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Abstract
The purpose of this paper is to develop a practical framework for the analysis of the linear mixed-effects models for

censored or missing data with serial correlation errors, using the multivariate Student’s t-distribution, being a flexible
alternative to the use of the corresponding normal distribution. We propose an efficient ECM algorithm for computing
the maximum likelihood estimates for these models with standard errors of the fixed effects and likelihood function as
a by-product. This algorithm uses closed-form expressions at the E-step, which relies on formulas for the mean and
variance of a truncated multivariate Student’s t-distribution. In order to illustrate the usefulness of the proposed new
methodology, artificial and a real dataset are analyzed. The proposed algorithm and methods are implemented in the R
package ARpLMEC.
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effects models, Student’s t-distribution.

1. INTRODUCTION
Linear mixed effects (LME) models are frequently used to

analyze repeated measures data because they model flexibly
the within-subject correlation often present in this type of
data. Usually, for mathematical convenience, it is assumed
that both random effect and error term follow normal distri-
butions (N-LME). These restrictive assumptions, however,
may result in a lack of robustness against departures from
the normal distribution and invalid statistical inferences, es-
pecially when the data show heavy tails. For instance, sub-
stantial bias in the maximum likelihood (ML) estimates of
regression parameters can result when the random-effects
distribution is misspecified [11].

Several researchers have investigated alternative distribu-
tions for errors in LME models. For example, [28] propose
a robust hierarchical linear mixed model in which the ran-
dom effects and the within-subject errors have a multivariate
Student’s t-distribution (t-LME). [18] and [16] developed
some additional tools for t-LME models from likelihood-
based and Bayesian perspectives. However, in longitudinal
studies, such as those on environmental pollution and in-
fectious diseases, measurements of some variables may be
subjected to certain threshold values below or above which
the measurements are not quantifiable. For instance, viral
load measures the amount of actively replicating virus and,
depending upon the diagnostic assays used, its measurement
may be subjected to detection limits, below or above, which
are not quantifiable. For this kind of data, [30] proposed
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the LME model for censored responses (LMEC), and an ex-
act EM-type algorithm is proposed. Recently, [21] and [23]
have considered the Student’s t-distribution in the context
of LMEC models (t-LMEC), including influence diagnostics
analyses, under different perturbation schemes. A common
feature of these classes of LMECs is that the error terms are
unconditionally independent. However, in longitudinal stud-
ies, repeated measures are collected over time, and hence,
the error term tends to be serially correlated.

There are several proposals in the literature that account
for the time dependence in longitudinal data. For instance,
[9] studied longitudinal data with random effects and AR(1)
errors under the Bayesian paradigm, [4] extended the clas-
sical random effects model to deal with time dependence,
leaving the random effects distribution unspecified, [13] pro-
posed a robust structure for a censored linear model based
on the multivariate Student’s t-distribution, considering a
damped exponential correlation (DEC) structure. More re-
cently, [26] have proposed a full likelihood-based approach
for the Gaussian N-LMEC modeling with autoregressive cor-
relation of order p (AR(p)) errors (AR(p)-LMEC), including
the implementation of the EM algorithm for maximum like-
lihood (ML) estimation.

Even though some proposals have been made to deal with
the problem of serial correlation among the observations in
LMEC models, to the best of our knowledge, there are no
studies of t-LMEC with serially correlated error structures,
such as DEC or AR(p). Thus, in this paper we propose the
t-LMEC modeling considering some useful correlation struc-
tures (CSs). We develop a full likelihood-based treatment,
including the implementation of a computationally efficient

1

https://journal.nestat.org/
https://doi.org/10.51387/24-NEJSDS68


2 K. Zhong et al.

estimation method via the EM algorithm with the likeli-
hood function, predictions of unobservable values of the re-
sponse, and the asymptotic standard errors as byproducts.
The model developed here is an extension of those previously
presented by [21], [22] and [26] for the analysis of mixed-
effects models with censored responses and HIV data.

The proposed algorithm and methods are implemented in
the R package ARpLMEC [27], available on CRAN repos-
itory.

The rest of the paper is organized as follows: Section 2
discusses some preliminary results related to the multivari-
ate Student’s t-distribution and its truncated version. Some
of its key properties are also presented. In Section 3, the
related likelihood-based inference is presented, including es-
timation of the standard errors for the regression parame-
ters. The application of the proposed method is presented in
Sections 4 and 5 through some simulation studies and the
analysis of data from a real HIV case study, respectively.
Finally, Section 6 concludes with a short discussion of issues
raised by this study and some possible directions for future
research.

2. PRELIMINARIES
We begin our exposition by defining the notation and

presenting some basic concepts which are used through-
out the development of our methodology. We denote a ran-
dom variable by an upper-case letter and its realization by
the corresponding lower case and use boldface letters for
vectors and matrices. Ip represents a p × p identity ma-
trix and A� denotes the transpose of A matrix. Thus, for
a = (a1, . . . , ap)

� and b = (b1, . . . , bp)
� we have that, if the

Borel set in Rp has the form:

A =
{
(y1, . . . , yp) ∈ Rp : a1 ≤ y1 ≤ b1, . . . , ap ≤ yp ≤ bp

}
=

{
y ∈ Rp : a ≤ y ≤ b

}
(2.1)

then, we use the shorthand notations {Y ∈ A} = {a ≤ Y ≤
b} and∫ b

a

f(y)dy =

∫ b1

a1

. . .

∫ bp

ap

f(y1, . . . , yp)dyp . . . dy1.

2.1 The Multivariate Student’s t-distribution
Y ∼ tp(μ,Σ, ν) denotes a random vector Y following a

p-variate Student’s-t distribution, with location vector μ,
positive-definite scale-covariance matrix Σ and degrees of
freedom ν and tp(y | μ,Σ, ν) denotes its probability density
function (pdf).

The cumulative distribution function (cdf) of Y on [a,b]
is denoted by:

Lp(a,b;μ,Σ, ν) =

∫ b

a

tp(y|μ,Σ, ν)dy. (2.2)

An important property of the random vector Y is that
it can be written as a scale mixture of the MVN (multivari-
ate normal) random vector coupled with a positive random
variable, i.e.,

Y = μ+ U−1/2Z, (2.3)

where Z ∼ Np(0,Σ) independent of U ∼ Gamma(ν/2, ν/2),
where Np(μ,Σ) and Gamma(a, b) denote the p-variate nor-
mal with mean vector μ and variance-covariance matrix Σ
and the gamma distribution with mean a/b, respectively.

2.2 The Multivariate Truncated Student’s
t-distribution

A p-dimensional random vector Y is said to follow a dou-
bly truncated Student’s t-distribution with location vector
μ, scale-covariance matrix Σ and degrees of freedom ν over
the truncation region A, defined in Eq. (2.1), denoted by
Y ∼ Ttp(μ,Σ, ν;A), if it has the pdf:

Ttp(y|μ,Σ, ν;A) =
tp(y|μ,Σ, ν)

Lp(a,b;μ,Σ, ν)
, a ≤ y ≤ b,

where Lp(a,b;μ,Σ, ν) as defined in Eq. (2.2).
The cdf of Y evaluated at the region {a ≤ y ≤ b} is:

TTp(y|μ,Σ, ν;A) =
1

Lp(a,b;μ,Σ, ν)

∫ y

a

tp(x|μ,Σ, ν)dx

=
Lp(a,y;μ,Σ, ν)

Lp(a,b;μ,Σ, ν)
. (2.4)

Some propositions and properties related to the p-variate
Student’s t-distribution and the marginal and conditional
moments of the first two moments of TMVT distributions
under a double truncation, which are useful for our theo-
retical developments, can be found in Appendix A and B,
respectively.

