarded the studies with missing AE data
[47], contributing to substantial publication selection bias or
estimation error.

In this paper, we propose a general Bayesian approach
to model censored AE data in a meta-analysis, with an aim
to deliver exact inference in the estimation of AE incidence
with proper uncertainty quantification. The rest of the ar-
ticle is organized as follows. In Section 2, we present the
Bayesian modeling framework and implement the proposed
approach in Just Another Gibbs Sampler (JAGS) with a
tailored presentation for model assessment. In Section 3, we
conduct numerical studies under different censoring scenar-
ios by comparing the proposed Bayesian model of censored

data with other popular methods. Real data meta-analysis
results demonstrating the advantage of the proposed ap-
proach are presented in Section 4. Lastly, some concluding
remarks and discussions are provided in Section 5.

2. METHODS
We propose a new method, named Bayesian meta-

analysis of adverse drug effects with censored data
(MAGEC), to accommodate censored AE data in meta-
analysis. It is a general framework that incorporates cumu-
lative probabilities of the partial information contained in
the censored data into the likelihood function, such that the
meta-analysis can yield proper parameter estimation and
statistical inference.

2.1 Modeling of Censored Adverse Events
Let Yj , j = 1, . . . , J , denote a safety response of inter-

est in the jth study, which are collected in individual tri-
als but may not be fully reported. For censored outcomes,
the censoring mechanism can be defined by bounding vari-
ables (A,B), with semi-closed boundaries (Aj , Bj ] for re-
sponse variable Yj . Here, both bounding variables could be
covariate-dependent. Often, we assume that the outcome
model and the censoring mechanism are independent, so the
censoring mechanism does not contribute to the inference
and model estimation. It is a fundamental assumption for
censored data behind most statistical methodologies [58]. In
survival analysis, it is also known as noninformative censor-
ing. Assume the random variable Y has the right continuous
cumulative distribution function FY (y) = P [Y ≤ y]. Denote
fY (y) the probability density/mass function of FY (y).

In a meta-analysis of safety data, the frequency of adverse
events may not always be reported. For example, left cen-
soring occurs when some severe (grade 3 or higher) events
are not observed due to low incidence. In this case, the cut-
off boundaries are not random but fixed and study-specific,
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which spontaneously satisfies the noninformative censoring
assumption. Denote the fixed cutoff by cj for each study. The
number of subjects having a specific event in the jth study
Yj follows a binomial distribution with study-level sample
size nj and AE incidence probability θj

Yj ∼ Bin(nj , θj).

Therefore, the likelihood function for both fully observed
and censored events can be written by:

L =

O∏
o=1

fY (yo)

L∏
l=1

[FY (cl)− 0]

R∏
r=1

[FY (nr)− FY (cr)]

=
O∏

o=1

fY (yo)
L∏

l=1

FY (cl)
R∏

r=1

[1− FY (cr)]

=

O∏
o=1

fY (yo)

L∏
l=1

cl∑
kl=0

fY (kl)

R∏
r=1

[1−
cr∑

kr=0

fY (kr)], (2.1)

where O is the number of fully-observed AE outcomes, L
the number of left-censored outcomes, and R the number
of right-censored outcomes. cl and cr are cutoff values for
left-censored and right-censored data, respectively.

The likelihood (2.1) can simultaneously handle both cases
of left- and right-censoring for meta-analysis of safety data.
In meta-analysis of the grade 3-5 AEs, we often only ob-
served left censoring due to reporting cutoffs. In meta-
analysis of the all-grade AEs, right censoring may also occur
when some studies report grade 2 or higher AEs only rather
than all-grade AEs [4]. If Yj is left-censored, then Yj lies
in the semi-closed interval (Al = 0−, Bl = cl], where cl
is the corresponding cutoff value for left-censored data. If
Yj is right-censored, then Yj lies in the semi-closed interval
(Ar = cr, Br = nr], where cr is the corresponding cutoff
value for right-censored data and nr is the total number
of subjects in the rth study. This is specified to be consis-
tent with the JAGS model implementation in Section 2.2.
Compared with multiple imputation approaches that often
requires the assumption of normality and involves intensive
computation for Bayesian modeling [26], the proposed ap-
proaches are computationally efficient to model incomplete
data.

