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Abstract
Cure models are gaining more and more popularity for modeling time-to-event data for different forms of cancer, for

which a considerable proportion of patients are considered “cured.” Two types of cure models are widely used, the mixture
cure model (MCM) and the promotion time cure model (PTCM). In this article, we propose a unified estimand Δ for
comparing treatment and control groups under the survival models with cure fraction, which focuses on whether the
treatment extends survival for patients. In addition, we introduce a general framework of Bayesian inference under the
cure models. Simulation studies demonstrate that regardless of whether the model is correctly specified, the inference of
the unified estimand Δ yields desirable empirical performance. We analyze the ECOG’s melanoma cancer data E1684 via
the unified estimand Δ under different models to further demonstrate the proposed methodology.

keywords and phrases: Cure model, E1684, MCMC, Bayesian hypothesis testing, Covariate adjustment, G-
computation.

1. INTRODUCTION
Modeling time-to-event data for cancer treatments has

become an increasingly important area of research. In re-
cent years, survival models with cure fraction, also called
cure models, have gained increasing interest, in which a con-
siderable proportion of patients are considered “cured,” that
is, to remain disease-free after a certain follow-up period. It
has been used for different forms of cancer such as breast
cancer, non-Hodgkins lymphoma, leukemia, prostate cancer,
melanoma, and head and neck cancer [13].

Two types of cure models, the mixture cure model
(MCM) and the promotion time cure model (PTCM), are
commonly used. The mixture cure model (MCM), proposed
by Berkson and Gage [1], is formed by two mixture com-
ponents, and it has been commonly used and discussed in
[7, 8, 12, 23]. Other than the standard mixture model for
cure rates, Chen et al. [3] proposed a promotion time cure
model (PTCM) based on tumor growth characteristics using
the Poisson distribution. These models are built on differ-
ent assumptions, challenging researchers to choose the ap-
propriate model for their study and interpret the different
definitions of the treatment effect. The connection between
the two types of models was discussed in [3], and Yin and
Ibrahim [24] proposed a unified approach to bridge the mix-
ture cure model and the promotion cure model via Box-
Cox transformation. However, with different choices of the
power parameter, the interpretations of the parameters are
different and, thus, it is not straightforward to define the
treatment effect. Therefore, a unified approach is needed to
∗Corresponding author.

decide between these two types of cure models and to eval-
uate the treatment effect with different model choices.

In 2021, the Food and Drug Administration (FDA) re-
leased a guidance entitled “E9(R1) Statistical Principles for
Clinical Trials: Addendum: Estimands and Sensitivity Anal-
ysis in Clinical Trials,”[10] which introduced the concept of
“Estimand.” The addendum provides a structured estimand
framework to enhance the communication amongst disci-
plines about the clinical trial objectives, design, conduct,
analysis, and interpretation. Also, it emphasizes the atten-
tion regarding the treatment effects of interest that a clini-
cal trial should investigate, which properly informs decision-
making for the pharmaceutical industry. Furthermore, FDA
published a final guidance in 2023 entitled “Adjusting for
Covariates in Randomized Clinical Trials for Drugs and Bi-
ological Products,”[11] which mainly focuses on the use of
prognostic covariates to improve statistical efficiency for es-
timating and testing treatment effects. It points out that
adjusting for prognostic covariates in the analyses of effi-
cacy endpoints in randomized clinical trials will generally
reduce the variability of estimation of treatment effects and
thus lead to narrower confidence intervals and power gains
in hypothesis testing. Specifically, it emphasizes the need to
differentiate conditional and unconditional treatment effects
to ensure the specific objectives defined within the “Esti-
mand” framework are examined when making statistical in-
ferences. It should be noted that the conditional treatment
effects, such as the hazard ratio in survival models, are in-
fluenced by choices in model and variable selections, posing
challenges to the intentions of the invariant “Estimand” con-
cept. Therefore, the guidance and the topics of “Estimand”
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and “Covariate Adjustment” are particularly relevant to the
discussion of treatment effects in survival models with cure
fraction.

This article sets out with two primary objectives. Firstly,
we propose a unified estimand for assessing treatment effects
under survival models with cure fraction that is invariant
to model and variable selections and examine its theoretical
properties. Secondly, we develop a Bayesian inference frame-
work for the unified estimand, and illustrate its usefulness
through simulation and a case study.

