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Abstract
Phase I trials investigate the toxicity profile of a new treatment and identify the maximum tolerated dose for further

evaluation. Most phase I trials use a binary dose-limiting toxicity endpoint to summarize the toxicity profile of a dose.
In reality, reported toxicity information is much more abundant, including various types and grades of adverse events.
Building upon the i3+3 design (Liu et al., 2020), we propose the Ti3+3 design, in which the letter “T” represents “total”
toxicity. The proposed design takes into account multiple toxicity types and grades by computing the toxicity burden at
each dose. The Ti3+3 design aims to achieve desirable operating characteristics using a simple statistics framework that
utilizes“toxicity burden interval” (TBI). Simulation results show that Ti3+3 demonstrates comparable performance with
existing more complex designs.
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1. INTRODUCTION
Phase I clinical trials are first-in-human studies evaluat-

ing the toxicity profile of a new treatment. Given a series
of candidate dose levels, the goal of a phase I trial in on-
cology is to determine the maximum tolerated dose (MTD),
defined as the highest dose having a dose-limiting toxicity
(DLT) probability close to or not higher than a target toxic-
ity probability, say pT = 30%. In most dose-finding studies,
a DLT is typically defined as the occurrence of a grade 3
or higher toxicity event according to the Common Termi-
nology Criterion for Adverse Events (CTCAE) by the Na-
tional Cancer Institute [1]. Toxicity events of lower grades
are called moderate toxicities and are often not modeled
in oncology dose-finding designs. Instead, most dose-finding
designs consider DLT as the only endpoint, including the
3+3 design [2], the continual reassessment method [3], the
interval-based designs such as mTPI and mTPI-2 [4, 5], the
BOIN and keyboard designs [6, 7], and the i3+3 design [8].

Recently, the FDA Oncology Center of Excellence
launched an initiative, named “Project Optimus” FDA
(2022) [9], to improve the dose optimization and dose se-
lection paradigm in oncology drug development as the con-
ventional goal of identifying the MTD is no longer applicable
for modern molecular targeted agents and immunotherapies.
Specifically, these modern agents do not necessarily exhibit
monotone dose-response relationships, rendering MTD a po-
tentially sub-optimal dose for patient care. Moreover, emerg-
ing evidence shows that these new treatments often induce
moderate adverse events rather than DLTs [10, 11]. As noted
∗Corresponding author.

in Shah et al. (2021), it is important to evaluate the negative
health impact of different adverse toxicity events, including
both DLT and lower-grade toxicity events [12]. For example,
patients who experienced a large number of moderate toxi-
city events may suffer from a comparable toxicity burden as
patients with DLTs but minimum moderate toxicity.

To address this challenge, several statistical approaches
have been proposed to incorporate a more comprehensive
measure of a patient’s toxicity burden as the endpoint.
Bekele and Thall (2004) first introduced the concept of total
toxicity burden, which is the sum of severity weights of all
toxicities experienced by a patient [13]. Yuan et al. (2007)
developed a quasi-likelihood CRM approach based on equiv-
alent toxicity scores by converting the toxicity grades into
a single outcome [14]. Lee et al. (2009) proposed an alter-
native measure, the toxicity burden score (TBS), which is
estimated by fitting linear mixed-effect models using histori-
cal data [15]. Later, Lee et al. (2011) developed the continual
reassessment method with multiple constraints (CRM-MC),
which allows for the specification of various toxicity thresh-
olds with a continuous or ordinal toxicity measure such as
the TBS [16]. Van Meter et al. (2012) extended the CRM to
incorporate toxicity severity using proportional odds mod-
els [17]. Ezzalfani et al. (2013) introduced the total toxicity
profile, defined as the Euclidean norm of the weights of tox-
icities experienced by a patient, to summarize the overall
severity of multiple types and grades of toxicities [18]. More
recently, Mu et al. (2019) proposed a generalized Bayesian
optimal interval design (gBOIN) that extended the BOIN
design to account for toxicity grades, binary or continuous
toxicity endpoints under a unified framework [19]. All of the
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methods aforementioned rely on a model-based or model-
assisted inference for dose recommendation.

The concept of toxicity burden has also been imple-
mented beyond phase I dose-finding trials. Hobbs et al.
(2015) [20] proposed a Bayesian group sequential design
using the total toxicity burden and progression-free sur-
vival as co-primary endpoints. A randomized Phase II tri-
als (NCT01512589) has been completed using the design
[21, 22].

Motivated by these early developments and the use of
interval designs such as i3+3 [8], we propose a model-free
design called Ti3+3 that also uses toxicity burden to sum-
marize patients’ toxicity profile but adopts a simple dose-
finding algorithm based on toxicity burden interval (TBI).
Utilizing TBI, the Ti3+3 design greatly simplifies the appli-
cation in practice.

The remainder of the paper is organized as follows. In Sec-
tion 2, we define the toxicity burden and describe details the
proposed Ti3+3 design, including the dose-finding algorithm
and MTD selection criteria. In Section 3, we perform simu-
lations to compare the performance of the proposed method
with an existing design and present the simulation results as
well as a sensitivity analysis in Section 4. We end the paper
with a discussion in Section 5.

2. METHODS
2.1 Toxicity Burden

In order to comprehensively evaluate the effects of toxic-
ities to patients, Bekele and Thall (2004) [13] first proposed
the toxicity burden as a weighted sum of individual toxicity
types and grades, where the severity weights reflect the rel-
ative health impact of each grade and type of toxicity. The
proposed Ti3+3 design utilizes type-specific and overall tox-
icity burdens similar to Bekele and Thall (2004), which is
described next.

Let d ∈ {1, . . . , T} denote a set of ascending doses
explored in a phase I trial. Assume multiple types of
treatment-related toxicity j ∈ {1, . . . , J} are observed for
patients, and each type of toxicity is classified into toxicity
grades k ∈ {0, . . . ,K} using a standard reference, such as
the CTCAE [1]. For example, neurotoxicity and GI toxic-
ity are two different types of adverse events, each consisting
of five grades with grade 0 denoting no toxicity, 1-2 mod-
erate toxicity, 3-4 severe toxicity, and 5 death. Toxicities
with grade 5, corresponding to treatment-related death, re-
quire trial suspension and direct intervention from the safety
committee and therefore are not considered in the proposed
design.

Specifically, let Yij ∈ {0, . . . ,K} denote the observed
toxicity grade of type j for patient i; and let {Xi = d}
denote the event that patient i is treated at dose d. De-
note pdjk = Pr(Yij = k|Xi = d) the toxicity probability of
grade k for type j at dose d, and apparently

∑K
k=0 pdjk = 1,

0 ≤ pdjk ≤ 1. The proposed Ti3+3 design relies on a weight
matrix W that is elicited through consultation with clini-

cians. Let W = {wjk} be a standardized matrix of weights,

W =

⎛
⎜⎝
w10 . . . w1K

...
. . .

...
wJ0 . . . wJK

⎞
⎟⎠ ,

where
∑

j,k wjk = 1. Here wjk ≥ 0 quantifies the relative
health impact assigned by physicians for the toxicity event
of type j and grade k. Denote the row sum cj =

∑K
k=0 wjk.

The magnitudes of {cj}’s reflect the relative severity of dif-
ferent types of toxicity events; within each type j, the mag-
nitudes of {wjk}’s reflect the relative average severity of
different grades of toxicity events. These interpretations are
exploited in the definitions of the toxicity burdens. In Ap-
pendix A, we describe an algorithm to guide the elicitation
of the W matrix by statisticians and clinicians. To reflect
the belief that higher grade of a type of toxicity is more
impactful to a patient’s health, we assume the monotonic-
ity 0 = wj0 < · · · < wjK for any type j, which implies an
increasing toxicity burden for high toxicity grades.