The incidence probability can be decomposed through
the link function g(θ),

g(θj) = logit(θj) = μ+ αj +Xjβ, (2.2)

where Xj is a design matrix for study-level covariates from
the jth study, and we consider the logit link as the default
link function. Given the overall mean μ and the study co-
variate effects β associated with Xj , we assume the study-
specific random effect αj is conditionally independent with
mean 0 and variance σ2

α.
For nonhierarchical intercept μ or slope parameters in β

in the linear term of logistic model, a symmetric Cauchy dis-
tribution with center 0 and scale 2.5 was suggested [16]. For

random effects in the linear term, which include the effects
of various study-level factors and study-specific effects αj ,
we assume they follow mean-zero normal distribution with
different variances, with the prior distributions of standard
deviation parameters following half-Cauchy distribution and
a finite scale parameter of 10 or 25 [14]. In practice, the
normality assumption can also be replaced by using heavy-
tailed distributions such as t-distribution. In the illustrative
anti-PD-1/PD-L1 example, the meta-analysis included 125
studies with a total of 20,218 patients. To identify possi-
ble sources of heterogeneity between studies, the following
pieces of study-level information were also extracted: trial
name, number of treated patients, selected immunotherapy
drug, dosing schedule, cancer type, AE frequency (which
could be missing), and the study-specified censoring cutoff
for AE reporting. In particular, the study-level factors could
include the drug type or drug/dose combinations, and/or
cancer type, such that it is possible to estimate the AE in-
cidence of a new drug or a new cancer type in a future trial
with Bayesian credible interval.

Lastly, the model specification of the proposed Bayesian
modeling framework only involves discrete data in the like-
lihood function, while the prior distribution of parameters
is proper. As a result, it is easy to verify the property of
Bayesian posterior inference. Specifically, we can have the
following remark:

Remark 1. The posterior distribution of Bayesian models
in the MAGEC framework is always proper.

Overall, the proposed Bayesian framework can help to
streamline the modeling process of drug safety data and
enhance the reporting reliability of meta-analysis.

2.2 Model Implementation using JAGS
To carry out posterior inference and assess the perfor-

mance of the proposed Bayesian model, we apply Just An-
other Gibbs Sampling (JAGS) to generate samples from the
posterior distribution. JAGS makes Bayesian hierarchical
models easy to implement using Markov Chain Monte Carlo
(MCMC) simulation [40] in R and other computational soft-
ware. In the presence of censored data in the response vari-
able, an existing function, known as dinterval distribution,
is commonly used to model censored data [27, 43]. However,
such model specification for censored data in JAGS intrin-
sically yields a mis-specified deviance function [42]. More
technical details are provided in Qi et al. (2022) [45].

Alternatively, we apply a simple but effective approach to
censored data specification. To facilitate model implemen-
tation for censored observations (when δj = 0) and avoid
the miscalculation of deviance via the dinterval() func-
tion in JAGS. Here, we utilize the idea of data augmenta-
tion by introducing ancillary indicator variables Wj . Each
Wj separates the left-censored from right-censored obser-
vations (Wj = 1 if left-censored, 0 if right-censored). By
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assuming Wj follows a Bernoulli distribution, we have the
density function

fW (wj) = FY (cl)
wj [1− FY (cr)]

1−wj

=

[
cl∑

kl=0

fY (kl)

]wj
[
1−

cr∑
kr=0

fY (kr)

]1−wj

, (2.3)

which exactly matches the second and third terms for cen-
sored observations in (2.1), with the cumulative binomial
distribution of incidence probability of AE in the jth study,
restricted by a pre-determined study-level cutoff value cj .
This approach can also be extended to interval-censored
data [45].

A JAGS model specification for the application is pro-
vided in the Supplementary Material for illustrative pur-
poses. Together with fully observed data that follow a bino-
mial distribution, the full likelihood implemented in a JAGS
model is, in fact, identical to the exact likelihood of ob-
served and censored cases in (2.1). This creates the correct
focus of model parameters and produces the proper poste-
rior samples, as well as simultaneously computes the cor-
rect deviance for model selection. For example, by calling
the deviance module in JAGS, correct deviance informa-
tion criterion (DIC) [49], penalized deviance [41], posterior
averaging information criterion (PAIC) [60], or widely ap-
plicable information criterion (WAIC) [55, 53] can be con-
veniently derived to assess candidate models for Bayesian
model selection. It is important and beneficial to select the
best model, especially in the presence of complicated model
features. Also, from the point of view of convenience, the
sampling procedure can smoothly start with default initial
values for the censored data. The standard diagnostic tools
can be applied to assess the posterior convergences of the
model [15].

