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Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that involves interactions between different

cell types, such as cancer cells, immune cells, and stromal cells. These interactions can promote or inhibit tumor growth
and affect response to therapy. Multitype Gibbs point process (MGPP) models are statistical models used to study
the spatial distribution and interaction of different types of objects, such as the distribution of cell types in a tissue
sample. Such models are potentially useful for investigating the spatial relationships between different cell types in the
tumor microenvironment, but so far studies of the TME using cell-resolution imaging have been largely limited to spatial
descriptive statistics. However, MGPP models have many advantages over descriptive statistics, such as uncertainty
quantification, incorporation of multiple covariates and the ability to make predictions. In this paper, we describe and
apply a previously developed MGPP method, the saturated pairwise interaction Gibbs point process model, to a publicly
available multiplexed imaging dataset obtained from colorectal cancer patients. Importantly, we show how these methods
can be used as joint species distribution models (JSDMs) to precisely frame and answer many relevant questions related
to the ecology of the tumor microenvironment.
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1. INTRODUCTION
Similar to natural ecosystems, the TME comprises a dy-

namic web of relationships, where cancer cells, immune pop-
ulations, stromal cells, and various molecular cues engage
in complex communication and interdependence [1, 2]. Fur-
thermore, just as environmental conditions influence species
behavior in ecological systems, the TME’s microenviron-
mental factors, including nutrient availability, oxygen lev-
els, and inflammatory signals, play a pivotal role in shaping
cellular behaviors, proliferation, migration, and responses
to therapy [3–5]. These interactions exert pivotal influences
on tumor progression and therapeutic outcomes [6–9]. This
ecosystem-like framework underscores the TME’s complex-
ity and underscores the need to employ ecological modeling
approaches to gain deeper insights into its intricate dynam-
ics and therapeutic implications [10–14].

The advent of highly multiplexed imaging technologies
that allow for the simultaneous measurement of dozens of
cell-surface protein biomarkers in tissue samples has allowed
for the creation of datasets that have precise spatial coordi-
nates and cell-type annotations for each cell within a tissue
[15]. Such multiplexed imaging technologies are of partic-
ular relevance to studies of the tumor microenvironment,
in which multiplexed images can be used to ascertain the
∗Corresponding authors.

complex interrelationships between cell types and cell states
[16, 17]. Such imaging technologies are similar to the remote
sensing technologies employed in ecological studies, which
allow the localization of various species and environmental
covariates in space.

Spatial descriptive statistics are fundamental tools em-
ployed in such ecological studies to gain insights into the
spatial patterns and relationships within natural systems.
These statistics provide a quantitative framework for char-
acterizing the arrangement, dispersion, and clustering of
species or individuals across a landscape. Metrics such as
nearest neighbor distances, spatial autocorrelation, and Rip-
ley’s K-function are commonly used to assess the degree of
spatial aggregation or dispersion of species within a given
habitat [18–21]. By analyzing these patterns, ecologists can
infer crucial information about species interactions, habitat
preferences, and the influence of environmental factors on
distribution. Such statistics have also been widely adopted
by researchers investigating the tumor microenvironment
[22–24]. More bespoke methods have also been developed,
such as those in which a “neighborhood composition” vector
is calculated for each cell [16, 25–27]. Other relatively simple
statistics, such as quantifying the amount of immune infil-
tration based on the Immunoscore metric, in various regions
of the TME, are also widely used in clinical models [28, 29].

While spatial descriptive statistics offer essential prelimi-
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nary insights into ecological spatial patterns, more advanced
techniques, such as Joint Species Distribution Models (JS-
DMs), extend this analysis by capturing the complex inter-
actions and dependencies that characterize ecological sys-
tems in a more holistic manner [30–34]. In particular, JS-
DMs are able to model the spatial distributions of multi-
ple species simultaneously, while accounting for the asso-
ciations between each of these species, as well as their as-
sociation with environmental variables. Within the context
of the TME, these models can enable researchers to iden-
tify cell type-cell type or cell type-environment associations
while adjusting for other associations, predict cell type dis-
tributions, and quantify the uncertainty of model parame-
ters. Such capabilities are typically not available for spatial
descriptive statistics.

Point process models are another widely used tool for
modeling ecological relationships [21, 35–39]. Such models
make explicit the probabilistic data-generating process that
is assumed to generate an observed pattern of points, and
thus are amenable to uncertainty quantification and pro-
ducing predictions [18]. A particular class of point process
model, called multitype Gibbs point process (MGPP) mod-
els, are able to model the pairwise cell type interactions
jointly [18, 40–42], along with cell type/environment inter-
actions and thus can be used as JSDMs in the context of
the TME ecosystem. Gibbs point process models explicitly
model the attraction or inhibition between different points
in space; MGPPs generalize this to when there are several
types of points in space, such as different cell types [18].