Next, we define a type-specific toxicity burden for toxicity
type j at dose d as

TBj
d =

K∑
k=0

wjk

wjK
pdjk, (2.1)

where TBj
d ∈ (0, 1) is analogous to the toxicity probability

in DLT-based dose-finding trials. To see this, TBj
d in (2.1) is

a weighted sum of the type-specific toxicity probabilities of
different grades, with the weight equal to 1 for the highest
grade K, and wjk

wjK
for grade k < K. Since wjk < wjK for

k < K, wjk

wjK
< 1. Therefore, (2.1) implies that TBj

d is a
re-scaled probability of toxicity of the highest grade K for
type j at dose d, converting all the lower grade toxicities to
the highest grade by a weight factor of wjk

wjK
. Note that TBj

d

is a parameter. To estimate it, we consider the following
statistics, T̂B

j

id, the observed type-specific toxicity burden
for patient i treated at dose d, given by

T̂B
j

id =

K∑
k=0

wjk

wjK
I(Yij = k)I(Xi = d), (2.2)

where I(·) is an indicator function and

I(Yij = k) =

⎧⎨
⎩
1, if patient i experiences toxicity type j

with grade k,
0, otherwise.

Here T̂B
j

id is based on observed data {Yij , Xi}. Since a
patient may experience multiple adverse events associated
with multiple types and grades of toxicity, we only use the
most severe grade of each type in defining the toxicity bur-
dens. In other words, grade “k” in (2.2) is the most severe
toxicity grade among all the toxicity events of type j for
patient i. In addition, for patient i,
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T̂Bid =

J∑
j=1

cj

K∑
k=0

wjk

wjK
I(Yij = k)I(Xi = d)

is the observed toxicity burden for patient i. Assuming a
total of nd patients have been treated at the dose d, then
TBj

d can be estimated by

T̂B
j

d =
1

nd

nd∑
i=1

T̂B
j

id. (2.3)

It is trivial to show that T̂B
j

d is unbiased, i.e., E(T̂B
j

d) =
TBj

d, assuming wjk is given and fixed.
Finally, given the type-specific toxicity burdens TBj

d, the
overall toxicity burden at dose d can be defined as

TBd =

J∑
j=1

cjTB
j
d =

J∑
j=1

cj

K∑
k=0

wjk

wjK
pdjk, (2.4)

where cj =
∑K

k=0 wjk are constants that reflect the rela-
tive severity between toxicity types. Apparently,

∑
j cj =∑

j,k wjk = 1. Similarly, the observed overall toxicity bur-
den at dose d is calculated as follows

T̂Bd =

J∑
j=1

cj T̂B
j

d. (2.5)

An interval dose-finding design like i3+3 needs to spec-
ify the target toxicity probability (of DLTs), pT , and an
equivalence interval (EI) to facilitate the dose-finding deci-
sions. Similarly, the proposed Ti3+3 design needs a target
toxicity burden (TTB) and an associated EI for TTB. To
start, we define a type-specific TTBj for toxicity type j. The
TTBj can be viewed as the toxicity target for the MTD if
only toxicity events of type j are considered as outcome;
similarly, the EIj is the equivalence interval for the MTD
when only type j toxicity events are modeled. For exam-
ple, assume that there are two types of toxicities J = 2,
and the targets for type-specific toxicity burden could be
set to TTB1 = 0.3 and TTB2 = 0.25. In addition, denote
EIj = (TTBj − εj1, TTB

j + εj2) the equivalence interval
of TTBj for toxicity type j, which is an interval centered
around the TTBj . The upper bound and lower bound of the
EIj reflect the highest and lowest value of toxicity burden
that the clinicians would consider to be acceptable for MTD
if only type j events are considered. Similar to how the def-
inition of the DLT is tailored case-by-case for conventional
dose-finding trials, these values should be elicited with the
clinical team based on the specific context of a trial. Given
the specified TTBj and Equation 2.4, an overall target tox-
icity burden, denoted as TTB, is defined as a weighted sum
of TTBj by

TTB =

J∑
j=1

cjTTB
j . (2.6)

And similarly, the equivalence interval for the overall toxic-
ity burden, EI, is derived as a weighted average of EIj with
weights cj . That is, EI =

∑J
j=1 cjEIj .

In summary, the main effort in applying the proposed
Ti3+3 is in the initial setup, which requires the specification
of the weight matrix, W , the target toxicity burden, TTBj ,
and the equivalence interval, EIj , for each toxicity type j.
Once they are determined, dose finding proceeds based on
a simple algorithm next.

2.2 Dose-Finding Algorithm
Assume patients are assigned sequentially in cohorts,

starting with the lowest dose. The next cohort of patients
will not be enrolled until toxicity outcomes have been ob-
served for the present cohort. Suppose dose d is the current
dose used to treat patients and nd patients have been treated
at the dose, Ti3+3 extends the dose-finding algorithm in the
i3+3 design to accommodate the new toxicity burden end-
points. The dose-finding algorithm of Ti3+3 are first applied
to toxicity type j to generate a type-specific decision, de-
noted as Aj ∈ {“E”, “S”, “D”}, where “E”, “S”, and “D”
denote “Escalation”, “Stay”, and “De-escalation”, respec-
tively, and to the overall toxicity burden to generate A0 ∈
{“E”, “S”, “D”}. The next cohort of patients is assigned to
the minimum dose level indicated by decisions Aj ’s and A0.

Below we introduce the dose-finding algorithm.

Algorithm 1 Ti3+3 dose-finding algorithm.
for j ∈ {0, 1, . . . , J} do

if T̂B
j

d is below the EIj then
dose d is considered safe and escalate (“E”) to dose

(d+ 1) (i.e., Aj =“E”)
else if T̂B

j

d is inside the EIj then
dose d is considered to be close to the MTD and stay

(“S”) at dose d (i.e., Aj =“S”)
else if T̂B

j
is above the EIj then

if T̂B
j

d,−1 (defined next) is below the EIj then
the decision is to stay (“S”) at dose d (i.e., Aj =“S”)

else if T̂B
j

d,−1 is inside or above the EIj then
dose d is considered toxic, and the decision is to de-

escalate (“D”) to dose (d− 1) (i.e., Aj =“D”)
end if

end if
end for
The next cohort is assigned based on the decisions {Aj : j =
0, 1, . . . , J}. Since decisions “E”, “S”, “D” correspond to doses
(d+1), d, and (d−1), respectively, we denote Bj = 1, 0, or −1
if Aj = “E”, “S”, or “D”, respectively. Assign the next cohort
of patients to d+minj{B0, . . . ,BJ}.

Algorithm 1 requires computing a new quantity T̂B
j

d,−1,
which is defined as a hypothetical observed toxicity burden
assuming the patient in the cohort who experienced the low-
est toxicity burden would experience no toxicity at all. In
other words, if we remove all the toxicity events from the
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Table 1. The dose-finding algorithm of the Ti3+3 design.

Condition Decision Bj (Aj)
T̂B

j

d < EIj 1 (E∗)

T̂B
j

d ∈ EIj 0 (S)

T̂B
j

d > EIj & T̂B
j

d,−1 < EIj 0 (S)

T̂B
j

d > EIj & T̂B
j

d,−1 ∈ EIj −1 (D∗)

T̂B
j

d > EIj & T̂B
j

d,−1 > EIj −1 (D∗)

Final Decision: d+minj{Bj}
∗: when d is the highest dose (d = T ) or the lowest dose (d = 1),

the decisions D and E should be replaced by S accordingly.

patient with the lowest burden from the data at dose d,
T̂B

j

d,−1 is the new observed toxicity burden for type j. This
idea is similar to that of the i3+3 design, the difference be-
ing that i3+3 only considers DLT while Ti3+3 considers
different grades and types of toxicity.