The rest of the paper is organized as follows. Section 2
provides a summary of the survival models with cure frac-
tion. Section 3 introduces the proposed unified estimand
under survival models with cure fraction. The Bayesian in-
ference of the treatment effects is discussed in Section 4,
including Bayesian hypothesis testing, model comparisons,
and Bayesian computation. Section 5 evaluates the perfor-
mance of the unified estimand through a comprehensive sim-
ulation study. An application of the proposed methodology
to the E1684 melanoma cancer data is presented in Section
6. Section 7 concludes the paper with a discussion of main
findings with future research directions.

2. SURVIVAL MODELS WITH CURE
FRACTION

2.1 Mixture Cure Models
The concept of the mixture cure models (MCM) was first

introduced by Berkson and Gage [1], in which it is assumed
that a certain fraction π of the population is cured (y = 1)
and the remaining 1 − π is not cured (y = 0). For the i-th
individual, yi denotes the unobserved cured indicator, and
πi = P(yi = 1) ∈ (0, 1) denotes the cured probability. If a
patient is cured, it is assumed that the patient will not die
for a sufficiently long period of time. The survival (failure)
time tsurvi can be written as

tsurvi =

{
tnci if yi = 0

∞ if yi = 1
,

where tnci is the survival time of subject i if the individual is
not cured. Let ti = min{tsurvi , ci} denote the observed right-
censored survival time, where ci denotes the censoring time
and δi = 1{tsurvi < ci} denotes the censoring indicator for
subject i such that δi = 1 if ti is a failure time and 0 if ti is
right-censored. If subject i is not cured, i.e., yi = 0, denote
the probability density function, the survival function, and
hazard function for the failure time tnci by fnc

i (t), Snc
i (t) and

hnc
i (t).
Since the cure indicator yi is unobserved, considering the

existence of cure fraction, the unconditional probability den-
sity function of the survival time for the i-th individual can
be expressed as

fi(t) = (1− πi)f
nc
i (t),

and the unconditional survival function is given by

Si(t) = P(Ti > t) = πi + (1− πi)S
nc
i (t). (2.1)

The hazard function for the mixture cure model can be
derived as

hi(t) =
(1− πi)f

nc
i (t)

πi + (1− πi)Snc
i (t)

. (2.2)

Since limt→∞ Snc
i (t) = 0, limt→∞ Si(t) = πi > 0, the sur-

vival function for the mixture cure model is not a proper sur-
vival function. The hazard ratio between subject i and i′ is
a function of time t. Thus, the mixture cure model is a non-
proportional hazards model. When πi → 0, Si(t) → Snc

i (t)
and hi(t) → hnc

i (t), the mixture cure model reduces to the
standard survival model.

2.2 Promotion Time Cure Model
The promotion time cure model (PTCM) was developed

by Chen et al. [3], where a Poisson distribution is assumed
for the number of active carcinogenic cells. For the i-th sub-
ject, let Ni denote the number of active carcinogenic cells,
and assume that Ni ∼ P(λi) follows a Poisson distribution
with mean λi. By assuming the distribution of Ni, the cured
probability can be expressed as

πi = P(Ni = 0) = exp(−λi).

Denote Zij , j = 1, . . . , Ni as i.i.d random variables of in-
cubation time for the j-th carcinogenic cells. It is assumed
that Zij follows the same distribution independent of Ni,
and let f(t) and S(t) denote its density function and sur-
vival function. The event time for i-th individual is defined
as Ti = min{Zij , 0 ≤ j ≤ Ni}, where P (Zi0 = ∞) = 1.

The survival function for the i-th individual can be ex-
pressed as

Si(t) =
∞∑
k=0

P(Ni = k)P(Zij > t, j = 0, . . . , k)

=

∞∑
k=0

λk
i

k!
exp(−λi)S(t)

k

= exp(−λi(1− S(t))).

(2.3)

Since limt→∞ S(t) = 0, limt→∞ Si(t) = exp(−λi) > 0.
Therefore, similar to the MCM, the survival function for
the subject in the PTCM Si(t) is also not a proper survival
function. The density function and hazard function of the
survival time for the i-th subject can be further expressed
as

fi(t) = λif(t) exp(−λi(1− S(t))), (2.4)

and

hi(t) = λif(t) (2.5)
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Under this promotion time cure model, the hazard ratio
between i-th subject and i′-th subject is denoted as

hi(t)

hi′(t)
=

λi

λi′
,

which is a constant over time. Thus, the promotion time
cure model follows the proportional hazards assumption.