More specifically, modeling interactions via MGPP mod-
els can improve on the aforementioned spatial descriptive
statistics in a number of ways [18]: a) spatial variables, such
as the concentration levels of various inflammatory factors,
and non-spatial variables, such as organ of origin or patient
demographics, can be easily adjusted for, allowing for the
modeling of inhomogeneous distributions of cells; b) the
joint modeling of pairwise interactions between cell types
can be achieved, as opposed to the case of descriptive statis-
tics, in which case only the marginal distribution of inter-
actions can be estimated; c) uncertainty quantification of
interaction effects can be performed; and d) predictions and
residuals can be obtained from the model, allowing for the
assessment of model fit, as well as the prediction of distri-
butions of cells under new conditions.

Some examples of relevant questions that JSDMs (and
thus MGPP models, in this context) can answer, in a gen-
eral setting and specific to the TME, are found in Table 1. In
order to motivate the utility of this model, in this paper we
will demonstrate an analysis framework that could be used
to answer many of the questions from Table 1. The ques-
tions in Table 1 are asked either at the image level (that
is, they can be answered after a JSDM model is fit on a
particular image) or at the cohort level (they are answered
after fitting JSDM models for each image in a cohort, ex-
tracting parameters from the fitted models and then using
those parameters as inputs for further modeling and anal-

ysis). The third column of Table 1 indicates at which level
each question can be answered.

2. METHODS
2.1 Dataset

The dataset used to showcase the MGPP method com-
prises multiplexed images of tumor tissue samples obtained
from a publicly available repository for colorectal cancer
[16]. The images capture different cell types within the tu-
mor microenvironment, including cancer cells, immune cells,
and stromal cells. In the original study, preprocessing was
conducted on the images. This involved cell type classifica-
tion and determination of spatial coordinates for each cell
type.

Specifically, this dataset consists of 4 multiplexed images
of 56 different cell-surface markers of tumor tissue sections
from each of 35 CRC patients, with patients having vary-
ing degrees of disease progression and severity. These images
were obtained via the PhenoCycler imaging technology (for-
merly known as CODEX) [17, 43]. The patients are divided
into two groups, based on the histopathology of their tu-
mors: those in which tertiary lymphoid structures (TLSs)
are visible at the tumor invasive front, and those where
diffuse inflammatory infiltration (DII) was present and no
TLSs were visible. These patient groups will be subsequently
referred to as CLR (Crohn’s-like reaction) and DII, with
CLR patients generally having better survival prognosis [16].
16 cell types have been annotated using the 56 different
cell-surface markers and in total, the dataset consists of
244,504 annotated cells. In addition, patient metadata is
included, including overall/progression-free survival times,
tumor grade, and demographic variables such as age and
sex. An example image can be seen in Figure 1.

2.2 Multitype Gibbs Point Process (MGPP)
Models

Once cell types have been annotated, a multiplex image,
such as in Figure 1, can be viewed as a multitype point
pattern, or a realization x of a particular random variable
X called a multitype point process. Subsequently, a MGPP
model can be fit to this multitype point pattern. In the fol-
lowing, we will describe first a general pairwise interaction
MGPP model, and subsequently the saturated pairwise in-
teraction MGPP model.

Mathematically, a pairwise interaction MGPP model
characterizes the probability density f(X) of a multitype
point process X in a domain D ∈ R2 in the following way
[40], with i and j indexing over the points in x:

f(X = x) = C exp

([
n(x)∑
i=1

K∑
k=1

βk,miXk(xi)

]
+

[
n(x)∑
i<j

gmi,mj (xi, xj)

]) (2.1)
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Table 1. Examples of questions that can be asked using MGPP models as JSDMs.
Example of question in a general
setting

Specific to the TME Image or Cohort level

Are different cell types positively or
negatively correlated in space, after
adjusting for the presence of other cell
types and spatial covariates?

Are B cells and granulocytes positively
or negatively correlated in this patient,
after controlling for the effects of other
cells?

Image level

How do cell type interactions change
across different spatial scales?

At which spatial scales are Tregs
repulsive of one another, and at which
are they attractive?

Image level

Which cell type or spatial covariate is
the best predictor of another cell type at
each location in an image?

Which cell type best predicts the
locations of tumor cells in the tumor
core? How about in stromal regions?

Image level

Given some cell types and spatial
covariates in an image, how well can we
predict the distribution of a new cell
type, using a model fit on other images?

Can we correctly predict the distribution
of M2 macrophages in an image where
we did not mark for M2 macrophages?

Image level (but may require model fits
from other images)

Can the estimated interaction
parameters predict patient outcomes?

How well does the interaction between
CD8+ T cells and granulocytes predict
patient survival?

Cohort level

Can we predict which distributions of
cell types are associated with the best
tumor responses?

Which distributions of immune cell
types are associated with a near absence
of tumor cells?