3. LINEAR MIXED-EFFECTS WITH
CENSORED RESPONSE

3.1 Model Specification
We proceed as in [21, 28], by considering a generalization

of the classical N-LME model in which the random terms
are assumed to follow a Student’s-t distribution as follows:

Yi = Xiβ + Zibi + εi, with (3.1)
(bi, εi)

� ∼ tni+q

(
0,Diag(D,Ωi), ν

)
. (3.2)

The subscript “i” is the subject index; Diag(A,B) is a block
diagonal matrix whose elements are the matrices A and B.
Yi = (Yi1, . . . , Yini)

� is a ni × 1 vector of observed contin-
uous responses for sample unit “i”, Xi is the ni × s design
matrix corresponding to the fixed effects β, which is the
s × 1 vector of population-averaged regression coefficients.
Zi is the ni × q design matrix corresponding to the q × 1



Linear Mixed-effects Models for Censored Data with Serial Correlation Errors Using the Multivariate Student’s t-distribution 3

vector of random effects bi. εi is the ni × 1 vector of ran-
dom errors, the dispersion matrix D = D(α) depends on
unknown and reduced parameters α. The correlation struc-
ture of the error vector is assumed to be Ωi = σ2Ri, where
Ri = Ri(φ), for φ = (φ1, . . . , φp)

� is a ni ×ni matrix, that
incorporates a time-dependence structure.

Note that bi and εi are uncorrelated, once Cov(bi, εi) =
E[biε

�
i ] = E[E(biε

�
i |Ui)] = 0, where Ui is a scalar gen-

erated from Gamma(ν/2, ν/2). Classical inference on the
parameter vector θ = (β�, σ2,α�,φ�, ν)� is based on the
marginal distribution of Yi, thus Yi

ind.∼ tni(μi,Σi, ν), for
i = 1, . . . , n, where μi = Xiβ and Σi = σ2Ri + ZiDZ�

i .
The estimates from the multivariate t-LME are more ro-
bust against outliers than those based on the standard LME;
in this sense, [28] showed by simulation study that the
t-LME substantially outperforms the normal or standard
LME when outliers are present in the data. This issue has
also been discussed by [21] in the context of censored mixed-
effects models.

In this study, we follow [13, 15, 21, 23, 26] by conside-
ring non-informative censoring observations (or censoring
at random), i.e. we assume that the response Yij is not fully
observed for all i, j. Thus, let (Vi,Ci) be the observed data
for the i-th subject, where Vi represents the vector of un-
censored readings (Vij = V0i) or censoring interval (V1ij ,
V2ij) and Ci is the vector of censoring indicators, such that:

Cij =

{
1 if V1ij ≤ Yij ≤ V2ij ,

0 if Yij = V0i,
(3.3)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}, i.e., Cij = 1 if Yij

is located within a specific interval. Note that for a right-
censored observation V2ij = +∞ and for a left-censored ob-
servation V1ij = −∞. Moreover, missing at random (MAR)
observations can be handled by considering V1ij = −∞ and
V2ij = +∞. The model defined in Eqs. (3.1)–(3.3) is hence-
forth called the t-LMEC model.

3.2 Within-subject Dependence Structures
In order to enable some flexibility when modeling the

error covariance, we consider essentially three dependence
structures: unconditionally independent (UNC), the contin-
uous-type autoregressive process of order p and the damped
exponential correlation, which will be discussed next.

• Unconditional independence
The most common and simplest approach is to assume
that the error terms are Unconditionally independent
(UNC), i.e. we have Ri = Ini , for each i = 1, . . . , n.
In practice, the linear mixed models considering UNC
errors is very frequent, for example it has been consid-
ered by Matos et al. [21]. It will be denoted as UNC-t-
LMEC.
However, in longitudinal studies, repeated measures are
collected over time and hence the error term might be
serially correlated.

In order to account for the within-subject serial corre-
lation, we consider other two general structures.

• Autoregressive dependence of order p
In this case, we propose Ri as a structured AR(p) de-
pendence matrix [8]. Specifically,

Ri = Ri(φ) =
1

1− φ1ρ1 − · · · − φpρp
[ρ|r−s|], (3.4)

where r, s = 1, . . . , ni and ρ1, . . . , ρp are the theo-
retical autocorrelations of the process, and thereby
they are functions of autoregressive parameters φ =
(φ1, . . . , φp)

� and satisfy the Yule–Walker equations [7],
i.e.,

ρk = φ1ρk−1 + · · ·+ φpρk−p, ρ0 = 1, k = 1, . . . , p.

In addition, the roots of 1−φ1B−φ2B
2−· · ·−φpB

p = 0
must lie outside the unit circle to ensure stationarity of
the AR(p) model.
Following [3], the autoregressive process can be repa-
rameterized using a one-to-one, continuous and di-
fferentiable transformation in order to simplify the con-
ditions for stationarity. For details on the estimation of
the autoregressive coefficients, we refer to [29], see also
[17, 16] for details on estimation of LME model with
AR(p) dependence.
The model formulated in Eqs. (3.1)–(3.3) with Ωi =
σ2Ri, where Ri is given by Eq. (3.4), i = 1, . . . , n, will
be denoted AR(p)-t-LMEC. In order to accommodate
situations in which measurements are taken irregularly
over discrete time, we modify Ri by computing it for
a regular range of time and then suppressing the line
and column regarding the position from the missing
measurements.

• Damped exponential correlation
In this case, following [25], we propose to structure Ri

as a damped exponential correlation (DEC) matrix, as
follows:

Ri = Ri(φ, ti) =
[
φ
|tij−tik|φ2

1

]
, 0 ≤ φ1 < 1, φ2 ≥ 0,

(3.5)
where j, k = 1, . . . , ni, for i = 1, . . . , n and φ =
(φ1, φ2)

�. The correlation parameter φ1 describes the
autocorrelation between observations separated by the
absolute length of two time points, and the damping
parameter φ2 allows the acceleration of the exponen-
tial decay of the autocorrelation function defining a
continuous-time autoregressive (AR) model. It is im-
portant to stress that considering the DEC structure
it is possible to obtain different correlation structures.
For example:
(i) if φ2 = 0, then Ri reduces to the compound sym-

metry correlation structure (DEC-SYM);
(ii) if φ2 = 1, then Ri reduces to the DEC-AR(1)

correlation structure;



4 K. Zhong et al.

(iii) if 0 < φ2 < 1, then Ri generates a decay rate
slower than the DEC-AR(1) structure;

(iv) if φ2 > 1, then Ri generates a decay rate faster
than the DEC-AR(1) structure; and

(v) if φ2 → ∞, then Ri converges to the correla-
tion matrix of a moving-average of order 1 (DEC-
MA(1)).