Table 1 summarizes the decisions of Ti3+3. The type-
specific decision Bj(Aj) for each toxicity type j (or over-
all burden if j = 0) is listed, and the final decision is to
assign the next cohort to dose (d + minj{Bj}). Similar to
i3+3, in Ti3+3, there is a special rule. When T̂B

j

d > EIj

and T̂B
j

d,−1 < EIj , it indicates that removing the toxicity
events from a single patient in the observed data renders the
observed toxicity burden from being above the equivalence
interval to below the interval. In other words, changing one-
patient worth of information of the data would result in a re-
versal of the decision from de-escalation (since T̂B

j

d > EIj)
to escalation since (T̂B

j

d,−1 < EIj). This implies that the
information in the observed data is sparse and small change
of the data results in reversal of decisions. Therefore, Ti3+3,
in this case, does not de-escalate due to lack of confidence
in the data, and instead, continues to treat patients at the
current dose, i.e., “S” stay. The other rules in Table 1 are
straightforward, following the idea of de-escalation if ob-
served toxicity burden is above the EI, stay if inside the
EI, or escalation if below the EI.

In Table 2, we provide three examples to illustrate the
proposed algorithm. Suppose there are two types of toxic-
ities, and a pre-determined standardized weight matrix is
given below

W =

(
0 0.03 0.11 0.17 0.42
0 0.03 0.03 0.07 0.14

)
.

Moreover, assume TTB1 = TTB2 = TTB = 0.30 and the
EI1 = EI2 = EI = (0.25, 0.33). Based on the observed
toxicity types and grades from patients, T̂Bid and T̂Bd

can be calculated based on (2.5). In case 1, nd = 3 pa-
tients are treated at the current dose d, and T̂Bd = 0.34,
which is greater than the upper bound 0.33. However, since
T̂Bd,−1 = 0.24 falls below the EI, according to the Ti3+3

algorithm, the decision is, A0 = “S”, stay at the current
dose. Therefore, even though T̂Bd = 0.34 is above the EI,
the decision is to enroll more patients at the same dose d
since T̂Bd,−1 is below EI. We see that there are only three
patients at dose d and the data is sparse. In the second case,
nd = 5 and T̂Bd = 0.34, which is greater than 0.33. And
T̂Bd,−1 = 0.28 falls inside of the EI, therefore, A0 = “D”,
de-escalate to the next lower dose (d− 1). In the third case,
the two quantities T̂Bd, T̂Bd,−1 are the same and below
the EI, and the decision is then A0 = “E”, escalate to the
dose (d + 1). The examples demonstrate the simplicity of
the proposed decision rules using the overall toxicity bur-
den. Algorithm 1 applies these rules to each toxicity type j
as well.

In addition, the Ti3+3 design consists of a few safety
rules for practical and ethical concerns. Again, these safety
rules are applied iteratively to each type-specific and overall
toxicity burdens.

• Safety rule 1 (early termination): At any moment dur-
ing the trial, if n1 ≥ 3, and Pr(TBj

1 > TTBj |data) >
0.95 or Pr(TB1 > TTB|data) > 0.95, terminate the
trial due to excessive toxicity. This rule stops the trial
whenever the lowest dose (d = 1) is deemed overly toxic.

• Safety rule 2 (dose exclusion): At any moment during
the trial, suppose the current dose is d. If nd ≥ 3,
and Pr(TBj

d > TTBj |data) > 0.95 or Pr(TBd >
TTB|data) > 0.95, remove dose d and higher doses
from the trial. In other words, if a sufficient number
(nd ≥ 3) of patients has been treated at a dose d, and
their outcomes suggest that dose d is deemed overly
toxic, dose d and higher doses are excluded from the
trial. Any future escalation to dose d will be changed
to “S”, stay.

The calculation of the posterior distributions Pr(TBj
d >

TTBj |data) and Pr(TBd > TTB|data) are discussed be-
low.

2.3 A working model and MTD selection
Once all patients finish their followup at the end of a

trial, the Ti3+3 design first selects the type-specific MTD,
denoted as d∗j , and the MTD based on the overall toxicity
burden, denoted as d∗0.

Next, we propose a working statistical model to calcu-
late the posterior probabilities Pr(TBj

d > TTBj |data) and
Pr(TBd > TTB|data) and select the MTD based on the
observed data. Recall pdjk denote the probability of tox-
icity grade k for type j at dose d. For a given dose d, as-
sume different types of toxicities are independent. Let pdj =
{pdj0. . . . , pdjK} represent the vector of the probabilities as-
sociated with different toxicity grades for type j at dose
d, and ydj = {ydj0. . . . , ydjK} the vector of patient counts
across different grades, i.e., ydjk =

∑
i I(Yij = k)I(Xi = d).

Then ydj is assumed to follow a the multinomial sampling
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Table 2. Three hypothetical cases to illustrate the dose-finding decisions of the Ti3+3 design for a trial with two toxicity
types and five grades. Notation: 1) Tox data: (k1, k2) if the patient experiences grade k1 of the first type of toxicity and grade
k2 of the second type of toxicity; 2) T̂Bid: observed toxicity burden for patient i who is treated on dose d; 3) T̂Bd:observed
toxicity burden for the current dose d; 4) T̂Bd,−1: T̂Bd calculated assuming the patient with the lowest T̂Bid experienced no

toxicity. Suppose TTB = 0.30, and the EI is (0.25, 0.33). The patient with the lowest T̂Bid in each case is bolded.

Case # Patient # Tox data T̂Bid T̂Bd T̂Bd,−1 A0

1 (2, 3) 0.33
1 2 (3, 2) 0.35 0.34 0.23 S

3 (3, 2) 0.35 0.34 > EI 0.23 < EI

1 (2, 2) 0.25
2 (2, 1) 0.25

2 3 (2, 3) 0.33 0.34 0.28 D
4 (3, 0) 0.30 0.34 > EI 0.28 ∈ EI
5 (3, 4) 0.56

1 (0, 0) 0.00
3 2 (1, 1) 0.11 0.07 0.07 E

3 (1, 2) 0.11 0.07 < EI 0.07 < EI

distribution given by

ydj |pdj ∼ Multinomial(pdj , nd), (2.7)

where for any j,
∑K

k=0 pdjk = 1, pdjk ∈ (0, 1), and∑K
k=0 ydjk = nd. Assume a conjugate Dirichlet prior dis-

tribution of pdj , i.e.,

pdj ∼ Dirichlet(α), (2.8)

where α = (α0, . . . , αK) are positive values. We set α0 =
· · · = αK = 0.1 for different toxicity types across doses.
Following Morita et al. (2011) [23], since

∑4
k=0 αk = 0.5, a

small value, the Dirichlet prior in (2.8) is deemed vague and
has little impact on the posterior distribution given by

pdj |ydj ∼ Dirichlet(ydj0 + α0, . . . , ydjK + αK). (2.9)

Therefore, the posterior of TBj
d and TBd can be computed

numerically by sampling fj(pdj|ydj) in 2.9. To calculate the
posterior probabilities used in safety rules, we have

Pr(TBj
d > TTBj |data) ≈ 1

S

S∑
s=1

I(

K∑
k=0

wjk

wjK
p
(s)
djk > TTBj),

(2.10)
and

Pr(TBd > TTB|data) ≈ 1

S

S∑
s=1

I(

J∑
j=1

cj

K∑
k=0

wjk

wjK
p
(s)
djk > TTB),

(2.11)
where p

(s)
djk is the s-th random draw from fj(pdj|ydj).

To impose monotonicity assumption of dose-toxicity rela-
tionship, we apply isotonic regression to the posterior means
of TBj

d and TBd via the pool adjacent violators algorithm
[24]. Let T̃B

j

d and T̃Bd be the isotonic transformed posterior
means for all dose levels. Among all the tried doses (nd > 0)
for which satisfy the safety rules, the estimated MTDs based

on the type-specific and overall toxicity burden are defined
as

d∗j = argmin
d

|T̃B
j

d − TTB|, j = 0, 1, . . . , J. (2.12)

If more than one dose of d∗j exists, only one dose is selected
based on following rules:

1. If T̃Bd∗
j
> TTBj , choose the lowest dose among the

tied doses as the final d∗j ;
2. If T̃Bd∗

j
≤ TTBj , choose the highest dose among the

tied doses as the final d∗j .