3. SIMULATION
In this section, we conduct a simulation study to as-

sess the performance of the proposed Bayesian model for
estimating the incidence rates in the meta-analysis of ad-
verse events (AEs) with censored information. We compare
it with that of other popular methods applied under a stan-
dard setting [47]. Other than the proposed Bayesian model,
MAGEC, all other methods do not account for censoring.

3.1 Settings
The total number of studies for each probability level of

AE incidence is fixed at 10 (J = 10) to reflect the typi-
cal number of studies in a meta-analysis for subgroups. We
also consider J = 25 and 50 as comparisons. The outcome
of interest, the number of AEs for each study, is generated
from a binomial distribution with the number of patients
(n = 100) and probability of events (p = 0.2, 0.05, and
0.01, respectively). The probability of incidence is designed
to cover the typical range of the probability levels of AE

incidence. The data generation incorporates heterogeneity
between studies into the incidence probability of AE. To be
specific, the coefficient of study effect was generated from
a normal distribution at mean 0 and standard deviation of
0.2.

To assess the performance of the proposed model that
incorporates both observed and censored data, we consider
six scenarios: (1) no censoring; (2) a low percentage (20%)
of left-censoring for all three incidence levels; (3) a moder-
ate percentage (40%) of left-censoring; (4) a high percent-
age (60%) of left-censoring; (5) a low/moderate percentage
(20%/40%) of right-censoring; and (6) a moderate percent-
age (40%) of left-censoring with a low percentage (20%) of
right censoring. In Scenario 1, the number of events for all
studies is fully observed. In Scenarios 2, 3 and 4, which
include observations that could only be informatively left-
censored for zero and low incidence counts to mimic real-
world cases. Therefore, in Scenario 2, we treat the 20% of
AE data with the lowest observed incidence as censored data
and the 80% of AE data that have a higher incidence as ob-
served data. Similarly, in Scenario 3, in order to stress test
the robustness of estimation in a more extreme case of cen-
soring, 40% of AE data with low incidence are treated as cen-
sored and the remaining 60% are treated as observed. Lastly,
in Scenario 4, the top 40% of studies are treated as observed
data, and the remaining 60% are treated as censored data.
Accordingly, the study-specific left-censored cutoff value is
selected from the sorted outcomes in a descending order
based on the percentage of left-censoring after data genera-
tion. For example, in the scenario of 60% left-censoring, the
cutoff value corresponds to the ((1− 60%)J + 1)th outcome
among sorted values. However, the right-censoring in AE
reporting is a different censoring mechanism (e.g., the re-
porting of grade 2 or higher AEs rather than all-grade AEs)
and likely from the random selection of studies. Therefore,
in Scenario 5, 20% of studies are randomly treated as right-
censored; in Scenario 6, 40% of AE data with low incidence
are treated as left-censored data first and then randomly se-
lecting one third of the remaining 60% (e.g., 20% among all)
of data as right-censored. The study-specific right-censored
cutoff value is generated from a binomial distribution by as-
suming the probability of grade 2 or higher AE is 50% of
all-grade AE incidence.

We compare the proposed model, MAGEC, with four
other methods: the pooled estimation method after conti-
nuity correction (PEM) [52, 24], the normal approximation
method (NAM) [38], the logistic regression method (LRM),
and the normal approximation method with robust variance
estimator (RVE) [34]. In MAGEC, following the recommen-
dation of the weakly-informative prior distribution for lo-
gistic regression models [16], we assign a half-Cauchy prior
distribution on the standard deviation of study effects. In
PEM [52], we pool observations by incidence level and the
95% nominal confidence intervals (CIs) for AE incidence lev-
els are calculated by the exact binomial test. In NAM, a
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Figure 1: Boxplot of point estimators for AE incidence using five methods. We compared the proposed Bayesian model
(MAGEC), pooled estimation method after continuity correction (PEM), normal approximate method (NAM), logistic
regression model (LRM), and normal approximate method with robust variance estimation (RVE) under different total
number of studies (J = 10, 25, 50) and six scenarios: (S1) 0% left censoring; (S2) 20% left censoring; (S3) 40% left
censoring; (S4) 60% left censoring; (S5) 20% right censoring; and (S6) 40% left censoring & 20% right censoring.

standard method in practice [38], we use a normal likeli-
hood procedure to estimate the incidence rate by taking the
inverse logit of the observed logit incidence [18] of each in-
cidence level weighted by its within-level variance. In LRM,
we estimate the AE incidences by an exact method through
fitting a generalized linear model with a logit link. In addi-
tion, we compare the performance of NAM with and without
robust variance estimators [34]. Therefore, in RVE, instead
of Fisher information, we implement the sandwich estima-
tor of variance into NAM to improve the robustness of the
statistical inference on incidence rates.