The model presented in Eqs. (3.1)–(3.3) considering
Ωi = σ2Ri, where Ri is given by Eq. (3.5), i = 1, . . . , n,
will be denoted DEC-t-LMEC.

3.3 The Likelihood Function
Let Yi = (Yo

i ,Y
c
i )

� where Yo
i and Yc

i represent the no
i

and nc
i vectors of observed outcomes and censored observa-

tions for subject i, respectively; with ni = no
i +nc

i , such that
Cij = 0 for all elements in Yo

i and 1 for all elements in Yc
i .

After reordering, Yi, Vi, μi, and Σi can be partitioned as
follows:

Yi = vec
(
Yo

i ,Y
c
i

)
, Vi = vec

(
Vo

i ,V
c
i

)
, μ�

i =
(
μo

i ,μ
c
i

)
and

Σi =

(
Σoo

i Σoc
i

Σco
i Σcc

i

)
, (3.6)

where vec(.) denotes the function which stacks vectors or
matrices of the same number of columns.

Using Proposition 1 (Appendix A), we have that

Yo
i ∼ tno

i

(
μo

i ,Σ
oo
i , ν

)
, and

Yc
i |Yo

i = yo
i ∼ tnc

i

(
μco

i ,Sco
i , ν + no

i

)
,

where

μo
i = Xo

iβ and μc
i = Xc

iβ,

μco
i = μc

i +Σco
i Σoo−1

i (yo
i − μo

i ),

Sco
i = (

ν+δ2(yo
i )

ν+no
i

)Si,

Si = Σcc
i −Σco

i Σoo−1
i Σoc

i and
δ2(yo

i ) = (yo
i − μo

i )
�Σoo−1

i (yo
i − μo

i ).

Let θ = (β�, σ2,α�,φ�, ν)� be the parameters vector, as
presented by [21], the likelihood function for subject i is
given by:

Li(θ) = f(yi|θ) = f(Vi|Ci,θ)

= f
(
yo
i |θ

)
P
(
Vc

1i ≤ Yc
i ≤ Vc

2i|Vo
i ,θ

)
= tno

i

(
Vo

i ;μ
o
i ,Σ

oo
i ,ν

)
Lnc

i

(
Vc

1i,V
c
2i;μ

co
i ,Sco

i , ν + no
i

)
,

(3.7)

where Lp(a,b;μ,Σ, ν) is as defined in Eq. (2.2), which can
be easily evaluated by using the R package MomTrunc.

The log-likelihood function for the observed data is given
by �(θ|y) =

∑n
i=1 logLi(θ), and the estimates obtained by

maximizing the log-likelihood function �(θ|y) are the ML
estimates.

3.4 The EM Algorithm
In order to obtain the ML estimation of the parameters

in the t-LMEC model, presented in Section 3.1, we imple-
mented the ECM algorithm, proposed by [24]. This algo-
rithm preserves the properties of simplicity and stability of
EM algorithm, however replace the M-step with a sequence
of conditional maximization (CM) steps. Based in property
of multivariate Student’s t-distribution, the t-LMEC model
can be expressed in the following hierarchical model:

Yi|bi, ui
ind.∼ Nni

(
μi, u

−1
i Ωi

)
,

bi|ui
ind.∼ Nq

(
0, u−1

i D
)
,

ui
iid.∼ Gamma

(
ν

2
,
ν

2

)
.

Thus, it is possible to apply the ECM algorithm by as-
suming that Y = (Y�

1 , . . . ,Y
�
n ), b = (b�

1 , . . . ,b
�
n ) and

u = (u1, . . . , un)
� are hypothetical missing variables, and

augmenting with the observed variables (V,C) where V =
vec(V1, . . . ,Vn) and C = vec(C1, . . . ,Cn).

Considering Yc = (C�,V�,y�,b�,u�)� and θ =
(β�, σ2,α�,φ�, ν)�, the complete-data log-likelihood, is
given by

�c(θ|yc) =

n∑
i=1

[
−ni

2
log σ2 − 1

2
log(|Ri|)

− ui

2σ2
(yi − μi − Zibi)

�R−1
i (yi − μi − Zibi)

− 1

2
log |D| − ui

2
b�
i D

−1bi + log h(ui|ν) + C

]
,

(3.8)
where C is a constant that does not depend on the θ. h(ui|ν)
represents the pdf of a Gamma(ν/2, ν/2) distribution.

Given the estimate θ = θ̂
(k)

, at iteration “(k)” of the al-
gorithm, in the E-step computes the conditional expectation
of the complete-data log-likelihood function, given by:

Q
(
θ|θ̂

(k))
= E

[
�c(θ|yc)|V,C, θ̂

(k)]
=

n∑
i=1

Q1i

(
β, σ2,φ|θ̂

(k))
+

n∑
i=1

Q2i

(
α|θ̂

(k))
,

where

Q1i

(
β, σ2,φ|θ̂

(k))
= −ni

2
log σ2 − 1

2
log(|Ri|)

− 1

2σ2

[
â
(k)
i − 2μ�

i R
−1
i

(
ûiyi

(k) − Ziûibi

(k))
+ ûi

(k)μ�
i R

−1
i μi

]
and

Q2i

(
α|θ̂

(k))
= −1

2
log |D| − 1

2
tr
(
ûibib�

i

(k)

D−1
)
, with



Linear Mixed-effects Models for Censored Data with Serial Correlation Errors Using the Multivariate Student’s t-distribution 5

â
(k)
i = tr

(
ûiyiy�

i

(k)

R−1
i − 2ûiyib�

i

(k)

Z�
i R

−1
i

+ ûibib�
i

(k)

Z�
i R

−1
i Zi

)
,

ûibi

(k)
= E

[
uibi|Vi,Ci, θ̂

(k)]
= ϕi

(
ûiyi

(k) − ûi
(k)μi

)
,

ûibib�
i

(k)

= E
[
uibib

�
i |Vi,Ci, θ̂

(k)]
= Λi +ϕi

(
ûiyiy�

i

(k)

− 2ûiyi
(k)

μi

+ ûi
(k)μiμ

�
i

)
ϕ�

i ,

ûiyib�
i

(k)

= E
[
uiyib

�
i |Vi,Ci, θ̂

(k)]
=

(
ûiyiy�

i

(k)

− ûiyi
(k)

μ�
i

)
ϕ�

i ,

where Λi = (D−1 + Z�
i R

−1
i Zi/σ

2)−1 and ϕi =
ΛiZ

�
i R

−1
i /σ2.