Lastly, the final MTD is the smallest dose among the
estimated type-specific and overall MTDs, i.e.,

d∗ = min{d∗j , j = 0, .., J}. (2.13)

3. SIMULATIONS
3.1 Comparison with CRM-MC

We simulate clinical trials to assess the operating charac-
teristics of the Ti3+3 design. We first compare to the CRM-
MC method by Lee et al. (2011) [16]. The Ti3+3 design
requires close collaboration between statisticians and clin-
icians to define the numerical weights W and the EI’s at
the study design stage. For simulation purpose, we adopt the
general setting of the bortezomib trial described in Lee et
al. (2011) [16]. Under the bortezomib trial, two main types
(J = 2) of toxicities are identified as related to the treat-
ment. The first type (j = 1) is neuropathy and the second
(j = 2) is low platelet count. The standardized matrix of
weights W , provided in Lee et al. (2011), is given by:

W =

(
0 0.03 0.11 0.17 0.42
0 0.03 0.03 0.07 0.14

)
.
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The first and second rows correspond to the weights for
grade 0 to grade 4 of each type, neuropathy and low platelet
count, respectively. The DLT is defined as the occurrence of
a grade 3 or 4 neuropathy or a grade 4 low platelet count.
Given this matrix and the definition of TB, a patient has a
T̂Bid value 0.30 for a grade 3 neuropathy or 0.27 for a grade
4 low platelet count. And a patient experiencing a grade 3
neuropathy has similar T̂Bid = 0.30 as a patient experienc-
ing a grade 2 neuropathy plus a grade 3 low platelet count
T̂Bid = 0.31. These severity weights reflect the relative clin-
ical importance between different toxicity types and grades,
and less severe toxicities are given lower weights. In addition,
c1 =

∑4
k=0 w1k = 0.73 and c2 =

∑4
k=0 w2k = 0.27, which

implies that overall neuropathy is a much more severe type
of toxicity than low platelet count.

To implement the Ti3+3 design, the TTB1, TTB2, and
TTB are set at 0.30, which suggests (by comparing to W )
that the occurrence of a grade 3 or higher neuropathy, or a
grade 4 low platelet count are considered clinically unaccept-
able. Moreover, the equivalence intervals used are EI1 =
EI2 = EI = (0.25, 0.35). For the CRM-MC method, the
toxicity burden of patient i is calculated as Ti = 0.03I(Yi1 =
1) + 0.11I(Yi1 = 2) + 0.17I(Yi1 = 3) + 0.42I(Yi1 = 4) +
0.03I(Yi2 = 1, 2) + 0.07I(Yi2 = 3) + 0.14I(Yi2 = 4), where
Yi1 and Yi2 are the grades of toxicity type 1 and 2, respec-
tively, for the patient. CRM-MC applies primary and sec-
ondary constraints Pr(Ti ≥ 0.25|d) ≤ 0.10 and Pr(Ti ≥
0.17|d) ≤ 0.25, respectively, to decide the dose for next pa-
tients. The vector of scaled doses is obtained via backward
substitution with dose 3 as the prior guess of MTD, 0.08 as
the indifference interval parameter, 0.69 as the prior median
of the slope parameter, and a probit model with an intercept
equal to 3. The prior distributions of the probit model slope
parameter β and thresholds (γl − γl−1) follow independent
exponential distributions with mean 1, as suggested by the
authors. Refer to Lee et al. (2011) for more details.

Following the original bortezomib trial, Lee et al. (2011)
implemented a simulation with a sample size 18, cohort size
1, and a starting dose at level 3. We consider a more com-
mon simulation setup and apply the following parameters to
both designs. The sample size is fixed at 30 with a total of
10 cohorts. A total of five dose levels are investigated, and
both designs, Ti3+3 and CRM-MC will start at the lowest
dose level. We construct a total of eight scenarios, including
the first four scenarios from Lee et al. (2011) and additional
four scenarios. According to Ti3+3, the true MTD is defined
as the highest dose with the TBj

d falls below or inside the
equivalence interval of TTBj for all type-specific and over-
all toxicity burdens, that is, the dose with TBj

d ≤ 0.35 for
j = 1, 2 and TBd ≤ 0.35. Different from Ti3+3, the CRM-
MC design selects MTD as the highest dose that satisfies
the primary and secondary toxicity constraints. Therefore,
CRM-MC and Ti3+3 sometimes would consider different
doses in the same scenario as the true MTD, for example,
in scenario 1, Ti3+3 considers dose level 3 as the true MTD

while based on CRM-MC, dose level 2 is the true MTD.
A full description of all dosing scenarios is provided in Ap-
pendix B. For each scenario, we simulate 1,000 trials.

The simulation results are presented in Table 3, which
shows the percentage of recommending a particular dose
(Selection %) and the percentage of patients assigned to
each dose level (Allocation %). A desirable design should
demonstrate a good balance between the ability to correctly
identify the MTD and patient safety. Compared with the
CRM-MC design, Ti3+3 has higher percentage of correct
selection (PCS) among scenarios where both design consider
the same dose as the true MTD (scenarios 2, 3, 4, 6, and
8). In terms of patient allocation, Ti3+3 seems to perform
better at assigning patients to the target dose (PCA) in
scenarios 2-6, and is less likely to assign patients to a dose
above the MTD (POA) in majority of the eight scenarios.
Overall, the operating characteristics of our proposed Ti3+3
design are comparable to the CRM-MC design, which relies
on a model-based inference for dose assignment decisions.

3.2 Comparison with gBOIN
Additionally, we evaluate the performance of Ti3+3 by

comparing it with the gBOIN design by Mu et al. (2019) [19].
The gBOIN design generalizes the BOIN design and pro-
vides a unified framework to incorporate non-binary toxic-
ity outcomes. We follow the simulation settings described in
Section 3.2 in Mu et al. (2019). Only one type of toxicity is
considered, and the standardized weight matrix is defined as

W =
(
0 0 0.16 0.33 0.50

)
.

In words, grades 0 and 1 are of no concern, grade 2 toxicity
is considered equivalent to half grade 3 toxicity, and grade
4 toxicity is equivalent to one and half grade 3 toxicity.
Based on Mu et al. (2019), the TTB is 0.31, and the rec-
ommended default escalation and de-escalation boundaries
are λ∗

e = 0.249 and λ∗
d = 0.377. The same set of target

burden and EI is adopted in Ti3+3. A total sample of 30
patients and a cohort size of 3 is used in the simulation,
with a starting dose at dose level 1. The details of the ten
dose-toxicity scenarios is provided in Appendix B.

Table 4 shows the results based on 4,000 simulated trials.
In general, the two designs demonstrate comparable operat-
ing characteristics, and Ti3+3 shows superior performance
in terms of trial safety. Even though gBOIN yields higher
PCS in scenarios 1 through 7, the differences in PCS are no
greater than 0.05 except in scenario 7. And Ti3+3 generates
higher PCS in scenarios 8, 9 and 10. It is worthnoting that
Ti3+3 is less likely to recommend a overly toxic dose as the
MTD across all scenarios. The patient allocation of the two
designs are very close as shown in Table 4. The Ti3+3 yields
higher or similar PCA in 7 out of 10 scenarios, and shows
consistently lower POA across all scenarios. The POS and
POA are two important safety metrics considered in early
phase trials, and Ti3+3 shows relatively strong performance
in the safety metrics.
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Table 3. Performance of the Ti3+3 design compared with CRM-MC. The TTB1 = TTB2 = TTB is 0.30, and the
EI1 = EI2 = EI is (0.25, 0.35). The MTD in each scenario is in bold.