We assess model performance in terms of accuracy in the
estimation of the AE incidences. More specifically, we com-
pare the five methods using the following metrics: mean ab-

solute deviation (MAD), root mean squared error (RMSE)
of the point estimates (for MAGEC, we use the posterior
median), and coverage probability (CP) of the 95% nominal
confidence interval (for MAGEC, we use the 95% posterior
credible intervals), of the incidence rate parameters of inter-
est in each scenario.

3.2 Simulation Results
The results are based on 10,000 simulated data sets. For

each method, we repeated the same data generation proce-
dure in order to be able to compare results across methods.
Figure 1 gives boxplots for the point estimates of incidence
probabilities by scenario, method and the total number of
studies. CPs of three parameters of interest by scenario,
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Figure 2: Coverage probabilities (CPs) of AE incidences using five methods. We compared the proposed Bayesian model
(MAGEC), pooled estimation method after continuity correction (PEM), normal approximate method (NAM), logistic
regression model (LRM), as well as normal approximate method with robust variance estimation (RVE) under different
total number of studies (J = 10, 25, 50) and six scenarios: (S1) 0% left censoring; (S2) 20% left censoring; (S3) 40% left
censoring; (S4) 60% left censoring; (S5) 20% right censoring; and (S6) 40% left censoring & 20% right censoring.

method, and the total number of studies are displayed in
bar charts in Figure 2. In Table 2, performance in terms
of both MAD and RMSE of incidence rates based on the
five methods are shown for the four data censoring scenar-
ios. The table that presents two additional data censoring
scenarios is available in the Supplementary Material.

When there is no censoring (Scenario 1), the proposed
method (MAGEC) has CPs (Figure 2), MADs, and RM-
SEs (Table 2) for the incidence probabilities that are almost
identical to those of PEM and LRM. Of the five methods
compared, PEM can be considered the gold standard/bench-
mark for both interval and point estimation. Our results

indicate that MAGEC is not inferior to PEM. They also in-
dicate that the CP for each probability level of AE incidence
obtained from NAM and RVE appeared to be unstable in
estimating the incidence probabilities of less frequent events
compared with the other methods. The point estimates of
the incidence probabilities in both NAM and RVE are over-
estimated in Scenario 1. This finding is consistent with ar-
guments mentioned in the normal approximation for rare
events [7] and biased results of estimation for rare events
using normal approximation [33].

When 20% of data are censored (Scenario 2), the pro-
posed method (MAGEC) performs better than the others in
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Table 2. Mean absolute deviations (MADs) and root mean square errors (RMSEs) of drug incidence probabilities for five
methods. We compared the proposed Bayesian model (MAGEC), pooled estimation method after continuity correction (PEM),

normal approximate method (NAM), logistic regression model (LRM), as well as normal approximate method with robust
variance estimation (RVE) under different study sample sizes (J = 10, 25, 50) and four scenarios: (S1) 0% left censoring; (S2)

20% left censoring; (S3) 40% left censoring; and (S4) 60% left censoring. LC = left censoring; RC = right censoring.

Study
Sample Size

Scenario True
Value

% of LC % of RC Mean Absolute Deviation Root-mean-squared Error
MAGEC PEM LRM NAM/RVE MAGEC PEM LRM NAM/RVE

10 S1 0.2 0% 0% 0.013 0.013 0.013 0.015 0.014 0.016 0.016 0.019
0.05 0% 0% 0.006 0.006 0.006 0.011 0.008 0.008 0.008 0.013
0.01 0% 0% 0.003 0.003 0.003 0.008 0.004 0.003 0.003 0.009