In conditional maximization (CM) steps, we update
θ̂
(k+1)

by maximizing Q(θ|θ̂
(k)

) over θ, as follows:

β̂
(k+1)

=

(
n∑

i=1

ûi
(k)X�

i R̂
−1(k)
i Xi

)−1 n∑
i=1

X�
i R̂

−1(k)
i

×
(
ûiyi

(k) − Ziûibi

(k))
, (3.9)

σ̂2
(k+1)

=
1

N

n∑
i=1

[
â
(k)
i − 2μ̂

(k+1)�
i R−1

i

×
(
ûiyi

(k) − Ziûibi

(k))
+ ûi

(k)μ̂
(k+1)�
i R−1

i μ̂
(k+1)
i

]
, (3.10)

D̂(k+1) =
1

n

n∑
i=1

ûibib�
i

(k)

, (3.11)

φ̂(k+1) = argmax
φ

(
−1

2
log(|Ri|)

− 1

2σ̂2
(k+1)

[
â
(k)
i − 2μ̂

(k+1)�
i R−1

i

×
(
ûiyi

(k) − Ziûibi

(k))
+ ûi

(k)μ̂
(k+1)�
i R−1

i μ̂
(k+1)
i

])
, (3.12)

ν̂(k+1) = argmax
ν

{
n∑

i=1

log

Lnc
i

(
Vc

1i,V
c
2i;μ

co(k+1)

i ,Sco(k+1)

i , ν + no
i

)
+

n∑
i=1

log tno
i

(
Vo

i ;μ
o(k+1)

i ,Σoo(k+1)

i ,ν
)}

, (3.13)

where N =
∑n

i=1 ni.
The algorithm is iterated until a suitable convergence rule

is satisfied. In this case, the process is iterated until some dis-
tance between two successive evaluations of the currently pe-

nalized log-likelihood �p(θ, λ), such as |�(θ̂
(k+1)

)/�(θ̂
(k)

)−1|
becomes small enough. For example, we adopted ε = 10−6.

As proposed by [26], a set of starting values may be
achieved by computing β̂

(0)
, σ̂2

(0)
, D̂(0) and φ̂

(0)
, as the

solution of the normal linear mixed-effects model, using the
R package nlme.

On the other hand, it is important to stress that, from
Eqs. (3.9)–(3.12), the E-step reduces to the computation of

ûiyiy�
i = E

[
uiyiy

�
i |Vi,Ci,θ

]
,

ûiyi = E[uiyi|Vi,Ci,θ] and
ûi = E[ui|Vi,Ci,θ].

These expected values can be determined, using the
marginal and conditional moments of the first two moments
of the TMVT distribution under a double truncation, pre-
sented in Propositions 3 and 4 (Appendix B). Thus:

1. If the i-th subject has only non-censored components,
then:

ûi =

(
ν + ni

ν + δ2(yi)

)
, ûiyi = ûiyi, ûiyiy�

i = ûiyiy
�
i ,

where δ2(yi) = (yi − μi)
�Σ−1

i (yi − μi).
2. If the i-th subject has only censored components then,

we have:

ûi =
Lni(V1i,V2i;μi,Σ

∗
i , ν + 2)

Lni(V1i,V2i;μi,Σi, ν)
,

ûiyi = ûiE(Wi),

ûiyiy�
i = ûiE

(
WiW

�
i

)
,

where W ∼ Ttni(μi,Σ
∗
i , ν + 2; (V1i,V2i)), μi = Xiβ,

Σ∗
i = ν

ν+2Σi, Σi = ZiDZ�
i +Ωi.

3. If the i-th subject has censored and uncensored com-
ponents and given that Yi|Vi,Ci, Yi|Vi,Ci,Y

o
i and

Yc
i |Vi, Ci, Yo

i are equivalent process, then, we have:

ûi =

(
no
i + ν

ν + δ2(yo
i )

)
×

Lnc
i
(Vc

1i,V
c
2i;μ

co
i , S̃co

i , ν + no
i + 2)

Lnc
i
(Vc

1i,V
c
2i;μ

co
i ,Sco

i , ν + no
i )

,

ûiyi = vec
(
ûiy

o
i , ûiE[Wi]

)
,

ûiyiy�
i =

(
ûiy

o
iy

o�
i ûiy

o
iE

�[Wi]

ûiE[Wi]y
o�

i ûiE[WiW
�
i ]

)
,

where Wi ∼ Ttnc
i
(μco

i , S̃co
i , ν + no

i + 2; (Vc
1i,V

c
2i)),

S̃co
i = (

ν+δ2(yo
i )

ν+no
i+2 )Si and Si, Sco

i and μco
i are defined

in Section 3.3.
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Formulas for E[W] and E[WW�], where W ∼
Ttp(μ,Σ, ν;A), have been recently developed in the R pack-
age relliptical [31], using a slice sampling algorithm with
Gibbs sampler steps.

3.5 The Expected Information Matrix
As developed by [21] and [26], we used the [20]’s technique

to obtain an asymptotic approximation for the variances of
the fixed effects in our t-MLE model. This approximation is
given by:

Is(β|y) = Ic(β|y)− Im(β|y),

where Is(β|y) represents the information about β in the
observed data y, Ic(β|y) is the conditional expectation of
the complete-data information and Im(β|y) is the missing
information. Therefore, the approximated covariance-matrix
of β̂ is given by:

Ĉov(β̂) ≈ I−1
s (β)|

̂θ
,

where

Is(β) =

n∑
i=1

{(
ν + ni

ν + ni + 2

)
X�

i Σ
−1
i Xi

− X�
i Σ

−1
i

((
ν + ni + 2

ν + ni

)
E2 − E1

)
Σ−1

i Xi

}
,

where

E1 = (ûiyi − ûiμi)(ûiyi − ûiμi)
� and

E2 =
(
û2
iyiy�

i − û2
iyiμ

�
i − μiû

2
iy

�
i + û2

iμiμ
�
i

)
.

Note that E1 depend on the computation of ûi, ûiyi that can
be obtained in Section 3.4 and E2 depend on the following
quantities

û2
i = E

[(
ν + ni

ν + δ2(yi)

)2

|Vi,Ci,θ

]
,

û2
iyi = E

[(
ν + ni

ν + δ2(yi)

)2

yi|Vi,Ci,θ

]
and

û2
iyiy�

i = E

[(
ν + ni

ν + δ2(yi)

)2

yiy
�
i |Vi,Ci,θ

]
.

These expected values can be determined in closed form
using Propositions 3 and 4, as follows:

1. If the i-th subject has only non-censored components,
then,

û2
i =

(
ν + ni

ν + δ2(yi)

)2

, û2
iyi= û2

iyi, û2
iyiy�

i = û2
iyiy

�
i ,

where δ2(yi) = (yi − μi)
�Σ−1

i (yi − μi).