Image level

How do changes in spatial covariates
change the distribution of different cell
types?

How might changes in oxygenation or
angiogenesis affect the distribution of
tumor cells?

Image level

Is there evidence of two cell types
coexisting in the same metabolic niche?
Is the nature of their interaction
competitive or mutualistic?

Do immune cells and tumor cells
compete for the same metabolic factors?
In which areas of the tumor?

Image level

How do cell type interactions compare
across images obtained from the same
patient?

How variable are the interaction
parameters between B cells/CD4+ T
cells across images within the same
patient among patients with low survival
probability?

Cohort level

Here, C indicates a normalizing constant, while the first
term in brackets signifies the “first-order” effects on the
density of each cell type, that is, the effects from spatial
and non-spatial variables. There are K such variables (the
Xk(xi)) per cell type. These variables are typically used
to model “environmental variables”; in the context of the
TME, this could include such variables as the concentra-
tion levels of various metabolic or inflammatory factors,
or the distance to the nearest blood vessel. The second
bracketed term contains the pairwise interaction functions
gmi,mj (xi, xj), which are functions of two points xi and xj of
types mi and mj . These interaction functions are often pa-
rameterized with interaction parameters θmi,mj , which typ-
ically quantify the direction and magnitude of interaction
between points of type mi and mj . For example, in the mul-
titype Strauss model, the interaction function gmi,mj (xi, xj)

is written as:

gmi,mj (xi, xj) =

{
0, if ||xi − xj || > Rmi,mj

θmi,mj , if ||xi − xj || ≤ Rmi,mj

(2.2)

for user-defined interaction radii Rmi,mj . Here note that
the distance function ||x − y|| between two points x, y ∈ x
typically denotes the Euclidean distance between the spa-
tial coordinates of the corresponding points. The multitype
Strauss model assumes that interactions between cells of
types mi and mj do not exist if cells are farther than Rmi,mj

apart, and are constant if they are within that radius.
One drawback of many pairwise interaction MGPP mod-

els, such as the multitype Strauss model, is that they are
only able to model repulsion (and not clustering) between
points – that is, that θmi,mj < 0. This has led to the de-
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Figure 1: A point pattern representation of a multiplex image of a tissue section of the TME in a CRC patient.

velopment of MGPP models that do allow clustering, such
as the Geyer saturation model [44] or the saturated pairwise
interaction MGPP model [42]. For example, in the saturated
pairwise interaction Gibbs point process, as in [42] and bor-
rowing some of their notation, we have

f(x) =C exp

[∑
x∈x

(
β0,t(x) +

K∑
k=1

βk,t(x)Xk(x)

)

+

p∑
t2=1

∑
z∈xt1

αt1,t2u (z, (x\{z})t2)

+

p∑
t2=1

∑
z=∈xt1

γt1,t2v (z, (x\{z})t2)
]

(2.3)

with

u(x,xt2) = max
η∈S(xt2 ,N)

∑
z∈η

φ(||x− z||;RS
t(x),t2)

) (2.4)

and v defined similarly as

v(x,xt2) = max
η∈S(xt2 ,N)

∑
z∈η

ψ(||x− z||;RM
t(x),t2)

) (2.5)

Here, t1 and t2 can take on values in {j}pj=1 and denote
the jth cell type of p cell types, and t(x) ∈ {j}pj=1 denotes
the type of point x ∈ x. Note that t(xi) = mi, as in our

notation in Equation 2.1. Functions φ and ψ represent user-
defined short- and medium-range potential functions which
set the shape of short- and medium-range interactions, and
are dependent only on the distance between two points. φ
and ψ are commonly functions such as the exponential or
step functions (Figure 2). RS

t1,t2 and RM
t1,t2 are user-defined

short- and medium-range interaction radii, and the interac-
tion parameters of interest, αt1,t2 and γt1,t2 , are interpreted
as the strength and direction of interaction between any two
types of points at short and medium ranges. xti denotes
the set of points in x that have type ti, while S(xti , N)
is the set of all subsets of points from xti that are of size
N – thus, u and v can be interpreted as the sum of the
N largest potentials that point x has with points z ∈ x of
type t2. Summing only the top N potentials (rather than
all of them) is what leads to this being called a saturated
MGPP model, and the parameter N is called the satura-
tion parameter accordingly. Because of its great flexibility
in being able to model clustering and repulsion, the satu-
rated pairwise interaction MGPP model will be the one we
will be using for the remainder of the paper as the JSDM. It
should be noted, furthermore, that currently MGPP models,
like the saturated pairwise MGPP model we describe above,
are limited to modeling interactions between pairs of points.
While higher-order interaction single-type Gibbs models do
exist, such as the triplet interaction process [44] and the
area-interaction process [45], from the authors’ perspective,
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Figure 2: Examples of potential curves commonly used for
φ and ψ in Equations 2.4 and 2.5.

there has not been any work yet to generalize higher-order
interaction processes to multitype data.