Selection % Allocation %
1 2 3 4 5 1 2 3 4 5

Scenario 1
TB1 0.10 0.21 0.28 0.34 0.42
TB2 0.11 0.23 0.34 0.46 0.59
TB 0.11 0.22 0.30 0.37 0.46
CRM-MC 0.13 0.71 0.15 0.01 0.00 0.25 0.53 0.18 0.03 0.00
Ti3+3 0.05 0.58 0.35 0.02 0.00 0.23 0.49 0.24 0.04 0.00
Scenario 2
TB1 0.10 0.11 0.21 0.29 0.39
TB2 0.08 0.11 0.23 0.46 0.57
TB 0.10 0.11 0.22 0.34 0.44
CRM-MC 0.00 0.15 0.74 0.10 0.00 0.14 0.24 0.45 0.15 0.02
Ti3+3 0.00 0.02 0.80 0.18 0.00 0.11 0.20 0.48 0.19 0.01
Scenario 3
TB1 0.11 0.10 0.12 0.21 0.29
TB2 0.08 0.11 0.16 0.23 0.46
TB 0.10 0.11 0.13 0.22 0.34
CRM-MC 0.00 0.04 0.29 0.58 0.09 0.14 0.16 0.24 0.34 0.12
Ti3+3 0.00 0.00 0.07 0.77 0.16 0.12 0.14 0.23 0.38 0.14
Scenario 4
TB1 0.10 0.11 0.12 0.14 0.21
TB2 0.05 0.08 0.16 0.21 0.23
TB 0.09 0.10 0.13 0.16 0.22
CRM-MC 0.00 0.03 0.15 0.32 0.50 0.13 0.16 0.20 0.23 0.29
Ti3+3 0.00 0.00 0.05 0.21 0.74 0.11 0.13 0.19 0.24 0.33
Scenario 5
TB1 0.22 0.32 0.36 0.48 0.52
TB2 0.17 0.25 0.45 0.52 0.60
TB 0.21 0.30 0.39 0.49 0.54
CRM-MC 0.73 0.26 0.01 0.00 0.00 0.64 0.28 0.06 0.01 0.00
Ti3+3 0.38 0.57 0.05 0.00 0.00 0.52 0.41 0.07 0.01 0.00
Scenario 6
TB1 0.13 0.23 0.30 0.34 0.45
TB2 0.11 0.21 0.43 0.44 0.79
TB 0.13 0.22 0.33 0.37 0.54
CRM-MC 0.24 0.66 0.10 0.00 0.00 0.33 0.47 0.15 0.04 0.01
Ti3+3 0.02 0.73 0.25 0.01 0.00 0.25 0.52 0.21 0.01 0.00
Scenario 7
TB1 0.10 0.12 0.18 0.31 0.48
TB2 0.18 0.28 0.29 0.58 0.73
TB 0.12 0.16 0.21 0.38 0.55
CRM-MC 0.04 0.32 0.60 0.04 0.00 0.14 0.31 0.46 0.08 0.01
Ti3+3 0.07 0.45 0.46 0.02 0.00 0.28 0.39 0.27 0.06 0.00
Scenario 8
TB1 0.04 0.06 0.14 0.25 0.29
TB2 0.10 0.12 0.16 0.17 0.44
TB 0.06 0.08 0.15 0.23 0.33
CRM-MC 0.01 0.06 0.26 0.56 0.11 0.08 0.11 0.24 0.40 0.18
Ti3+3 0.00 0.00 0.06 0.71 0.23 0.12 0.15 0.21 0.36 0.16

4. SENSITIVITY ANALYSIS

Sensitivity analysis is conducted to further evaluate the
Ti3+3 design using the first eight scenarios considered in
Section 3.2. First, we investigate the effect of EI length

on the performance of the proposed method. Specifically,
with TTBj and TTB fixed at 0.30, we select four differ-
ent EI’s (represented as Cases A, B, C, and D), and for
each EI value and each of the eight scenarios, we simu-
late 1,000 trials each with a cohort size 3 and total sam-
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Table 4. Performance of the Ti3+3 design compared with gBOIN. The TTB is 0.31, and the EI is (0.249, 0.377). The MTD
in each scenario is in bold.

Selection % Allocation %
1 2 3 4 5 6 1 2 3 4 5 6

Scenario 1
TB 0.08 0.13 0.22 0.32 0.50 0.70
gBOIN 0.00 0.02 0.29 0.56 0.12 0.01 0.12 0.17 0.28 0.30 0.12 0.01
Ti3+3 0.00 0.07 0.34 0.50 0.08 0.00 0.12 0.20 0.31 0.27 0.09 0.01
Scenario 2
TB 0.05 0.09 0.19 0.28 0.47 0.66
gBOIN 0.00 0.00 0.16 0.66 0.18 0.00 0.12 0.15 0.25 0.33 0.14 0.01
Ti3+3 0.00 0.04 0.24 0.62 0.11 0.00 0.12 0.16 0.27 0.33 0.11 0.01
Scenario 3
TB 0.11 0.26 0.33 0.44 0.55 0.75
gBOIN 0.02 0.47 0.36 0.13 0.00 0.00 0.21 0.41 0.26 0.11 0.02 0.00
Ti3+3 0.12 0.43 0.33 0.10 0.01 0.00 0.21 0.41 0.26 0.10 0.02 0.00
Scenario 4
TB 0.07 0.22 0.30 0.40 0.52 0.71
gBOIN 0.01 0.28 0.47 0.23 0.01 0.00 0.16 0.30 0.36 0.15 0.03 0.00
Ti3+3 0.05 0.32 0.46 0.16 0.01 0.00 0.18 0.34 0.31 0.13 0.03 0.00
Scenario 5
TB 0.00 0.04 0.06 0.07 0.11 0.22
gBOIN 0.00 0.00 0.00 0.00 0.04 0.96 0.10 0.10 0.11 0.11 0.15 0.42
Ti3+3 0.00 0.00 0.00 0.01 0.08 0.91 0.10 0.10 0.11 0.12 0.16 0.41
Scenario 6
TB 0.30 0.42 0.53 0.67 0.77 0.86
gBOIN 0.69 0.29 0.01 0.00 0.00 0.00 0.66 0.27 0.06 0.01 0.00 0.00
Ti3+3 0.62 0.19 0.01 0.00 0.00 0.00 0.69 0.26 0.05 0.00 0.00 0.00
Scenario 7
TB 0.13 0.30 0.38 0.49 0.60 0.78
gBOIN 0.11 0.55 0.28 0.06 0.00 0.00 0.30 0.43 0.21 0.06 0.01 0.00
Ti3+3 0.15 0.54 0.25 0.05 0.01 0.00 0.31 0.42 0.20 0.05 0.01 0.00
Scenario 8
TB 0.05 0.16 0.21 0.29 0.37 0.50
gBOIN 0.00 0.06 0.22 0.41 0.28 0.04 0.09 0.19 0.24 0.28 0.15 0.05
Ti3+3 0.00 0.07 0.25 0.41 0.25 0.02 0.13 0.19 0.25 0.24 0.15 0.04
Scenario 9
TB 0.11 0.30 0.38 0.49 0.6 0.78
gBOIN 0.00 0.91 0.00 0.00 0.00 0.00 0.11 0.76 0.14 0.00 0.00 0.00
Ti3+3 0.00 0.94 0.06 0.00 0.00 0.00 0.11 0.79 0.11 0.00 0.00 0.00
Scenario 10
TB 0.05 0.16 0.21 0.29 0.37 0.50
gBOIN 0.00 0.00 0.03 0.71 0.23 0.03 0.10 0.12 0.17 0.44 0.13 0.04
Ti3+3 0.00 0.00 0.06 0.79 0.14 0.01 0.10 0.12 0.19 0.47 0.09 0.03

ple size 30. Simulation results with varying EI lengths are
shown in Table 5. Note that in Case B (EI = (0.20, 0.40))
and D (EI = (0.25, 0.35)), EIs are symmetric around
the TTB, whereas in Case A (EI = (0.20, 0.35)) and C
(EI = (0.25, 0.40)), the EIs are asymmetric around TTB.
For all scenarios, patient safety (the percentage of patients
treated at or below the true MTD) and PCS tend to im-
prove with wider EIs. This is because a wider EI allows a
wider range of doses to be considered as the MTD. However,
the EI cannot be too wide to become clinically meaningless.