2. If the i-th subject has only censored components then

û2
i = cp(ν, 2)

Lni(V1i,V2i;μi,Σ
∗
i , ν + 4)

Lni(V1i,V2i;μi,Σi, ν)
,

û2
iyi = û2

iE[Wi],

û2
iyiy�

i = û2
iE

[
WiW

�
i

]
,

where cp(ν, 2) =
(ni+ν)(ν+2)
ν(ni+ν+2) , Wi ∼ Ttni(μi,Σ

∗
i , ν + 4;

(V1i,V2i)), Σ∗
i = ν

ν+4Σi, μi = Xiβ, Σi = ZiDZ�
i +

Ωi.
3. If the i-th subject has censored and uncensored compo-

nents and given that {Yi|Vi,Ci}, {Yi|Vi,Ci,Y
o
i } and

{Yc
i |Vi,Ci,Y

o
i } are equivalent process, we have:

û2
i =

dp(n
o
i , ν, 2)

(ν + δ2(yo
i ))

2

×
Lnc

i
(Vc

1i,V
c
2i;μ

co
i , S̃co

i , ν + no
i + 4)

Lnc
i
(Vc

1i,V
c
2i;μ

co
i ,Sco

i , ν + no
i )

,

û2
iyi = vec

(
û2
iy

o
i , û

2
iE[Wi]

)
,

û2
iyiy�

i =

(
û2
iy

o
iy

o�
i û2

iy
o
iE

�[Wi]

û2
iE[Wi]y

o�

i û2
iE[WiW

�
i ]

)
,

where dp(n
o
i , ν, 2) =

(ν+ni)(n
o
i+ν+2)(no

i+ν)
ni+ν+2 , Wi ∼

Ttnc
i
(μco

i , S̃co
i , ν+no

i+4; (Vc
1i,V

c
2i)), S̃co

i = (
ν+δ2(yo

i )
ν+no

i+4 )Si

and Si, Sco
i and μco

i are presented in Section 3.3.

4. SIMULATION STUDIES
In this Section, we conduct two simulation studies in or-

der to analyze the performance of our proposed methods.
The first simulation study shows the asymptotic behavior of
the ML estimators developed in Section 3.4 and the second
one examines the consistency of approximate the standard
error (SE) presented in Section 3.5. We consider the AR(p)-
LMEC model, defined in Eqs. (3.1)–(3.3) with left censored
cases and ni = 7 measurements for each subject. As recom-
mended by [26], for both simulation schemes, the initial set
of values to generate the sample were β = (1, 2, 1)�, σ2 =
0.5. For the dispersion matrices of the random error and ran-
dom effects we assume an autoregressive dependence of or-

der p = 2 with φ = (0.6,−0.2)� and D =

(
0.490 0.001
0.001 0.002

)
,

respectively. The design matrices for each individual are
given by Xi = (Xi1,Xi2,Xi3) and Zi = (17,Zi2), with
Xik = (Xik1, . . . , Xik7)

� and Zi2 = (Zi21, . . . , Zi27)
� where

1m represents a 1 × m vector of ones. Each vector, Xikj

and Zi2j are generated independently of a uniform distribu-
tion, thus Xikj ∼ U(0, 1) and Zi2j ∼ U(1, 3), i = 1, . . . , n,
k = 2, 3 and j = 1, . . . , 7. These sets of values are fixed for
all the replications. It is important to stress that, for the
two simulation, we consider the parameter ν as fixed at 4.
Thus, the parameter vector is θ = (β�, σ2,α�,φ�)�.
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Figure 1: Simulation study 1. Average Bias of parameter
estimates under the AR(2)-t-LMEC model.

4.1 Simulation Study 1
We generated R = 100 datasets from the AR(2)-t-LMEC

model, considering each one of the combinations, of different
sample sizes n ∈ {50, 100, 200, 400, 600} and censoring lev-
els l% ∈ {0%, 5%, 20%, 40%}. In each combination, were fit-
ted the AR(2)-t-LMEC and AR(2)-N-LMEC models. Thus,
for both models, we computed the bias (Bias) and mean
squared error (MSE) of the estimates obtained. These mea-
sures are defined by:

Bias(θ̂i) =
1

R

R∑
j=1

(
θ̂i

(j)
− θi

)
and

MSE(θ̂i) =
1

R

R∑
j=1

(
θ̂i

(j)
− θi

)2
,

where θ̂i
(j)

denotes the ML estimate of θi, for the j-th repli-
cation, j = 1, . . . , R.

From Figures 1–2, we observe as a general rule that, when
the distribution’s assumption is correct, the Bias and MSE
tend to zero when the sample size increases, indicating that
the ML estimates based on the proposed EM-type algorithm
do provide good asymptotic properties, under the t-LMEC
model. However, from Figures 3–4, we noted that when the
distribution’s assumption is incorrect, the ML estimates do
not provide good asymptotic properties; for example, the
Bias of φ̂1 under the AR(2)-N-LMEC model, departs from
zero when the sample size increases.

Figure 2: Simulation study 1. Average MSE of parameter
estimates under the AR(2)-t-LMEC model.

Figure 3: Simulation study 1. Average Bias of parameter
estimates under the AR(2)-N-LMEC model.
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Figure 4: Simulation study 1. Average MSE of parameter
estimates under the AR(2)-N-LMEC model.

4.2 Simulation Study 2
In this simulation study, we consider sample sizes n ∈

{40, 100} and generated R = 100 Monte Carlo samples from
the AR(2)-N-LMEC and AR(2)-t-LMEC models, with dif-
ferent censoring levels l% ∈ {0%, 5%, 15%, 25%, 40%}. We
analyzed the SE for the β = (β1, β2, β3) parameter vector
(MC-SE), the averages values of the standard errors com-
puted, using the empirical information matrix (MC-IM-SE)
described in Section 3.5, and the percentage of times in the R
samples, that the 95% confidence interval contained the true
parameter values (MC-COV), assuming asymptotic normal-
ity. These measures are defined by:

MC-IM-SE(β̂i) =
1

R

R∑
j=1

ŜE(βi)
(j)

and

MC-SE(β̂i) =

√√√√ 1

R− 1

(
R∑

j=1

(
β̂i

(j))2 −(
1

R

R∑
j=1

β̂i

(j)

)2)
,

where for j = 1, . . . , R, we have that β̂i

(j)
and ̂SE(βi)

(j)

represent the ML estimates of parameter βi and the SE
estimate of β̂i

(j)
, respectively.

From Tables 1 and 2, we notice that the MC-IM-SE and
MC-SE for the β parameter vector, from the t-LMEC model
are smaller than the corresponding MC-IM-SE and MC-SE,

Table 1. Standard errors of parameter estimates (MC-SE),
average values of the standard errors (MC-IM-SE) and

MC-COV, under t-MLE model with n = 40.
Censoring AR(2)-N-LMEC

Levels Criteria β1 β2 β3

0% MC-IM-SE 0.2106 0.2298 0.2160
MC-SE 0.1648 0.1791 0.1604

MC-COV 0.98 0.97 0.98
5% MC-IM-SE 0.2220 0.2151 0.2066

MC-SE 0.1840 0.1601 0.1770
MC-COV 0.97 0.96 0.96

15% MC-IM-SE 0.2136 0.2155 0.2100
MC-SE 0.1538 0.1661 0.1611

MC-COV 1 0.96 0.97
25% MC-IM-SE 0.2177 0.2161 0.2076

MC-SE 0.2009 0.1708 0.1840
MC-COV 0.96 0.98 0.93

40% MC-IM-SE 0.2569 0.2559 0.2551
MC-SE 0.2050 0.2440 0.2124

MC-COV 0.96 0.95 0.96
Censoring AR(2)-t-LMEC

Levels Criteria β1 β2 β3

0% MC-IM-SE 0.1469 0.1600 0.1467
MC-SE 0.1366 0.1450 0.1338

MC-COV 0.95 0.98 0.96
5% MC-IM-SE 0.1654 0.1575 0.1567

MC-SE 0.1543 0.1418 0.1492
MC-COV 0.94 0.95 0.97

15% MC-IM-SE 0.1834 0.1811 0.1743
MC-SE 0.1443 0.1471 0.1315

MC-COV 0.98 0.97 0.98
25% MC-IM-SE 0.2053 0.1973 0.2004

MC-SE 0.1636 0.1451 0.1439
MC-COV 0.98 0.97 0.96

40% MC-IM-SE 0.2525 0.2545 0.2503
MC-SE 0.1690 0.1774 0.1781

MC-COV 0.98 0.94 0.93

from the N-LMEC model. Besides, the MC-COV under both
models are similar.