S2 0.2 20% 0% 0.014 0.020 0.020 0.024 0.014 0.020 0.020 0.024
0.05 20% 0% 0.006 0.009 0.009 0.015 0.008 0.012 0.012 0.017
0.01 20% 0% 0.003 0.004 0.004 0.010 0.004 0.005 0.005 0.011

S3 0.2 40% 0% 0.015 0.033 0.033 0.037 0.019 0.037 0.037 0.041
0.05 40% 0% 0.007 0.015 0.015 0.021 0.009 0.017 0.017 0.023
0.01 40% 0% 0.003 0.006 0.006 0.012 0.004 0.007 0.007 0.013

S4 0.2 60% 0% 0.026 0.049 0.049 0.052 0.032 0.053 0.053 0.056
0.05 60% 0% 0.009 0.023 0.023 0.028 0.011 0.025 0.025 0.030
0.01 60% 0% 0.003 0.009 0.009 0.015 0.004 0.011 0.011 0.016

25 S1 0.2 0% 0% 0.008 0.008 0.008 0.013 0.010 0.010 0.010 0.014
0.05 0% 0% 0.004 0.004 0.004 0.010 0.005 0.005 0.005 0.011
0.01 0% 0% 0.002 0.002 0.002 0.009 0.002 0.002 0.002 0.009

S2 0.2 20% 0% 0.014 0.019 0.019 0.024 0.017 0.022 0.022 0.026
0.05 20% 0% 0.004 0.008 0.008 0.015 0.005 0.010 0.010 0.016
0.01 20% 0% 0.002 0.003 0.003 0.010 0.002 0.004 0.004 0.011

S3 0.2 40% 0% 0.009 0.034 0.034 0.038 0.011 0.036 0.036 0.040
0.05 40% 0% 0.004 0.015 0.015 0.022 0.005 0.016 0.016 0.022
0.01 40% 0% 0.002 0.006 0.006 0.012 0.003 0.007 0.007 0.013

S4 0.2 60% 0% 0.011 0.050 0.050 0.054 0.014 0.052 0.052 0.056
0.05 60% 0% 0.005 0.023 0.023 0.029 0.006 0.025 0.025 0.030
0.01 60% 0% 0.001 0.010 0.010 0.016 0.002 0.010 0.010 0.016

50 S1 0.2 0% 0% 0.006 0.006 0.006 0.010 0.007 0.008 0.008 0.012
0.05 0% 0% 0.003 0.003 0.003 0.010 0.003 0.004 0.004 0.011
0.01 0% 0% 0.001 0.001 0.001 0.009 0.002 0.001 0.001 0.009

S2 0.2 20% 0% 0.006 0.019 0.019 0.024 0.008 0.020 0.020 0.025
0.05 20% 0% 0.003 0.008 0.008 0.015 0.003 0.009 0.009 0.016
0.01 20% 0% 0.001 0.003 0.003 0.010 0.002 0.003 0.003 0.011

S3 0.2 40% 0% 0.007 0.034 0.034 0.038 0.008 0.035 0.035 0.039
0.05 40% 0% 0.003 0.016 0.016 0.022 0.004 0.016 0.016 0.022
0.01 40% 0% 0.002 0.006 0.006 0.013 0.002 0.007 0.007 0.013

S4 0.2 60% 0% 0.008 0.051 0.051 0.055 0.010 0.052 0.052 0.056
0.05 60% 0% 0.004 0.024 0.024 0.030 0.004 0.024 0.024 0.030
0.01 60% 0% 0.001 0.010 0.010 0.016 0.001 0.010 0.010 0.016

estimating incidence probabilities; with an increasing total
number of studies, its performance in Scenario 2 is compara-
ble to that in Scenario 1. Because censored observations are
ignored under the other four methods (PEM, NAM, LRM,
and RVE), it is unsurprising that their point estimates for
the incidence probabilities are overestimated and that their
CPs in Scenario 2 are much lower than those in Scenario
1. In contrast, the performance of MAGEC in Scenario 2 is
almost identical to its performance in Scenario 1 for both
interval and point estimates, demonstrating its robustness
of censored data.