2.3 Regression Forms and Likelihood Functions
2.3.1 Mixture Cure Model

We consider the mixture cure model defined in Sec-
tion 2.1. Since both the cure fraction component and the
non-cured survival component can be affected by a set of
prognostic covariates, these two components can be mod-
eled separately in regression forms. For the i-th subject, let
xi = (1, zi, x̃

�
i )

� denote a (p+ 2)-dimensional vector of co-
variates, where x̃i is the prognostic factors and zi is the
treatment group indicator such that zi = 1 if the i-th sub-
ject is in the treatment group and zi = 0 if the subject is
assigned to the control group. We assume a logistic regres-
sion model for yi given by

πi = P(yi = 1) = σ(−x�
i β) =

1

1 + exp(x�
i β)

, (2.6)

where σ(.) denotes the standard logistic function, β =

(β0, βz, β̃
�
)� ∈ Rp+2 is a (p + 2)-dimensional vector of re-

gression coefficients. Especially, β0, βz, and β̃ are the regres-
sion coefficients associated with the intercept, the treatment
indicators zi, and x̃i. After adjusting for the other covari-
ates, βz represents the conditional treatment effect in the log
odds ratio of being cured between the treatment and con-
trol groups. For the non-cured survival component, to cover
a wide variety of survival curves while maintaining the pro-
portional hazards assumption, the Weibull distributed fail-
ure time is assumed. If the i-th individual is not cured, the
survival function is assumed to be

Snc
i (t | xi) = exp(−tα exp(x�

i γ)), (2.7)

where α is a fixed but unknown Weibull shape parameter,
γ = (γ0, γz, γ̃

�)� ∈ Rp+2 is the vector of regression coeffi-
cients associated with xi for the non-cured survival compo-
nent, and exp(x�

i γ) is the subject-specific scale parameter.
After adjusting for the other covariates, γz represents the
conditional treatment effect in the log hazard ratio between
the treatment and control groups for the non-cured patients.

Plugging (2.6) and (2.7) in (2.1), the unconditional sur-
vival function for the mixture cure model is given by

Si(t | xi) =
1

1 + exp(x�
i β)

+

exp(x�
i β)

1 + exp(x�
i β)

exp(−tα exp(x�
i γ)).

(2.8)

Let θM = {β,γ, α} denote the set of parameters, where
{βz, γz} serve as the conditional treatment effect parameters
of interest. Suppose there are n subjects in the dataset. Let
Dobs = {xi, ti, δi, i = 1, . . . , n} denote the observed data
under the mixture cure model, Y = {yi, i = 1, . . . , n} denote
the hidden state of cured indicators, and let Dcomp

M = Dobs∪
Y denote the complete data.

For the individual with failure time (δi = 1), the likeli-
hood can be expressed by multiplying the non-cured prob-
ability 1− πi with the probability density function of non-
cured patient fnc

i (t). For the censored individual with δi =
0, the likelihood can be constructed by adding the cured
probability with the probability of non-cured survival. The
observed-data likelihood function is given by

Lobs
M (θM | Dobs) =

∏
δi=1

(
(1− πi)f

nc
i (ti | xi)

)
×

∏
δi=0

(
πi + (1− πi)S

nc
i (ti | xi)

)
.

(2.9)

In the second parenthesis of the observed-data likelihood,
the mixture component can be converted into a multiplied
form after including the hidden state Y in the likelihood
function. The complete-data likelihood can be written as

Lcomp
M (θM | Dcomp

M ) =
∏
yi=1

πi×∏
yi=0

(
(1− πi)f

nc
i (ti | xi)

δiSnc
i (ti | xi)

(1−δi)
)
.

(2.10)

Note that under mixture cure model, the cured fraction com-
ponent (2.6) and non-cured survival component (2.7) are
linked through the hidden state Y . The following Theorem
and Remarks imply that conditioning on Dobs, the key pa-
rameters of interest βz and γz interact with each other. Also,
the maximum-likelihood estimators (MLE) and the poste-
rior samples of βz and γz are not independent.

Theorem 1. Under the mixture cure regression model de-
fined in (2.8), the (βz, γz) entry of the observed Fisher in-
formation

I(θM )(βz,γz) = − ∂2

∂βz∂γz

obsM (θM | Dobs) > 0.

The proof is given in Appendix A.

Remark 1. The off-diagonal entry in observed Fisher in-
formation matrix I(θM )(βz,γz) > 0 likely implies the off-
diagonal entry in the inverse Fisher information matrix
I−1(θM )(βz,γz) < 0.