Once the probability density f(X) of a MGPP model has
been defined, estimating the parameters of this model can
proceed via standard statistical techniques such as maxi-
mum likelihood estimation. However, because this is often
quite computationally costly (due to the often intractable
normalizing constant C), estimation techniques based on
the conditional intensity λ(y|x) are often preferred. The
intensity λ(y) of a point pattern at a location y ∈ D is
the expected number of points falling in a small window
around y, divided by the area of that small window. The
conditional intensity defined at a spatial location y is de-
fined as λ(y|x) = f(x∪y)

f(x\y) , and can be interpreted as the
“intensity at y given the rest of the spatial pattern x” [18].
Using the conditional intensity, we can then produce predic-
tions from our MGPP model and subsequently assess model
fit. For the specific formulation of the conditional intensity
for the saturated pairwise interaction Gibbs point process
model, see [42].

In case there are cell types with very low representation,
there are a few possible strategies. If an analyst is not in-
terested in interactions involving rare cell types, those cell
types can simply be removed from the pattern or lumped
into a separate category, as we do in the example analysis
below. However, if the analyst is interested in rare cell-type
interactions, it is possible to fit a multilevel model across
multiple images simultaneously, in order to pool the esti-
mates of interaction strength across multiple images simul-
taneously. Such a strategy is used to model spatiotemporal

point pattern data in [46, 47], and similar methods could be
applied in this case as well.

2.3 An Example Analysis
Here we demonstrate an example analysis to answer a

subset of the questions from Table 1. In this example, we
jointly model the interactions between sufficiently abundant
cell types in each image. Furthermore, we include as a spatial
covariate the distance from each point to the nearest blood
vessel, as a proxy for angiogenesis and oxygenation found in
the TME. Specifically, we set out to answer the following:

1. Which cell types interact with one another, after ad-
justing for the interactions of other cell types and dis-
tance to blood vessels? Which cell types stay away from
one another, again, after adjusting for the interactions
of other cell types and the distance to blood vessels?
What confidence can I have in individual parameter es-
timates?
(a) Do these interactions occur at close or far spatial

scales?
(b) Which cell type most strongly uniquely interacts

with tumor cells, on average, across the whole im-
age?

2. Which cell types best predict the distribution of tumor
cells at each location in space?

3. How much is the distribution of each cell type uniquely
predicted by its distance to the nearest blood vessel?

4. What is the difference in interaction strength between
each pair of cell types, comparing between the two pa-
tient groups (CLR and DII patients)?

5. What levels of intra- and inter-patient heterogeneity are
there in how different cell types interact?

6. Are any of these parameter estimates useful clinically
for predicting patient outcomes?

7. How much can I trust the results from this model? i.e.,
how well does it predict spatial distributions of cells?

The code to reproduce the example analysis that follows
can be found at https://github.com/jeliason/mgpp_TME/.

2.3.1 Fitting MGPP models

We employed a systematic approach in fitting the MGPP
models to the images from the CRC dataset. We focused
our analysis on cell types that exhibited a minimum of 20
cells within a given image, ensuring that we focused on suf-
ficiently populated cell populations to enable reliable mod-
eling of interactions. Next, we identified regions devoid of
cells and incorporated this information as a spatial covari-
ate within the model. By accounting for these regions, we
hoped to avoid any bias in model fitting from assuming all
areas in the spatial window were equally likely to contain
cells. We further incorporated a spatial covariate of “dis-
tance to nearest blood vessel”, as a proxy of angiogenesis

https://github.com/jeliason/mgpp_TME/
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Figure 3: Spatial covariate of “distance to nearest blood ves-
sel”, as imaged in spot 59_A.

and oxygenation throughout the TME. An example of this
spatial covariate can be seen in Figure 3.

The fitting of the MGPP models was performed using
the ppjsdm package, an R package tailored for fitting satu-
rated pairwise interaction Gibbs point process models [42].
Specifically, we employed an exponential interaction func-
tion to model the pairwise interactions between cell types
at both short and medium ranges (that is, the functions φ
and ψ in Equations 2.4 and 2.5). The interaction radii were
set at 30, 70, and 150 microns, reflecting short-, medium-
and long-range interaction distances, respectively. A satura-
tion parameter of N = 5 was set. Lastly, Nd = 5, 000 dummy
points were included per cell type. The dummy points are re-
lated to the inferential procedure for parameter estimation.
Briefly, Nd dummy points per cell type are distributed across
the image and interactions between dummy points and real
points are calculated, according to Equations 2.4 and 2.5.
This way of formulating the problem allows one to use fast,
optimized inferential procedures developed for logistic re-
gression. Specifically, at each point (dummy or data), the
interactions with each cell type at that point are calculated,
as well as the associations with spatial covariates. Then, a
logistic regression is fitted in which the interactions are the
independent variables and the response variable is binary,
coded 1 for data points and 0 for dummy points. Increasing
Nd will decrease the approximation error of this inferential
technique up to a point, and an estimate of the proportion
of the standard error of each coefficient that is due to this
approximation can additionally be calculated. For more in-
formation, the interested reader is referred to [42, 48].