In a more extreme scenario where 40% of data are cen-

sored (Scenario 3), the proposed method (MAGEC) per-
forms well, with little information loss compared with Sce-
narios 1 and 2. However, all other estimators of AE incidence
lead to inferior CP due to an increased percentage of cen-
soring. The point estimations obtained from PEM, LRM,
NAM, and RVE in Scenario 3 are more biased than those
obtained from these methods in Scenario 2. Based on the
MAD and RMSE, there are larger deviations from the true
values of the incidence probabilities compared with those in
Scenario 2. With an increasing total number of studies, their
CPs in Scenario 3 are much lower that those in Scenario 1
and 2. When the percentage of censoring reaches 60%, the
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performance of MAGEC is still the best among all meth-
ods. When we incorporate right-censored AE data, MAGEC
consistently provides the lowest errors across all settings. In
Scenario 6 with censoring possibly on both sides, the results
from four other methods are unreliable. For example, the
observed errors sometimes are smaller in Scenario 6 (e.g.,
MAD = 0.015 in PEM) than in Scenario 3 or 5 for one-
sided censored data alone (e.g., MAD = 0.033 or 0.020 in
PEM), when combining two wrongs makes a right because
the analysis of neglecting the left-censored or right-censored
data tends to be biased in the opposite direction. However,
as illustrated in Table B.1 in the Supplementary Material,
the smaller error cannot be warranted across different sam-
ple size settings. Overall, the MAGEC model yields not only
more stable and superior coverage, but also unbiased esti-
mates of the incidence probabilities in all six scenarios es-
pecially with censored event data. The proposed method,
handling both observed and censored data took, around 20
seconds in the absence of censoring and 50-70 seconds with
an increasing percentage of censoring. In contrast, the other
four methods, which only consider observe data, completed
the task in less than one second.

Across all scenarios considered above, MAGEC outper-
forms the other four methods in estimating incidence prob-
abilities when AEs have low incidence and when a high pro-
portion of AEs are censored. Furthermore, the quality of an
estimator can be measured by its efficiency, which is defined
as the asymptotic variance of an estimator [8]. The larger
the variance, the lower the efficiency of an estimator. Here,
the asymptotic relative efficiency (RE), defined by the recip-
rocal of the ratio of the asymptotic variances of two unbiased
estimators, is given to examine the amount of information
loss from informative censoring. There is a 10%-20% infla-
tion in the RMSE from 0% to 40% censored data, suggesting
limited efficiency loss of MAGEC in incidence estimation
due to censoring. In summary, the proposed method consis-
tently achieves a reasonable performance in estimating the
incidence rates at different probability levels of AE incidence
in the presence of censored data.

4. APPLICATION
In this section, we apply the proposed Bayesian method

to modeling a meta-analysis of Grade 3 or higher AEs with
censored information [54]. The goal is to evaluate the inci-
dence probabilities of pneumonitis (referring to inflamma-
tion of lung tissue) in two PD-1 and three PD-L1 inhibitors
in a meta-analysis of 125 clinical studies. Pneumonitis is a
typical serious AE not only leading to hospital admission
and potentially permanent lung damage or death, but also
resulting in treatment discontinuation [9, 59]. Such kind of
inflammatory or immune-related AEs are of special inter-
est for cancer immunotherapy. Specifically, around 35% of
grade 3 or higher AEs of pneumonitis across studies were
incompletely reported.

We compare six models to determine the best model for
grade 3 or higher pneumonitis data. The linear combination
in (2.2) could entail one or more of the following terms: the
between-study random effects (α), drug or drug-dose ran-
dom effects (η), and cancer type random effects (ζ). Model
1 (M1) is the simplest model with only study effects. Model
2–4 (M2–M4) consider adding cancer effect, drug effect, and
drug-dose effect to the M1, respectively. With both cancer
effect and drug effect, Model 6 (M6) is more complex than
Model 5 (M5) because it also takes dose level into consid-
eration. To specify the priors for each random effect in the
proposed logistic model, we assume normal distributions

α ∼ N(0, σ2
α), η ∼ N(0, σ2

d) or ∼ N(0, σ2
ad),

ζ ∼ N(0, σ2
c ),

with half-Cauchy prior distributions for the standard devi-
ation parameters and the scale parameter A = 25 [16].

All six models are implemented in the statistical soft-
ware R and JAGS [40] using MCMC algorithms to generate
samples from the posterior distribution of the parameters of
interest. We ran three parallel chains for the model. For each
MCMC chain, after discarding the burn-in period of 30,000
iterations, the 3 chains showed good mixing and successful
convergence to the target distribution. We eventually ob-
tained 10,000 posterior samples per chain by retaining one
sample out of three. Based upon the traceplot for each pa-
rameter of interest, all chains are close to each other and
the target distribution. Furthermore, in terms of the poten-
tial scaler reduction statistic, also known as Rhat, the values
of all key parameters are at 1, suggesting convergence. The
30,000 posterior samples of model parameters such as inci-
dence probabilities of cancer effects and drug effects were
saved for inference.