Intuitively, since the hidden state Y is unknown, the con-
ditional log odds ratio estimates from the cure rate compo-
nent and the conditional log hazard ratio estimates from the
non-cured population are correlated. The following Remarks
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reveal how the correlation will impact the maximum likeli-
hood estimator (MLE) from the Frequentist perspective and
posterior samples from Bayesian perspective.

Remark 2. Since the covariance matrix associated with the
maximum-likelihood estimators can be approximated by the
inverse matrix of the Fisher information matrix, it is likely
that under mixture cure model,

Corr(β̂z, γ̂z) < 0,

where β̂z and γ̂z refer to the MLEs of βz and γz. That is,
β̂z and γ̂z are negatively correlated.

Remark 3. By Bernstein–von Mises Theorem in Bayesian
statistics, the asymptotic distribution of the posterior con-
verges to a multivariate Gaussian distribution with covari-
ance matrix given by n−1I(θM )−1. Thus, the posterior sam-
ples of βz and γz are correlated.

Considering the correlation, looking at the conditional
treatment effects from the cured fraction component and
the non-cured survival component separately for the mix-
ture cure model is not ideal. A unified estimand (measure of
treatment effect) should be proposed to unify the treatment
effect measure and enable comparisons.

In one extreme case, when β0 → ∞, the cured probabil-
ity πi goes to 0 for all subjects, and the mixture cure model
reduces to the Weibull regression model with survival func-
tion

Si(t | xi) = exp(−tα exp(x�
i γ)), (2.11)

where α is a fixed but unknown Weibull shape parameter,
γ = (γ0, γz, γ̃

�)� ∈ Rp+2 is the vector of regression coef-
ficients associated with xi under Weibull regression model,
and exp(x�

i γ) is the subject-specific scale parameter. The
model becomes proportional hazards, and γz represents the
treatment effect in the log hazard ratio between the treat-
ment and control groups after adjusting for other factors.
The reduced model can be fitted by Cox regression by max-
imizing the partial likelihood function

PL(γ) =
d∏

j=1

∏
i∈D(t(j))

exp(x�
i γ)∑

i∈R(t(j))
exp(x�

i γ)
, (2.12)

where t(1) < t(2) < · · · < t(d) are the d ordered distinct event
times, D(t) denotes the set of subjects who die at time t,
and R(t) represents the risk set at time t−, that is, the set
of individuals who have not failed or been censored by that
time. The inference with respect to γ can be made via the
semi-parametric partial likelihood PL(γ).
2.3.2 Promotion Time Cure Model

For the promotion time cure model defined in (2.3), for
the i-th subject, let

λi = exp(x�
i ζ), (2.13)

where ζ = (ζ0, ζz, ζ̃
�
)� ∈ Rp+2 is a (p + 2)-dimensional

vector of regression coefficients. Especially, ζz is the regres-
sion coefficient associated with the treatment indicators zi.
After adjusting for the other covariates, ζz represents the
conditional treatment effect in the log hazard ratio between
the treatment and control groups under this model. The
relationship serves as a canonical link under the Poisson re-
gression model. Parameter ζz is the conditional treatment
effect parameter of interest in the PTCM.

Assume the incubation time for each active carcinogenic
cell follows an i.i.d. Weibull distribution with shape param-
eter α and scale parameter exp(μ). The survival function for
the incubation is given by

S(t) = exp(−tα exp(μ)). (2.14)

The survival function and probability density function for
the promotion time cure model can be expressed as

Si(t | xi) = exp(− exp(x�
i ζ)(1−exp(−tα exp(μ)))), (2.15)

and

fi(t | xi) = αtα−1 exp(x�
i ζ + μ− tα exp(μ))Si(t). (2.16)

Suppose there are n subjects in the dataset. Under the
promotion time cure model defined in (2.15), let Dobs =
{xi, ti, δi, i = 1, . . . , n} denote the observed data under
mixture cure model, N = {Ni, i = 1, . . . , n} denote un-
observed data for the number of active carcinogenic cells,
and let Dcomp

P = Dobs ∪ N denote the complete data. Let
θP = {ζ, α, μ} denote the parameters associated with the
promotion time cure model. The observed-data likelihood
function is given by

Lobs
P (θP | Dobs)

=

n∏
i=1

fi(ti | xi)
δiSi(ti | xi)

(1−δi)

=

n∏
i=1

exp(− exp(x�
i ζ)(1− exp(−tαi exp(μ))))×∏

δi=1

αtα−1
i exp(x�

i ζ + μ− tαi exp(μ)).