5. APPLICATION
In this Section, we study the viral load data of patients in-

fected with the human immunodeficiency virus type 1 (HIV-
1), from the clinical trial “A5055”, previously analyzed by
[32]. This clinical trial consists of 44 HIV-1 infected patients
that were treated with one of the two powerful antiretrovi-
ral therapies: (i) IDV 800 mg and RTV 200 mg, twice a day
every 12 hs. and (ii) IDV 400 mg and RTV 400 mg, twice
a day every 12 hs. (see [33] for more details). Were mea-
sured the number of RNA copies in the blood plasma (viral
load) and the immunological marker of T cells of differen-
tiation groups 4 (CD4), at different times of the treat. It is
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Table 2. Standard errors of parameter estimates (MC-SE),
average values of the standard errors (MC-IM-SE) and

MC-COV, under t-MLE model with n = 100.
Censoring AR(2)-N-LMEC

Levels Criteria β1 β2 β3

0% MC-IM-SE 0.1267 0.1296 0.1231
MC-SE 0.1159 0.1240 0.1242

MC-COV 0.94 0.96 0.95
5% MC-IM-SE 0.1144 0.1151 0.1241

MC-SE 0.1040 0.1063 0.1201
MC-COV 0.95 0.97 0.95

15% MC-IM-SE 0.1149 0.1240 0.1208
MC-SE 0.1003 0.1052 0.1062

MC-COV 0.97 0.97 0.99
25% MC-IM-SE 0.1259 0.1257 0.1245

MC-SE 0.1103 0.1315 0.1151
MC-COV 0.99 0.95 0.96

40% MC-IM-SE 0.1446 0.1412 0.1371
MC-SE 0.1144 0.1260 0.1271

MC-COV 0.97 0.98 0.96
Censoring AR(2)-t-LMEC

Levels Criteria β1 β2 β3

0% MC-IM-SE 0.0915 0.0960 0.0913
MC-SE 0.0938 0.0923 0.0882

MC-COV 0.97 0.95 0.96
5% MC-IM-SE 0.1012 0.1006 0.1041

MC-SE 0.0938 0.0962 0.0939
MC-COV 0.96 0.97 0.97

15% MC-IM-SE 0.1096 0.1102 0.1145
MC-SE 0.1003 0.0978 0.0941

MC-COV 0.97 0.97 0.97
25% MC-IM-SE 0.1257 0.1272 0.1249

MC-SE 0.0932 0.1133 0.1021
MC-COV 0.99 0.96 0.96

40% MC-IM-SE 0.1495 0.1478 0.1554
MC-SE 0.0907 0.0968 0.1085

MC-COV 0.98 0.99 0.98

important to note that the viral loads were not necessarily
measured at equally spaced intervals of days.

Following [33], we investigate the longitudinal evolution
of RNA viral load (in log-base-10 scale) of the 44 pa-
tients, during antiretroviral treatment. We focus on ana-
lyzing only 42 HIV-1 infected patients; two patients were
excluded from the analysis because both of them dropped
out very early (# 4 and # 8 with 3 and 1 measurements,
respectively).

The trajectories of transformed RNA viral load along
with the detection limit by plotting dotted red lines are
shown in Figure 5. The lower detection limit for RNA viral
load is 50 copies/ml, thus 106 out of 312 viral load mea-
surements, below the detection limit, are considered to be
censoring (approximately 34%). We start by presenting the

Figure 5: A5055 Data. Trajectories of log10(RNA) for 42
HIV-1 infected patients who were randomized to one of two
treatment regimens.

results obtained by fitting the LMEC model defined in (3.1)
and (3.3), as follows:

Yi = Xiβ + Zibi + εi,

with

Yi = (Yi1, . . . , Yini)
�,

Xi = (1�
ni
, t�i ,Treati ×1�

ni
,CD41/2 ×1�

ni
,Treati × t�i ),

Zi = (1�
ni
, t�i ), β = (β0, . . . , β4)

�, bi = (bi0, bi1)
�,

εi = (ε1, . . . , εni)
�, for j = 1, . . . , ni and i = 1, . . . , 42,

where

• 1m represents a 1 × m vector of ones and ti =
(ti1, . . . , tini).

• Yij is the is the log10-transformation of the viral load
of subject “i” at time tij (days).

• Treati is a treatment indicator (i.e. 0 for the treatments
1 and 1 for the treatments 2).

• CD4
1/2
ij represents the square root of CD4 counts of

patient i, measured at time tij .
• The random intercept and random slope are represent

by bi0 and bi1, respectively.

For comparison purposes, we fitted the N-LMEC and the
t-LMEC counterpart with the structure dependency errors
discussed in Section 3.2. Thus,

(1) Assuming the N-LMEC model.
We made a preliminary analysis using unconditional
independence (UNC) in the random effects and ran-
dom errors, i.e., the model proposed by [30]. The scat-
ter plot of the estimated random intersections (b0 ef-
fect) and random slopes (b1 effect), presented in Fig-
ure 6(a), suggests that there is a possible linear rela-
tionship between both of them. We can suspect that
there is a dependency structure for the random effect.
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Figure 6: A5055 Data. Scatter diagrams of the random effect and marginal errors and Q-Q plots of estimates of random
intercepts and slopes and marginal residuals for log10(RNA) using the N-LMEC model with conditional independence in
the random effects and the random errors.

From Figure 6(b), we observe that, apparently, the be-
havior of the marginal residuals is not totally random,
highlighting a trend. Finally, in Figure 6(c)–(e), we
show the QQ-plots for the b0 and b1 effect and the
standard marginal residuals. These figures clearly indi-
cate that the normality assumption for random effects
and within-subject errors may be unrealistic. Moreover,
the variogram plot of the standard marginal residuals,
presented in Figure 7, indicates a long-term autocor-
relation, showing a possible intra-individual correlation
over time.
Tables 3 presents the results for the “A5055” dataset
considering the N-LMEC model, under the different
correlation structures. We observed that only the es-

timation of σ2 parameters is affected by the choice of
the correlation structure.