The model assessment results are summarized in Table 3.
Model 5 containing study, cancer and drug effects was se-
lected based upon the smallest DIC and WAIC among all
models considered. According to the subgroup analysis of in-
cidence probability of AE by drug, there were no significant
differences in the incidence among different dosing schedules
for PD-1/PD-L1 drugs. Figure 3 displays the incidence prob-
abilities, along with their 95% credible intervals, for grade
3 or higher pneumonitis across 49 clinical trials of Pem-
brolizumab. The comprehensive forest plot (Figure C.1 in
the Supplementary Material) illustrates the estimated inci-
dence probability for grade 3 or higher pneumonitis across
all 125 clinical trials. The vertical dashed line in Figure C.1
is the overall incidence probability of grade 3 or higher pneu-
monitis (0.48%; 95% CI, 0.30%–0.70%) across all studies. By
contrast, if the censored outcomes were treated as missing
at random, the estimated incidence rate would be biased
and overestimated by 12.5%. If we further ignored the co-
variate information and analyzed the case study using four
other frequentist methods in simulation study, the overall
incidence probability estimates would increase more than
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Table 3. Model Comparison: heterogeneity between study (σα), cancer type (σc), and drug (σd) or drug-dose (σad), deviance
information criterion (DIC), and widely applicable information criterion (WAIC) from modeling observed and censored grade 3

or higher AE (pneumonitis) data.

Model σα σc σd σad DIC WAIC
M1 0.714 [0.415, 1.100] – – – 243.7 223.2
M2 0.494 [0.060, 0.927] 0.697 [0.186, 1.864] – – 248.5 227.2
M3 0.701 [0.401, 1.080] – 0.357 [0.021, 1.650] – 241.1 222.0
M4 0.704 [0.396, 1.084] – – 0.223 [0.010, 0.822] 244.0 223.9
M5 0.425 [0.037, 0.865] 0.739 [0.240, 1.977] 0.458 [0.038, 1.904] – 237.0 217.1
M6 0.410 [0.032, 0.876] 0.739 [0.232, 1.959] – 0.321 [0.020, 0.899] 238.7 218.2

Figure 3: Incidence of grade 3 or higher AE (Pneumonitis) by study for Pembrolizumab.

60%. The case study results are consistent with our simu-
lation studies, in that existing methods which rely only on
reported counts (which by definition were not subject to cen-
soring) tend to overestimate the incidence rates. Our pro-
posed method avoids this upward bias, suggesting a more

favorable safety profile for the PD-1/PD-L1 drugs. These
findings demonstrate that our proposed method can play
a critical role in providing a more accurate understanding
of the risk/benefit ratio for new therapies with serious but
low-frequency adverse events.
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5. DISCUSSION
In this paper, we presented a Bayesian hierarchical mod-

eling framework in the meta-analysis setting when the
study-level event rates could be incompletely reported. Our
Bayesian approach, named MAGEC, is efficient to handle
censored safety data without requiring the multiple impu-
tation. Further, we demonstrated the superior performance
of our proposed method in simulations. Specifically, simu-
lation results showed that the proposed Bayesian approach
generated unbiased estimations of drug effects with limited
information loss. Moreover, the proposed method was ro-
bust to rare events, which are commonly encountered in
data analysis of AEs. Note that the definition of rare events
here is in a statistical sense following the previous works
in the meta-analysis literature [2, 32], rather than in the
pharmacovigilance setting [10]. Finally, we illustrated the
implementation with a real data application, while employ-
ing the proposed method can effectively reduce the over-
estimation bias towards the incidence rate of pneumoni-
tis in cancer patients with the treatment of immunother-
apy.