Moreover, across all scenarios, we observe that Case A allo-
cates fewer patients to doses over MTD than Case B and C
since the upper bound of the EI in A is smaller than that of
the EI in B and C. The overall performances observed across
the four cases are comparable, and the proposed Ti3+3 de-
sign seems robust against various choices of EI lengths.

We fix the total sample size of 30 and conduct another
sensitivity analysis using Ti3+3 with cohort sizes 1, 2, or
3. Results with different cohort sizes are shown in Table 6.
For all scenarios, the results for cohort sizes 1 and 2 are less
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Table 5. Sensitivity analysis results of the Ti3+3 with different EI lengths. The TTB is 0.30. The different EIs:
A = (0.20, 0.35), B = (0.20, 0.40), C = (0.25, 0.40), D = (0.25, 0.35). The MTD in each scenario is in bold.

Selection % Allocation %
1 2 3 4 5 6 1 2 3 4 5 6

Scenario 1
TB 0.08 0.13 0.22 0.32 0.50 0.70
A 0.01 0.10 0.46 0.38 0.04 0.00 0.14 0.25 0.36 0.21 0.05 0.00
B 0.02 0.09 0.44 0.40 0.05 0.00 0.14 0.23 0.35 0.23 0.05 0.00
C 0.01 0.09 0.35 0.49 0.07 0.00 0.12 0.20 0.30 0.28 0.09 0.01
D 0.02 0.08 0.37 0.45 0.08 0.00 0.13 0.20 0.31 0.26 0.09 0.01
Scenario 2
TB 0.05 0.09 0.19 0.28 0.47 0.66
A 0.00 0.05 0.33 0.53 0.10 0.00 0.12 0.19 0.33 0.27 0.07 0.00
B 0.00 0.03 0.35 0.54 0.07 0.00 0.13 0.18 0.33 0.30 0.06 0.00
C 0.00 0.04 0.23 0.63 0.09 0.00 0.11 0.15 0.27 0.34 0.12 0.01
D 0.01 0.05 0.25 0.61 0.09 0.00 0.11 0.17 0.27 0.32 0.11 0.01
Scenario 3
TB 0.11 0.26 0.33 0.44 0.55 0.75
A 0.14 0.55 0.24 0.05 0.00 0.00 0.32 0.45 0.18 0.04 0.01 0.00
B 0.14 0.53 0.26 0.06 0.01 0.00 0.28 0.47 0.20 0.05 0.00 0.00
C 0.12 0.41 0.35 0.10 0.01 0.00 0.23 0.38 0.26 0.11 0.02 0.00
D 0.14 0.44 0.32 0.08 0.01 0.00 0.27 0.38 0.24 0.09 0.02 0.00
Scenario 4
TB 0.07 0.22 0.30 0.40 0.52 0.71
A 0.07 0.46 0.38 0.09 0.00 0.00 0.23 0.44 0.26 0.07 0.01 0.00
B 0.07 0.39 0.43 0.12 0.01 0.00 0.21 0.41 0.29 0.09 0.01 0.00
C 0.06 0.31 0.46 0.16 0.01 0.00 0.18 0.34 0.32 0.14 0.03 0.00
D 0.07 0.36 0.42 0.13 0.01 0.00 0.21 0.36 0.29 0.12 0.02 0.00
Scenario 5
TB 0.00 0.04 0.06 0.07 0.11 0.22
A 0.00 0.00 0.00 0.01 0.12 0.86 0.10 0.11 0.12 0.13 0.18 0.35
B 0.00 0.00 0.00 0.02 0.11 0.87 0.10 0.11 0.12 0.14 0.18 0.35
C 0.00 0.00 0.00 0.01 0.10 0.89 0.10 0.10 0.11 0.11 0.16 0.42
D 0.00 0.00 0.00 0.01 0.10 0.89 0.10 0.10 0.11 0.11 0.17 0.41
Scenario 6
TB 0.30 0.42 0.53 0.67 0.77 0.86
A 0.67 0.12 0.01 0.00 0.00 0.00 0.80 0.18 0.02 0.00 0.00 0.00
B 0.66 0.12 0.01 0.00 0.00 0.00 0.79 0.18 0.02 0.00 0.00 0.00
C 0.64 0.17 0.01 0.00 0.00 0.00 0.67 0.27 0.05 0.00 0.00 0.00
D 0.63 0.17 0.01 0.00 0.00 0.00 0.69 0.25 0.05 0.01 0.00 0.00
Scenario 7
TB 0.13 0.30 0.38 0.49 0.60 0.78
A 0.20 0.57 0.20 0.02 0.00 0.00 0.36 0.43 0.17 0.04 0.00 0.00
B 0.18 0.57 0.22 0.03 0.00 0.00 0.33 0.45 0.17 0.04 0.00 0.00
C 0.17 0.52 0.24 0.06 0.00 0.00 0.28 0.41 0.22 0.07 0.01 0.00
D 0.18 0.53 0.23 0.04 0.00 0.00 0.33 0.41 0.20 0.05 0.01 0.00
Scenario 8
TB 0.05 0.16 0.21 0.29 0.37 0.50
A 0.02 0.18 0.43 0.29 0.08 0.01 0.17 0.34 0.31 0.15 0.04 0.00
B 0.03 0.18 0.42 0.29 0.09 0.00 0.17 0.33 0.32 0.15 0.04 0.00
C 0.01 0.05 0.28 0.42 0.23 0.01 0.13 0.18 0.26 0.25 0.15 0.04
D 0.01 0.07 0.26 0.43 0.22 0.02 0.13 0.19 0.24 0.25 0.14 0.04

desirable when comparing to cohort size 3. Specifically, the
percentage of patients treated above the true MTD tends to
increase with smaller cohort size, and PCS tends to decrease
with smaller cohort size. As more information is needed for

the estimation of the toxicity profile at each dose TBd as
opposed to the probability of binary DLT, we recommend
implementing this proposed method with cohort size 3 or
above.
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Table 6. Sensitivity analysis results of the Ti3+3 with different cohort sizes. The TTB is 0.30, and the EI is (0.25,0.35). The
MTD in each scenario is in bold.