Using 2 cores on a laptop, fitting of the models on these
datasets took between 30 seconds–2 minutes per model,
while estimating the standard errors for each parameter (a
separate step) took 3–10 minutes per model. Memory costs
for the fitting of these models are also not extravagant, typ-
ically only taking 1–2 GB.

2.3.2 Interpretation of Model Parameters and Predictions

After fitting the models, we extracted the fitted interac-
tion parameters αt1,t2 , γt1,t2 and β1,t (corresponding to the
effect that distance to nearest blood vessel had on the dis-
tribution of each cell type t), along with the respective con-
fidence interval for each parameter. We then plotted these
parameters for one image as heatmaps, in order to demon-
strate how to answer Questions 1 and 3. We also plotted the
exponential potential functions scaled by each interaction
parameter, in order to demonstrate how to answer Question
1a. We identified the cell type with the highest magnitude
interaction parameter with tumor cells in each image, to
answer Question 1b.

Next, we showed how one can answer Question 2 by iden-
tifying the cell type that has the largest magnitude contri-
bution to the linear predictor of the conditional intensity of
tumor cells at each point in space.

Lastly, we extracted the interaction parameters from all
fitted models and plotted heatmaps of the difference in me-
dian interaction between the two patient groups, allowing
us to answer Question 4.

2.3.3 Heterogeneity in Model Parameter Estimates Within Pa-
tient Groups and Across Patients

In order to answer Question 5, we calculated the me-
dian absolute deviation (MAD) of each interaction parame-
ter at two levels: pooled within each patient group, as well
as across the whole patient cohort, and plotted the MAD
estimates as heatmaps. This allows us to identify interac-
tions that are highly variable and likely to be more context-
dependent, as well as those that remain more consistent and
homogeneous.

2.3.4 Predictive Modeling of Patient Outcomes

We employed multivariate Cox proportional hazards
models to estimate hazard ratios for interaction effects de-
rived from the fitted MGPP models, in order to answer
Question 6. Briefly, the interaction parameters for a given
pair of cell types and spatial scale were extracted and used as
a predictor of patient survival in a Cox model, while adjust-
ing for the age and sex of each patient, as in Equation 2.6.

λ(t|αijk) = λ0(t) exp(β0,jk + β1,jkαijk

+ β2,jkAgei + β3,jkSexi)
(2.6)

Here, αijk indicates the αj,k parameter from the i-th image.
Models were fit for the γj,k parameters in a similar fashion.
Pairs of types that appeared in less than 10 images were ex-
cluded from this analysis. The resulting hazard ratios serve
as potential prognostic biomarkers, indicating the prognos-
tic significance of the identified spatial interactions within
the tumor microenvironment. Furthermore, to account for
the fact that there are multiple interaction estimates per
patient (because there are multiple images, and thus multi-
ple model fits, per patient), we fit these Cox models using a
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robust sandwich variance estimator for each fitted parame-
ter that appropriately accounts for the correlation between
interaction estimates within patients [49].

2.3.5 Evaluation of Model Fit

Finally, in answering Question 7, we assessed the fit of
the MGPP models by employing the Area Under the Curve
(AUC) metric to quantify the predictive accuracy that the
model had for each cell type within the tumor microenvi-
ronment. Briefly, the AUC is a metric that determines how
well the predicted conditional intensity is able to partition
the spatial window into regions of higher and lower concen-
trations of points [18]. By examining the AUC for each cell
type, we are able to see how well the model predicts the
spatial distribution of each cell type. We then calculated
the median AUC per cell type, both within each patient
group and across patient group, which helped identify cell
types that could be reliably predicted by the MGPP mod-
els. Furthermore, we calculated the correlation between the
AUC values and the abundance of each cell type, to clarify
whether cell type abundance improved predictability of that
cell type.

3. RESULTS FROM EXAMPLE ANALYSIS
3.1 Interpretation of Model Parameters and

Predictions
We extracted the β1,t parameters from each of the fitted

models, and examples of the fitted parameters from one im-
age are show in Table 2, allowing us to answer Question 3.