Special consideration must be given to incomplete re-
porting of AEs to avoid incorrect statistical inference. In
general, there are mainly three concerns when conduct-
ing safety meta-analyses: (1) AE incidences are heteroge-
neous across studies, (2) AEs of interest could be rare,
and (3) AEs are incompletely or inconsistently reported
[1, 50]. While various researchers have proposed different
methods to address the first two concerns, the third concern
is largely overlooked in methodology development. Naively
applying standard methods in the presence of missing or
censored data can result in bias or incorrect conclusions
[31]. In our motivating application, clinical trial reporting
standards only require that AEs be included in the final
trial report if they exceed a pre-specified cut-off that is
specific to that study; this means that rare AEs that oc-
cur less frequently than the threshold are omitted and can
be considered as left-censored data. For some older clin-
ical trials, the trial cutoff could be (implicitly) as large
as the sample size, while only efficacy outcomes were re-
ported in the publication with no mention of AEs [17]. Par-
ticularly for newly developed drugs, we believe that such
completely censored reporting or related publication bias
should not be a major concern. Since April 18, 2017, it is
mandated that all studies registered with ClinicalTrials.gov
must report AE counts that exceed a pre-specified cutoff
(e.g. 5%) for each study arm within one year after the
primary completion date. Nevertheless, the problem of in-
complete AE reporting with study-specific cutoff, as this
paper attempts to address, is still unavoidable for meta-
analysis of drug safety with this recent reporting require-
ment.

The proposed Bayesian MAGEC modeling framework es-
timates the incidence probabilities using a one-stage ap-
proach. In contrast, a meta-analysis of binary data is usu-
ally conducted using a two-stage approach in the literature

[12, 48] – the summary statistics are first separately cal-
culated for each trial and then combined by an appropri-
ate meta-analysis model. However, this two-stage approach
is likely to perform poorly in the first stage of each study
due to the rarity of events [5]. Alternatively, a one-stage
approach is preferred as it delivers more exact statistical
inference [11].

Although caveats of incomplete reporting of AE data and
its impact on biasing meta-analysis results has been noted
by many researchers, no statistical approach has yet been
proposed to systematically address this issue. Our Bayesian
MAGEC model represents the first such attempt, and we
present it in a form of simplicity to illustrate the con-
cept. One limitation of our proposed method could be that
MAGEC requires a reasonable number of eligible studies to
be included in meta-analysis of drug safety. In cases with
very few studies, it becomes important to apply proper ad-
justments to enable stable estimation for random effects
[35, 61]. In the Bayesian modeling setting, a robust prior for
the standard deviation parameter, such as the half-Cauchy
prior with heavy tails [14], is preferred for the between-study
random effect to address this limitation. Another limitation
of MAGEC is the assumption that the censored safety data
exhibit a non-random missingness pattern. This assump-
tion is analogous to the censoring data often encountered
in survival analysis, where the data are censored in a non-
informative manner. In the real-data application, we only
demonstrated the case of left-censored grade 3 or higher AEs
when they happened at a frequency lower than pre-specified
cutoff values. However, the proposed framework can be ex-
tended to joint modeling of AEs of different severity grades
also with right-censoring using multinomial distribution.
Additionally, as many AE types are clustered in nature, mul-
tivariate modeling, rather than univariate modeling, could
address the AE correlation and explore high-risk subgroups.
Furthermore, it’s worth noting that our proposed method
can be applied to the meta-analysis of high-dimensional ge-
nomic data [21], in which a large number of genes are evalu-
ated to estimate the mutation rate in the panels across stud-
ies. For such an extension, information on mutations could
be also censored in some studies due to low frequency, which
should be considered in the model using a pre-specified cut-
off value determined by gene selection criteria. From the
modeling perspective, the high-dimensional outcome can be
modeled directly using a multivariate normal distribution
with a covariance matrix describing the genome-wide associ-
ation. In implementation can be simplified with pre-existing
genomic knowledge or specific covariance structure such as
compound symmetry or first-order autoregressive structure.
Additional parameters in the covariance matrix can be sam-
pled from their conditional distributions using MH algo-
rithm. Compared to the current simulation setting, com-
putation for high-dimensional censored data could demand
significant computational resources. However, the Bayesian
framework’s ability to borrow information across dimensions

https://clinicaltrials.gov/
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could potentially lead to better performance. Lastly, our
model implementation strategy could also be applied to ana-
lyze other censored data structures, including time-to-event
data, count data, and ranking data, in addition to binomial
data [25]. By providing a statistical framework to system-
atically address incomplete AE reporting, we hope that the
Bayesian MAGEC model will facilitate more accurate and
reliable meta-analyses in the future.
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