(2) Assuming the t-LMEC model.
In order to address the possible serial correlation among
within-subject errors, we fit several models: i) the un-
conditionally independent (UNC), ii) the damped ex-
ponential correlation (DEC), and iii) the continuous-
type autoregressive process (AR) of order p ∈ {1, 2, 3}
cases. It is important to stress that considering the
DEC structure it is possible to obtain different corre-
lation structures, for instance, the symmetry (SYM)
and DEC-AR(1).
From Table 4, we observed that there are no significant
differences in the estimation of the fixed and random
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Table 3. A5055 Data. Summary of parameter estimates and the standard errors of fixed effects (in parentheses) under the
N-LMEC model, with different correlation structures for the errors.

Correlation structures
Parameter
estimates

Damped exponential AR(p)
UNC DEC DEC-AR(1) SYM AR(1) AR(2) AR(3)

β0 4.383 4.379 4.378 4.388 4.384 4.382 4.287
(0.533) (0.002) (0.002) (0.010) (0.540) (0.553) (0.587)

β1 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.003
(0.009) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009)

β2 0.305 0.304 0.303 0.304 0.307 0.308 0.361
(0.309) (0.058) (0.058) (0.013) (0.310) (0.309) (0.316)

β3 −0.111 −0.111 −0.111 −0.112 −0.111 −0.111 −0.113
(0.031) (0.010) (0.010) (0.008) (0.032) (0.032) (0.034)

β4 −0.003 −0.003 −0.003 −0.003 −0.003 −0.003 −0.003
(0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.006)

σ2 0.733 0.733 0.732 0.765 0.427 0.417 0.193
(–) (–) (–) (–) (–) (–) (–)

α11 0.383 0.382 0.381 0.352 0.382 0.384 0.294
(–) (–) (–) (–) (–) (–) (–)

α12 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.003
(–) (–) (–) (–) (–) (–) (–)

α22 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001
(–) (–) (–) (–) (–) (–) (–)

φ1 – 0.998 1.000 0.000 0.652 0.762 0.273
(–) (–) (–) (–) (–) (–) (–)

φ2 – 0.106 1 0 – −0.484 0.102
(–) (–) (–) (–) (–) (–) (–)

φ1 – – – – – – −0.820
(–) (–) (–) (–) (–) (–) (–)

Figure 7: A5055 Data. Variogram from the marginal resid-
uals for log10(RNA) using the N-LMEC model with condi-
tional independence in the random effects and the random
errors.

effects parameters under the different correlation struc-
tures. On the other hand, the estimation of the ν and σ2

parameters are affected by the choice of the correlation
structure.
Note from Figure 8(a)–(b) that the inclusion of a corre-
lation structure improves the model fit. The QQ plots
for the b0, b1 effect, and standard marginal residuals,
under the t-LMEC model with DEC-AR(1) correlation

structure, presented in Figure 8(c)–(e) show a signif-
icant improvement, with respect to fit obtained un-
der the N-LMEC model. On the other hand, in Fig-
ure 9(a)–(b), we present the simulated envelope plots
of Marginal residuals, from fitting the DEC(AR)-N-
LMEC and DEC(AR)-t-LMEC models. We observed
that some marginal residuals under the DEC(AR)-N-
LMEC model are outside the boundary of the envelope,
indicating the inadequacy of this model. However, the
marginal residuals corresponding to the DEC(AR)-t-
LMEC model are within the boundary of the envelope.
This shows that although we consider the DEC(AR)
correlation structure, a correct specification of the data
distribution assumption is essential. Finally, as sug-
gested by [19], we performed the likelihood ratio test
to examine the appropriateness of using DEC(AR) de-
pendency structure errors versus UNC errors under the
t-LMEC model, obtaining a p-value of 0.0058. As ex-
pected, this result indicates the existence of strong de-
pendence among within-patient errors across occasions
under the t-LMEC model.

On the other hand, Table 5 shows the summaries of the
log-likelihood, AIC and BIC criteria for t-LMEC and N-
LMEC models, respectively, under the different autocorre-
lation structures. We observe that t-LMEC consistently out-
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Table 4. A5055 Data. Summary of parameter estimates and the standard errors of fixed effects (in parentheses)under the
t-LMEC model, with different correlation structures for the errors.

Correlation structures
Parameter
estimates

Damped exponential AR(p)
UNC DEC DEC-AR(1) SYM AR(1) AR(2) AR(3)

β0 3.995 3.998 4.051 4.001 3.988 3.987 4.080
(0.604) (0.509) (0.531) (0.513) (0.607) (0.606) (0.643)

β1 −0.005 −0.005 −0.004 −0.005 −0.005 −0.005 −0.004
(0.008) (0.007) (0.007) (0.007) (0.008) (0.008) (0.009)

β2 0.350 0.350 0.385 0.345 0.354 0.355 0.353
(0.309) (0.250) (0.264) (0.253) (0.308) (0.309) (0.323)

β3 −0.086 −0.086 −0.092 −0.086 −0.086 −0.086 −0.094
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.021)

β4 −0.003 −0.003 −0.004 −0.004 −0.004 −0.004 −0.004
(0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006)

σ2 0.473 0.476 0.510 0.507 0.286 0.282 0.175
(–) (–) (–) (–) (–) (–) (–)

α11 0.220 0.222 0.210 0.194 0.218 0.218 0.222
(–) (–) (–) (–) (–) (–) (–)

α12 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002
(–) (–) (–) (–) (–) (–) (–)

α22 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001
(–) (–) (–) (–) (–) (–) (–)

φ1 – 0.105 0.899 0.066 0.634 0.731 0.276
(–) (–) (–) (–) (–) (–) (–)

φ2 – 0.998 1 0 – −0.421 0.109
(–) (–) (–) (–) (–) (–) (–)

φ3 – – – – – – −0.789
(–) (–) (–) (–) (–) (–) (–)

ν 3.382 3.407 3.953 3.304 3.247 3.296 4.915
(–) (–) (–) (–) (–) (–) (–)

Table 5. A5055 Data. Summary of selection criteria for the t-LMEC and N-LMEC model under different correlation structures.
Correlation structures

Model Criteria Damped exponential AR(p)
UNC DEC DEC-AR(1) SYM AR(1) AR(2) AR(3)

t-LMEC loglik −353.840 −353.877 −349.323 −353.696 −353.439 −353.456 −352.021
AIC 729.681 731.755 720.646 729.393 728.878 730.913 730.042
BIC 770.854 776.671 761.819 770.566 770.0517 775.829 778.701

N-LMEC loglik −362.571 −362.643 −362.671 −362.569 −362.343 −362.385 −355.407
AIC 743.142 747.285 745.342 745.139 744.686 746.771 734.815
BIC 776.829 788.458 782.773 782.569 782.116 787.944 779.731

performs the normal counterpart in all cases. In particular,
these criteria indicate a preference of the unspecified corre-
lation structure (DEC(AR)), i.e., the estimated correlation
structure of the error is given by:

Ω̂i = σ̂2R̂i = σ̂2
[
φ̂
|tij−tik|
1

]
= 0.51

[
0.899|tij−tik|].

Thus, by the previous analysis, we conclude that the t-
LMEC model with DEC(AR) correlation structure for the
error, is the most appropriate model for these dataset.