Table 2. Coefficients β1,t as estimated from spot 59_A.

type estimate CI
B cells −1.4e-04 (−6.2e-03, 5.9e-03)
CD163+ macros −1.5e-03 (−2.9e-03, −6.1e-05)
CD8+ T cells 9.9e-04 (−1.8e-03, 3.8e-03)
granulocytes −2.2e-03 (−3.4e-03, −1.1e-03)
memory CD4+ T −1.9e-03 (−4.7e-03, 9.7e-04)

plasma cells −1.0e-03 (−2.9e-03, 9.3e-04)
stroma −6.9e-03 (−9.6e-03, −4.3e-03)
Tregs 3.4e-03 (−5.2e-03, 1.2e-02)
tumor cells −1.9e-03 (−5.2e-03, 1.3e-03)

The β parameters from this image demonstrate that the in-
tensity of stroma, granulocytes and CD163+ macrophages
are negatively associated with distance from vasculature –
that is, as the distance from vasculature increases, the
less likely it is that stromal cells, granulocytes or CD163+
macrophages will be encountered.

We next extracted the αt1,t2 and γt1,t2 (subsequently α
and γ) parameters from each of the fitted models. Exam-
ples of the fitted parameters from one image are given in
Figure 4. The α parameters from this image demonstrate rel-
atively consistent within-type positive interaction, or clus-
tering, while between-type interactions at this scale tend to
be negative, or repulsive. Of course, a significant outlier to
this trend is the interaction between B cells and many other
cell types, in particular with memory CD4+ T cells. The
γ parameters, on the other hand, showcase a quite differ-
ent story. Here, we again see that within-type interactions

Figure 4: Interaction parameters αt1,t2 and γt1,t2 as estimated from spot 59_A. Stars indicate that the interaction param-
eter was found to be significant within that image at a significance level of 0.05.
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Figure 5: Difference in the median of the short-range interaction parameters αt1,t2 and γt1,t2 between patient groups.

are generally positive (with the notable outlier of Tregs),
though now tumor cells and CD163+ macrophages (or M2
macrophages) are generally positively associated with other
cell types.

Heatmaps of the interaction parameters, as in Figure 4,
allow one to quickly answer questions such as Question 1.
From these heatmaps, we can also quickly answer questions
like Question 1b: here, we can see that tumor cells seem to be
quite strongly positively correlated with each other at short
scales, while quite negatively correlated with plasma cells,
also at short scales. Interestingly, at larger scales, tumor
cells are no longer correlated with each other, and are now
positively correlated with plasma cells!

One is likely also to want to compare how these interac-
tion parameters contrast between various patient groups, in
order to answer questions like Question 4. Figure 5 demon-
strate the difference in the median interaction parameters
α and γ from each patient group (averaging across all im-
ages within a group). Strikingly, it appears that both the
α and γ parameters for smooth muscle generally have the
strongest differences in median interaction parameter, with
patients from the CLR group generally exhibiting greater
attraction between smooth muscle and Tregs, CD8+ T cells
and CD163+ macrophages, while smooth muscle and gran-
ulocytes exhibit greater repulsion in CLR patients.

Since the interaction parameters α and γ scale the po-
tential functions used during the model fit (here, the expo-
nential function), in order to answer questions liked Ques-
tion 1a, it is also useful to view the pairwise potential func-
tions themselves after they have been scaled by the appropri-
ate parameters, as well as the combined effect of the short-
range and medium-range scaled potential functions. An ex-
ample of this can be seen in Figure 6, where the short-range

Figure 6: The short-range, medium-range and combined po-
tentials between B cells and memory CD4+ T cells. From
model fit on spot 59_A.

potential (scaled by the appropriate α), medium-range po-
tential (scaled by γ), and combined (sum of scaled short-
and medium-range potentials) can be seen. The combined
(or overall) potential thus gives a more complete picture
between two cell types across spatial scales. Here we can
see that B cells and memory CD4+ T cells are quite mutu-
ally attractive at shorter scales, but much less so at longer
spatial scales. Such potentials can also be plotted simulta-
neously between all cell types of interest, as in Figure 7.

From both of these figures, it is also apparent that there
are many significant interactions occurring between these
cell types, at multiple scales. These interactions indicate the
spatial covariance between pairs of cell types that is unique
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Figure 7: The short-range, medium-range and combined potentials between a subset of cell types. From model fit on spot
59_A.

to that pair. These quantities thus estimate the degree to
which one cell type uniquely predicts the concentration of
another, after accounting for the contributions to the pre-
diction from all other cell types. From this information, we
are thus able to assess which cell type most predicts the
intensity of another cell type at each point in space, as in
Figure 8. Such information allows one to answer questions

Figure 8: The top contributor to the predicted intensity of
tumor cells. From model fit on spot 59_A.

like Question 2. Here we can see that different cell types are
correlated more strongly with tumor cells at different points
in the image. For example, granulocytes are the best predic-
tors of tumor cells on the right side of the image, whereas
CD163+ macrophages and stromal cells are the best predic-
tors in other regions of the image.