Selection % Allocation %
1 2 3 4 5 6 1 2 3 4 5 6

Scenario 1
TB 0.08 0.13 0.22 0.32 0.50 0.70
Cohort size 1 0.04 0.14 0.35 0.43 0.03 0.00 0.09 0.17 0.30 0.31 0.10 0.02
Cohort size 2 0.04 0.15 0.36 0.40 0.06 0.00 0.12 0.22 0.30 0.27 0.08 0.01
Cohort size 3 0.02 0.08 0.37 0.45 0.08 0.00 0.13 0.20 0.31 0.26 0.09 0.01
Scenario 2
TB 0.05 0.09 0.19 0.28 0.47 0.66
Cohort size 1 0.03 0.10 0.26 0.56 0.05 0.00 0.07 0.14 0.25 0.40 0.12 0.02
Cohort size 2 0.02 0.09 0.29 0.53 0.08 0.00 0.11 0.18 0.28 0.33 0.10 0.01
Cohort size 3 0.01 0.05 0.25 0.61 0.09 0.00 0.11 0.17 0.27 0.32 0.11 0.01
Scenario 3
TB 0.11 0.26 0.33 0.44 0.55 0.75
Cohort size 1 0.22 0.38 0.29 0.10 0.00 0.00 0.26 0.32 0.26 0.12 0.03 0.01
Cohort size 2 0.20 0.43 0.30 0.06 0.01 0.00 0.30 0.37 0.23 0.08 0.02 0.00
Cohort size 3 0.14 0.44 0.32 0.08 0.01 0.00 0.27 0.38 0.24 0.09 0.02 0.00
Scenario 4
TB 0.07 0.22 0.30 0.40 0.52 0.71
Cohort size 1 0.12 0.33 0.42 0.12 0.00 0.00 0.16 0.31 0.32 0.16 0.04 0.01
Cohort size 2 0.15 0.34 0.39 0.12 0.01 0.00 0.24 0.34 0.29 0.11 0.02 0.00
Cohort size 3 0.07 0.36 0.42 0.13 0.01 0.00 0.21 0.36 0.29 0.12 0.02 0.00
Scenario 5
TB 0.00 0.04 0.06 0.07 0.11 0.22
Cohort size 1 0.00 0.01 0.01 0.03 0.12 0.82 0.04 0.05 0.05 0.07 0.16 0.64
Cohort size 2 0.01 0.01 0.02 0.03 0.14 0.80 0.07 0.08 0.09 0.10 0.17 0.48
Cohort size 3 0.00 0.00 0.00 0.01 0.10 0.89 0.10 0.10 0.11 0.11 0.17 0.41
Scenario 6
TB 0.30 0.42 0.53 0.67 0.77 0.86
Cohort size 1 0.61 0.15 0.01 0.00 0.00 0.00 0.65 0.26 0.07 0.02 0.00 0.00
Cohort size 2 0.66 0.15 0.01 0.00 0.00 0.00 0.71 0.23 0.05 0.01 0.00 0.00
Cohort size 3 0.63 0.17 0.01 0.00 0.00 0.00 0.69 0.25 0.05 0.01 0.00 0.00
Scenario 7
TB 0.13 0.30 0.38 0.49 0.60 0.78
Cohort size 1 0.26 0.44 0.24 0.05 0.00 0.00 0.30 0.34 0.22 0.10 0.03 0.01
Cohort size 2 0.27 0.46 0.22 0.05 0.00 0.00 0.36 0.36 0.20 0.07 0.01 0.00
Cohort size 3 0.18 0.53 0.23 0.04 0.00 0.00 0.33 0.41 0.20 0.05 0.01 0.00
Scenario 8
TB 0.05 0.16 0.21 0.29 0.37 0.50
Cohort size 1 0.07 0.12 0.27 0.33 0.21 0.01 0.11 0.16 0.25 0.26 0.18 0.05
Cohort size 2 0.05 0.13 0.25 0.37 0.19 0.01 0.13 0.22 0.26 0.25 0.13 0.02
Cohort size 3 0.01 0.07 0.26 0.43 0.22 0.02 0.13 0.19 0.24 0.25 0.14 0.04

5. DISCUSSION
We propose a practical rule-based Ti3+3 design that ex-

tends the i3+3 design by incorporating toxicity outcomes
with multiple toxicity types and grades to improve the effi-
cacy and safety of phase I trials. The Ti3+3 adopts a similar
dose-finding algorithm as i3+3, which is simple and straight-
forward. In addition, we show that it exhibits desirable op-
erating characteristics by extensive simulations. Compared
with the existing methods such as CRM-MC and gBOIN,
the Ti3+3 demonstrates similar PCS with better safety per-

formance. We provide an RShiny tool freely available at
https://i3design.shinyapps.io/ti3plus3/ that generates dose-
escalation decisions based on the Ti3+3 design and conducts
simulation given toxicity scenarios provided by the users.

A major advantage of using Ti3+3 instead of the model-
based and model-assisted designs for practical trials might
be its simplicity, especially the simplicity of the dose-finding
rules. In particular, the up-and-down rules can be directly
assessed and easily understood and executed by clinicians.
It is important for clinicians to understand the dose-finding
rules since they are the final decision makers for dose selec-

https://i3design.shinyapps.io/ti3plus3/
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tion for each patient, to whom they might need to explain
these decisions. Even though the decision rules of the model-
assisted design gBOIN are also straightforward, these rules
are based on complex statistical inference that is usually not
easy to explain to clinicians. The Ti3+3 design, on the other
hand, is based on a set of simple rules, which could be easily
conveyed to physicians.

The proposed Ti3+3 design incorporates type-specific
toxicity burdens to quantify the impact of a particular type
of toxicity events on patients’ health and thereby reduce
the risk of selecting a toxic dose which may be considered
“safe” when evaluated solely based on the overall toxicity
burden. Furthermore, the type-specific target toxicity bur-
dens as well as their equivalence intervals used in the pro-
posed method are relatively easy to specify and interpret,
i.e., they can be considered as a re-scaled toxicity proba-
bility in the conventional DLT-based dose-finding studies.
Specifying the target and EI for the overall toxicity bur-
den is also straightforward given the pre-determined weight
matrix.

The lower bound of the EI can be considered the smallest
toxicity probability that clinicians would not want to esca-
late the dose, and the upper bound the highest toxicity prob-
ability that clinicians would not want to de-escalate. Here,
even though the EI is for toxicity burden instead of toxic-
ity probability, because the way we constructed the burden
(Equation (2.1)), the toxicity burden is essentially re-scaled
as toxicity probability for the highest grade K. Therefore,
the rescaling facilitates the elicitation and interpretation of
the EIs as we have now explained.

The use of toxicity burden or multiple toxicity grades in
dose-finding trials has been limited in practice, mostly due
to the need for extensive collaboration between statisticians
and clinicians required for the elicitation of weights and tar-
get in the design stage. The numerical value of each severity
weight reflects the relative effect on patients’ survival/qual-
ity of life that is associated with experiencing the toxicity
at the given grade. The severity weights elicited via inter-
actions between statisticians and clinicians are intrinsically
subjective. Alternatively, the elicitation of weights can be
facilitated by utilizing existing trial data (for the same drug
or drug class) and/or medical databases, such as the FDA
Adverse Event Reporting System (FAERS) [25]. Moreover,
as noted in Mu et al. (2019), to ensure good operating char-
acteristics of the design, the elicitation process should be an
iterative process. Simulation studies conducted by statisti-
cians and inputs from multiple physicians are required to
ensure that the dose assignment decisions reflect appropri-
ate clinical significance and the design is calibrated appro-
priately.

APPENDIX A. AN ALGORITHM FOR
WEIGHTS ELICITATION

We propose the following algorithm for elicitation of the
numerical weights.

1. First, ask the investigators to assign scores on the scale
of 1 to 10 to each type of toxicity based on the following
three categories 1) the potential impact on patients’
survival, 2) the potential impact on patients’ quality of
life, 3) the potential impact on patients’ opportunity to
receive new treatments following progression. Then the
average score of each toxicity type is calculated. For
example, two types of toxicities, neuropathy and low
platelet count, are identified as related to the treatment.
The average score for neuropathy is calculated to be 8,
and the average score for low platelet count is 4.

2. Second, ask the investigators to select a reference toxi-
city type j. For example, the investigators may choose
neuropathy as the reference toxicity. Next, assign sever-
ity weights to each grade of the reference toxicity
(a) Select a reference grade k. Suppose in our example,

grade k = 3 of neuropathy is considered as the
reference grade and is assigned with a weight 1.0.

(b) Ask the investigators to specify numerical weights
for other grades by comparing the clinical impor-
tance with the reference grade. For instance, ask a
question like “How many grade 1 neuropathy ad-
verse events do you expect to have a similar toxic-
ity effect as a grade 3 neuropathy?” If the answer
is 5, then the weight for grade 1 is 1

5 = 0.2. Re-
peat this step for each grade of toxicity type j. For
example, (0, 0.2, 0.6, 1.0, 2.5) may be the resulting
numerical weights for grade 0 to 4 neuropathy.