All the computational procedures were realized using a
64-bit Windows environment on a notebook machine with

a 1.99 GHz Intel Core i7 processor with 12GB of RAM, the
EM algorithm took approximately 9.8 min to converge by
each model.

6. CONCLUSIONS
In this paper, we proposed a robust linear mixed effect

model to analyze longitudinal censored or missing data un-
der the multivariate Student’s t-distribution with within-
subject correlation, considering some useful dependence
structures. In practical implementation, the EM algorithm
is used to obtain the ML estimates of the model parameters.
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Figure 8: A5055 Data. Scatter diagrams of the random effects and marginal errors and Q-Q plots of estimates of random
effects and marginal residuals for log10(RNA) using the DEC(AR)-t-LMEC model.

The model proposed in this manuscript is an extension of
[21], [22] and [26] by developing some additional tools for
robust inferences in practical data analysis.

Two simulation studies were performed in order to eval-
uate the proposed model. The simulation studies validate
our method’s performance and indicate an efficiency gain
of the t-LMEC model over the N-LMEC model when data
present heavy tails. A real data set, previously analyzed with
a conditional independent structure, is analyzed. The re-
sults show the t-LMEC model with DEC-AR(1) correlation
structure fits the data better. The proposed methods were
implemented as part of the new R package ARpLMEC,
which is available for download at the CRAN repository.
Moreover, we have prepared a Rmarkdown file which con-
tains the codes to reproduce the results of the application

and it is available with this manuscript via GitHub https://
github.com/hlachos/tlmec/.

Although the t-LMEC model considered here has shown
great flexibility for modeling symmetric data with evidence
of heavier tails than the normal distributions, its robust-
ness against outliers can be seriously affected by the pres-
ence of skewness. Thus, it is of interest to generalize the t-
LMEC model by considering a more flexible family of distri-
butions, such as the scale mixtures of skew-normal (SMSN)
distributions [14], to accommodate the censoring, skewness
and heavy tails simultaneously. It is also of interest to de-
velop effective algorithms for non-linear censored mixed ef-
fect (NLMEC) models or semiparametric structures in order
to accommodate substantial non-linearity trends observed in
the data.

https://github.com/hlachos/tlmec/
https://github.com/hlachos/tlmec/
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Figure 9: A5055 Data. Simulated envelope of the Marginal residuals from the fitted models: (a) DEC(AR)-N-LMEC model
and (b) DEC(AR)-t-LMEC model.

Another possible to explore is to study models that esti-
mate the conditional heteroscedasticity of dataset, as ARCH
[12], GARCH [5, 6] models, among others. Finally, another
interesting avenue for research is to propose methods within
a unified framework in LMEC/NLMEC models for check-
ing random-effects distribution following [1] for generalized
linear mixed models and [10] for non-linear mixed models.
An in-depth investigation of such extensions is beyond the
scope of the present paper, but these are interesting topics
for further research.

APPENDIX A. p-VARIATE STUDENT’S-t
The following properties of the p-variate Student’s t-

distribution are useful for our theoretical developments. We
start with the marginal-conditional decomposition of a p-
variate Student’s t random vector. The proof of the following
propositions can be found in [2].

Proposition 1. Let Y ∼ tp(μ,Σ, ν) partitioned as Y =
(Y�

1 ,Y
�
2 )

� with dim(Y1) = p1, dim(Y2) = p2, where p1 +

p2 = p. Let μ = (μ�
1 ,μ

�
2 )

� and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
be the

corresponding partitions of μ and Σ, respectively. Then, we
have

(i) Y1 ∼ tp1(μ1,Σ11, ν); and
(ii) The conditional distribution of Y2 | (Y1 = y1) is given

by

Y2 | (Y1 = Y1) ∼ tp2(μ2.1, Σ̃22.1, ν + p1),

where μ2.1 = μ2 + Σ21Σ
−1
11 (y1 − μ1) and Σ̃22.1 =

( ν+δ1
ν+p1

)Σ22.1 with δ1 = (y1 − μ1)
�Σ−1

11 (y1 − μ1) and
Σ22.1 = Σ22 −Σ21Σ

−1
11 Σ12.

Proposition 2. Let Y ∼ tp(μ,Σ, ν). Then for any fixed
vector b ∈ Rm and matrix A ∈ Rm×p of full rank we get

V = b+AY ∼ tm
(
b+Aμ,AΣA�, ν

)
.

APPENDIX B. TMVT DISTRIBUTIONS
The following propositions are related to the marginal

and conditional moments of the first two moments of the
TMVT distributions under a double truncation. The proof
are similar to those given in [21]. In what follows, we shall
use the notation Y(0) = 1, Y(1) = Y, Y(2) = YY� and
W ∼ Ttp(μ,Σ, ν; (a,b)) stands for a p-variate doubly trun-
cated Student’s-t distribution on (a,b) ∈ Rp.

Proposition 3. If Y ∼ Ttp(μ,Σ, ν; (a,b)) then it follows
that

E

[(
ν + p

ν + δ(Y)

)r

Y(k)

]
= cp(ν, r)

Lp(a,b;μ,Σ
∗, ν + 2r)

Lp(a,b;μ,Σ, ν)
E
[
W(k)

]
,
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where

cp(ν, r) =

(
ν + p

ν

)r Γ(p+ν
2 )Γ(ν+2r

2 )

Γ(ν2 )Γ(
p+ν+2r

2 )
,

Σ∗ = ν
ν+2rΣ and ν + 2r > 0 with W ∼ Ttp(μ,Σ

∗, ν +
2r; (a,b)).

Having established the formula on the k-order moment
of Y, we provide an explicit formula for the conditional mo-
ments with respect to a two-component partition of Y.

Proposition 4. Let Y ∼ Ttp(μ,Σ, ν; (a,b)). Consider the
partition Y = (Y�

1 ,Y
�
2 )

� with dim(Y1) = p1, dim(Y2) =
p2, p1 + p2 = p, and the corresponding partitions: a =
(a�1 ,a

�
2 )

�, b = (b�
1 ,b

�
2 )

�, μ = (μ�
1 ,μ

�
2 )

� and Σ =[
Σ11 Σ12

Σ21 Σ22

]
. Then,

E

[(
ν + p

ν + δ(Y)

)r

Y
(k)
2 | Y1

]
=

dp(p1, ν, r)

(ν + δ(Y1))r

× Lp2(a2,b2;μ2.1, Σ̃
∗
22.1, ν + p1 + 2r)

Lp2(a2,b2;μ2.1, Σ̃22.1, ν + p1)
× E

[
W

(k)
2

]
,

for ν + p1 + 2r > 0, with δ(Y1) = δ(Y1;μ1,Σ11),

Σ̃
∗
22.1 =

(
ν + δ1

ν + 2r + p1

)
Σ22.1 and

dp(p1, ν, r) = (ν + p)r
Γ(p+ν

2 )Γ(p1+ν+2r
2 )

Γ(p1+ν
2 )Γ(p+ν+2r

2 )
,

where Σ22.1 is defined as in Proposition 1. Moreover, W2 ∼
Ttp2(μ2.1, Σ̃

∗
22.1, ν + p1 + 2r; (a2,b2)).
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