3.2 Heterogeneity in Model Parameter
Estimates Within Patient Groups and
Across Patients

Estimates of the median absolute deviation of the short-
range interaction parameters α can be seen in Figures 9 and
10, allowing us to answer Question 5. In Figure 9, we can
see that, across the entire patient cohort, within-type inter-
actions for several of the immune cell types (in particular, B
cells, CD163+ macros, CD4+ T cells, CD68+ macros and
CD8+ T cells) are the most heterogeneous between images,
while the interaction between smooth muscle and CD4+ T
cells appears to be the most consistent across images.

In Figure 10, it appears that DII patients generally have
more homogeneous interactions between images. However,
interactions involving smooth muscle in CLR patients ap-
pear to be the most homogeneous among CLR patients,
sometimes more so than their DII counterpart (for exam-
ple, the interaction between smooth muscle and stroma). In-
terestingly, interactions involving smooth muscle also seem
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Figure 9: Estimates of the median absolute deviation (MAD)
for α parameter estimates, across all patients.

most different between the two patient groups, as detailed
in the previous section.

3.3 Predictive Modeling of Patient Outcomes
Next, we turn our attention to answering Question 6.

Estimated log-hazard ratios for both short- and medium-
range interactions that were found to be significant after
FDR adjustment for multiple hypothesis testing are shown
in Figure 11. Conspicuously, increased short-range interac-
tions between granulocytes and stroma seemed to be corre-
lated with better patient outcomes, as well as granulocytes
and M1 macrophages (CD68+ macros). Furthermore, the
short-range interaction between M2 macrophages (CD163+
macrophages) and M1 macrophages seems to be indicative
of poor patient outcome.

At longer spatial scales (γ parameters from Figure 11),
the Treg and M1 macrophage interaction seems to be highly
correlated with poor patient outcome, while the plasma
cell – B cell and CD4+ – CD4+ interactions were associ-
ated with better patient outcomes.

3.4 Evaluation of Model Fit
Lastly, we focus on the issue of model trust, in an effort

to answer Question 7. An example of the predicted condi-
tional intensity for plasma cells can be seen in Figure 12.
The AUC (0.835) for this cell type seems relatively high,
indicating that the model seems to predict the intensity of
plasma cells quite well. Additionally, the observed positions
of the plasma cells seem to match higher values of the pre-
dicted conditional intensity, mirroring the information given
by the AUC.

Table 3 shows the median AUC per cell type across all im-
ages, as well as the median AUC within each patient group.
From this table, we can see that the cell types tend to be
similarly predictable on average. Furthermore, there does
not seem to be a significant difference in predictability be-
tween the patient groups, except, notably, for CD4+ T cells.

Table 3. Median AUC for each cell type, across model fits
from all images within each group and across the whole

patient cohort.
AUC

type CLR DII All
B cells 0.83 0.82 0.82
CD163+ macros 0.72 0.69 0.70
CD4+ T cells 0.81 0.73 0.77
CD68+ macros 0.80 0.76 0.77
CD8+ T cells 0.77 0.74 0.75

NK cells NA 0.72 0.72
Tregs 0.80 0.77 0.78
adipocytes 0.80 0.78 0.80
generic immune 0.76 0.76 0.76
granulocytes 0.77 0.73 0.75

memory CD4+ T 0.75 0.73 0.74
plasma cells 0.79 0.80 0.79
smooth muscle 0.77 0.75 0.76
stroma 0.72 0.70 0.70
tumor cells 0.72 0.76 0.75

Table 4. Median abundance of each cell type in each patient
group.

abundance
type CLR DII
adipocytes 8.5 4.0
B cells 14.0 17.0
CD163+ macros 172.5 316.5
CD4+ T cells 5.5 2.0
CD68+ macros 9.5 20.0

CD8+ T cells 62.0 109.0
generic immune 12.0 9.0
granulocytes 27.0 123.5
memory CD4+ T 53.0 80.0
NK cells 1.5 1.0

plasma cells 28.0 22.0
smooth muscle 77.0 124.0
stroma 104.0 157.5
Tregs 8.0 21.0
tumor cells 102.5 222.0

vasculature 61.5 75.0

At first, it may seem that this could be simply because of
the much larger number of CD4+ T cells in CLR patients
than in DII patients. However, as noted in Table 4, CD163+
macrophages are represented almost 2 times more in DII
patients than CLR patients, a similar order of difference as
found in CD4+ T cells, while maintaining median AUCs
that are approximately the same.

To make the aforementioned precise, we measured the
correlation between the AUC and median abundance of each
cell type. Table 5 shows the correlation between cell type and
median abundance, as quantified using AUCs from all model
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Figure 10: Estimates of the median absolute deviation (MAD) for α parameter estimates, in both patient groups.

Figure 11: Log-hazard ratios estimated from short- and medium-range interaction parameters that were found to be
significant after FDR adjustment.

fits. All correlations can be seen to be negative, some with
a quite large magnitude. This indicates that simply having
more cells of a given type in an image does not make that cell
type necessarily easier to predict using MGPP models. This
likely indicates the importance of incorporating higher-order
information on cell-type interactions, beyond overall cell-
type abundance, in order to correctly predict distributions
of cells.