3. Last, determine if the relative toxicity effects across dif-
ferent grades of a specific toxicity type are the same as
that of the reference type.
(a) If the answer is yes, then the numerical weights

for the rest of the toxicities can be calculated pro-
portionally to the weights of the reference type
based on the ratio between the average scores cal-
culated in step 1. In our example, the weights for
low platelet would be (0, 0.2, 0.6, 1.0, 2.5)/(8/4) =
(0, 0.1, 0.3, 0.5, 1.25).

(b) If the answer is no, then go through step 2(a) and
2(b) again and assign weight to each grade of the
particular toxicity.

4. List the weights obtained earlier as a matrix and stan-
dardized by dividing by the sum of the matrix. For ex-
ample, the standardized weight matrix in our example
is given by,

W =

(
0 0.03 0.09 0.16 0.39
0 0.02 0.05 0.07 0.19

)
.

Repeating the elicitation process with another group of
physicians would be useful. If so, the final weight matrix
may be the average of the weight matrices from the physi-
cians.
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APPENDIX B. SIMULATION SCENARIOS

Table A1: True probabilities of the 2 types of toxicities for 8 scenarios used in Section 3.1.

Toxicity type Toxicity grade Dose level Dose level Dose level Dose level
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Neuropathy Grade 0 0.47 0.37 0.36 0.36 0.34 0.47 0.47 0.37 0.35 0.30 0.47 0.47 0.39 0.37 0.35 0.47 0.47 0.39 0.38 0.37

Grade 1 0.23 0.20 0.20 0.20 0.20 0.23 0.23 0.20 0.20 0.20 0.23 0.23 0.30 0.20 0.20 0.23 0.23 0.30 0.25 0.20
Grade 2 0.27 0.25 0.12 0.11 0.02 0.27 0.27 0.25 0.12 0.11 0.27 0.27 0.27 0.25 0.12 0.27 0.27 0.27 0.32 0.25
Grade 3 0.02 0.09 0.14 0.07 0.07 0.03 0.02 0.09 0.14 0.07 0.03 0.02 0.03 0.09 0.14 0.03 0.03 0.02 0.02 0.09
Grade 4 0.01 0.10 0.18 0.27 0.37 0.01 0.01 0.10 0.19 0.32 0.01 0.01 0.02 0.10 0.19 0.00 0.01 0.02 0.03 0.10

Low platelets Grade 0 0.56 0.31 0.30 0.25 0.20 0.66 0.56 0.31 0.25 0.15 0.66 0.56 0.41 0.31 0.25 0.81 0.66 0.41 0.32 0.31
Grade 1 or 2 0.40 0.50 0.35 0.30 0.20 0.30 0.40 0.50 0.30 0.25 0.30 0.40 0.50 0.50 0.30 0.16 0.30 0.50 0.50 0.50

Grade 3 0.02 0.12 0.15 0.10 0.10 0.03 0.02 0.12 0.10 0.15 0.03 0.02 0.05 0.12 0.10 0.02 0.03 0.05 0.13 0.12
Grade 4 0.02 0.07 0.20 0.35 0.50 0.01 0.02 0.07 0.35 0.45 0.01 0.02 0.04 0.07 0.35 0.01 0.01 0.04 0.05 0.07

Scenario 5 Scenario 6 Scenario 7 Scenario 8
Neuropathy Grade 0 0.06 0.04 0.03 0.02 0.02 0.34 0.20 0.13 0.12 0.11 0.46 0.35 0.26 0.12 0.10 0.88 0.82 0.32 0.15 0.13

Grade 1 0.44 0.36 0.31 0.17 0.13 0.35 0.31 0.31 0.37 0.17 0.34 0.40 0.31 0.25 0.07 0.04 0.07 0.38 0.32 0.44
Grade 2 0.38 0.36 0.35 0.35 0.22 0.23 0.32 0.31 0.18 0.19 0.15 0.19 0.32 0.24 0.12 0.03 0.04 0.20 0.37 0.21
Grade 3 0.05 0.07 0.10 0.13 0.29 0.05 0.08 0.09 0.12 0.26 0.02 0.03 0.05 0.27 0.44 0.03 0.04 0.06 0.07 0.02
Grade 4 0.07 0.17 0.21 0.33 0.34 0.03 0.09 0.16 0.22 0.28 0.03 0.03 0.06 0.12 0.27 0.02 0.03 0.04 0.10 0.20

Low platelets Grade 0 0.49 0.37 0.28 0.23 0.20 0.76 0.38 0.18 0.18 0.13 0.39 0.29 0.27 0.21 0.12 0.57 0.53 0.46 0.40 0.13
Grade 1 or 2 0.39 0.41 0.28 0.12 0.10 0.10 0.47 0.37 0.39 0.05 0.43 0.35 0.41 0.15 0.09 0.40 0.41 0.44 0.46 0.37

Grade 3 0.06 0.09 0.11 0.30 0.22 0.09 0.07 0.17 0.13 0.07 0.16 0.28 0.21 0.17 0.14 0.02 0.04 0.08 0.11 0.26
Grade 4 0.06 0.13 0.34 0.35 0.48 0.05 0.08 0.28 0.30 0.75 0.02 0.08 0.11 0.47 0.65 0.01 0.02 0.03 0.03 0.24
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Table A2: True probability of each toxicity grade for 10 scenarios used in Section 3.2.

Dose level Dose level
1 2 3 4 5 6 1 2 3 4 5 6

Scenario 1 Scenario 2
Grade 0, 1 0.83 0.75 0.62 0.51 0.34 0.19 0.92 0.85 0.70 0.55 0.24 0.00
Grade 2 0.12 0.15 0.18 0.19 0.16 0.11 0.03 0.05 0.10 0.15 0.26 0.36
Grade 3 0.04 0.07 0.11 0.14 0.15 0.11 0.03 0.07 0.14 0.21 0.35 0.49
Grade 4 0.01 0.03 0.09 0.16 0.35 0.59 0.02 0.03 0.06 0.09 0.15 0.21

Scenario 3 Scenario 4
Grade 0, 1 0.78 0.56 0.50 0.40 0.30 0.16 0.88 0.64 0.52 0.35 0.17 0.00
Grade 2 0.14 0.19 0.18 0.17 0.15 0.09 0.04 0.12 0.16 0.22 0.28 0.39
Grade 3 0.06 0.12 0.14 0.15 0.14 0.10 0.06 0.17 0.22 0.30 0.38 0.52
Grade 4 0.02 0.12 0.18 0.28 0.41 0.65 0.02 0.07 0.10 0.13 0.17 0.23

Scenario 5 Scenario 6
Grade 0, 1 1.00 0.91 0.88 0.86 0.80 0.65 0.50 0.38 0.29 0.19 0.13 0.08
Grade 2 0.00 0.06 0.07 0.08 0.10 0.13 0.25 0.24 0.21 0.16 0.11 0.07
Grade 3 0.00 0.03 0.04 0.05 0.08 0.14 0.11 0.12 0.12 0.10 0.08 0.05
Grade 4 0.00 0.00 0.01 0.01 0.02 0.08 0.14 0.26 0.38 0.55 0.68 0.80

Scenario 7 Scenario 8
Grade 0, 1 0.78 0.58 0.50 0.40 0.30 0.16 0.92 0.76 0.68 0.57 0.45 0.25
Grade 2 0.14 0.18 0.18 0.17 0.15 0.09 0.00 0.00 0.00 0.00 0.00 0.00
Grade 3 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.24 0.32 0.43 0.55 0.75
Grade 4 0.08 0.24 0.32 0.43 0.55 0.75 0.00 0.00 0.00 0.00 0.00 0.00

Scenario 9 Scenario 10
Grade 0, 1 0.66 0.10 0.00 0.00 0.00 0.00 0.84 0.52 0.36 0.14 0.45 0.25
Grade 2 0.34 0.90 0.86 0.54 0.20 0.33 0.16 0.48 0.64 0.86 0.00 0.00
Grade 3 0.00 0.00 0.14 0.46 0.80 0.00 0.00 0.00 0.00 0.00 0.55 0.75
Grade 4 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00
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