Overall, from Table 3, we can see that the models predict
the spatial distribution of cells quite well, indicating that we
can likely trust the results from our models.

3.5 Comparison with Previous Analysis
Since the CRC dataset used here comes from a previously

published study [16], here we outline a few key points in
comparison to the results from that study.
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Figure 12: The predicted log-conditional intensity of plasma
cells from the model fit for spot 59_A. The AUC for this cell
type was 0.835, indicating high predictive ability for plasma
cells.

Table 5. Correlation between AUC score and abundance for
each cell type.

type correlation
B cells −0.18
CD163+ macros −0.39
CD4+ T cells −0.30
CD68+ macros −0.41
CD8+ T cells −0.49

NK cells −0.99
Tregs −0.35
adipocytes −0.42
generic immune −0.59
granulocytes −0.54

memory CD4+ T −0.29
plasma cells −0.41
smooth muscle −0.58
stroma −0.49
tumor cells −0.16

1. There is evidence of greater attraction between tumor
cells and some subsets of immune cells in DII patients –
for example, B cells and M1 macrophages – than CLR
patients – similarly, [16] identified the presence of a
mixed tumor/immune compartment in DII patients, as
opposed to CLR patients, in whom the tumor and im-
mune components were more segregated. Interestingly,
though, at short ranges, CD4+ T cells and tumor cells
are found to be more attractive in CLR patients (Fig-
ure 5).

2. Schurch et al found much greater contact between a T-
cell enriched neighborhood and a macrophage-enriched
neighborhood in DII patients. Similarly, we found that
M1 macrophages were more attractive with CD4+ T
cells and plasma cells in DII patients at short ranges

(Figure 5).
3. The authors further identified that the functional state

of a granulocyte-enriched cellular neighborhood was in-
dicative of patient survival in DII patients. Similarly,
we also found that granulocyte associations were fre-
quently implicated as the most prognostic biomarkers
across patient groups derived from our models (Fig-
ure 11).

4. DISCUSSION
In this paper, we apply a novel approach for analyzing

ecological interactions within the tumor microenvironment
(TME). Specifically, we employ a multitype Gibbs point pro-
cess model (MGPP) as a joint species distribution model,
tailored to the complexities of the TME. This modeling
framework was previously introduced as a statistical anal-
ysis framework in forest ecology [42]. Our aim in this work
is to highlight the significance of this modeling framework
and its potential implications for addressing key questions
in cancer biology.

Our primary contribution lies in the application of a spe-
cific MGPP model to characterize the data-generating pro-
cess governing cell-cell and cell-environment interactions in
the TME. Given the intricate nature of the TME, where
diverse cell types interact spatially, the MGPP framework
provides a powerful tool for capturing and quantifying these
interactions. What sets this modeling framework apart from
many others that currently exist is its ability to model rela-
tionships between cell types simultaneously, while also be-
ing able to quantify the uncertainty in these associations as
well as produce predictions. Researchers currently lack such
a unified statistical framework capable of jointly modeling
interactions between cell types and spatial variables across
multiple spatial scales. With a specific MGPP model, we
showcase how to bridge this gap, enabling a diverse array of
inquiries.

Our emphasis extends beyond model development to
model validation and diagnostics. We highlight the utility
of our fitted models in generating predictions in order to ex-
amine goodness-of-fit and demonstrate the area under the
curve (AUC) as a concise summary of model fit. Addition-
ally, we stress the availability of further model diagnostics
based on residuals.

Beyond model fitting, our study demonstrates the utility
of extracting estimated parameters from single-image mod-
els and summarizing them across patient cohorts. This ap-
proach can serve as a valuable tool for identifying potential
prognostic biomarkers, furthering our understanding of can-
cer biology and personalized medicine.

While hyperparameter selection is a critical aspect of
model development, we do not delve deeply into this topic
here. Interested readers can find comprehensive discussions
on the selection of hyperparameters, including the scale and
shape of potential functions, the saturation parameter and
the number of dummy points, in [42].
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Lastly, MGPP models offer a unique capability which we
also did not address in this paper: the generation of simula-
tions while conditioning on various aspects of the data. This
feature has the potential to serve two primary purposes—
validating model outputs by comparing them to expected
results and simulating new cell types based on different con-
figurations. Such simulations can shed light on the spatial
organization of cell types within the TME.

In conclusion, our investigation into cell-type interactions
in the tumor microenvironment using multitype Gibbs point
process models presents a valuable tool for researchers inter-
ested in the complex ecology of the TME. This framework
empowers researchers to explore complex questions, validate
models, and gain deeper insights into the dynamics of the
TME, with potential implications for cancer research and
therapy.
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