(2.17)

3. A UNIFIED ESTIMAND UNDER CURE
MODELS

Under the proportional-hazards models, the conditional
treatment effect in the hazard ratio between treatments is
overwhelmingly used to characterize efficacy of the treat-
ment. However, as shown in (2.2), the mixture cure model
does not belong to the proportional hazards framework.
Thus, how to develop an appropriate measure of the treat-
ment effect (estimand) for mixture cure models has become
an interesting topic. There are various approaches to sum-
marise and make inference of the treatment effects under
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the non-proportional hazards models. The Weighted Log-
Rank Test (WLRT) is one of the most popular statistical
tests dealing with the non-proportional hazards models, and
Fleming and Harrington [9] developed a class of test statis-
tics FH(ρ, γ). Another popular type of test is developed
based on the Kaplan-Meier curve, including the Weighted
Kaplan-Meier tests (WKM) [20], the restricted mean sur-
vival time (RMST) comparison [21], and a divergence mea-
sure between the two survival functions [6]. Especially, the
difference in restricted mean survival time (ΔRMST ) shows
an increasing popularity as an alternative to hazard ratio,
and it is defined as

ΔRMST (t
∗) =E[min(T1, t

∗)−min(T0, t
∗)]

=

∫ t∗

0

[Spop,1(t)− Spop,0(t)]dt,
(3.1)

where T0 and T1 denote the survival times for the control
arm and the treatment arm, Spop,1(t) and Spop,0(t) repre-
sent the survival functions for the treatment and control
arms, and t∗ is the duration of follow-up or truncation
time. ΔRMST (t

∗) describes differences between treatment
and control arms in their t∗-year life expectancy. Moreover,
several classes of combination tests have been developed in
recent years, including the Breslow test [2], Lee’s combo test
[16], and the MaxCombo test [17]. Lin et al. [19] evaluated
different tests for the non-proportional hazards models, and
Li et al. [18] developed an overlapping approach to measure
the comparability between two arms through resampling
technique. Regarding the treatment effect measure, Chen
et al. [5] developed the averaged hazard ratio estimates for
the non-proportional hazards model.

Motivated by the restricted mean survival time (RMST)
[21] and a divergence measure proposed in [6], we define a
new unified estimand under the survival models of the form

Δ = E[sgn(T1 − T0)]

= P(T1 > T0)− P(T0 > T1)

=

∫ ∞

0

(Spop,1(t)fpop,0(t)− Spop,0(t)fpop,1(t))dt

∈ [−1, 1],

(3.2)

where T0 and T1 denote the survival times for the control
arm and the treatment arm, Spop,1(t), Spop,0(t), fpop,0(t),
and fpop,1(t) represent the survival functions and probability
density functions for the treatment and control arms, and
sgn(.) is the sign function such that

sgn(x) =

⎧⎪⎨⎪⎩
−1 if x < 0,

0 if x = 0,

1 if x > 0.

Following the idea of the causal effect model, T0 and T1

can be viewed as the potential outcomes (survival time) if
the individuals are assigned to the treatment arm and the

control arm, respectively. An intuitive interpretation for Δ
is that Δ characterizes the probability that the treatment
extends survival for patients.

The proposed unified estimand, representative of the un-
conditional treatment effect between treatment and control
groups, remains invariant to model and variable selections.
This characteristic ensures its alignment with the FDA’s
guidelines and discussions about the “Estimand” concept.

The following Theorems give parametric derivations for
the unified estimand Δ under the proportional hazards
model, mixture cure model, and promotion time cure model.
In addition, it connects the unconditional treatment effect
in the proposed estimand with the conditional treatment
effect under different models.

Theorem 2. Under the proportional hazards model, i.e.,
hpop,1(t) = exp(γz)hpop,0(t), the unified estimand is a one-
to-one transformation of the log hazard ratio γz.

ΔPH =
1− exp(γz)

1 + exp(γz)
= tanh(−γz

2
).

See proof in Appendix A.
Theorem 2 shows that the unified estimand ΔPH serves

as a one-to-one transformation, negative hyperbolic tangent
transformation, of half of the log hazard ratio γz. When the
treatment benefits patients (γz < 0), ΔPH > 0, and vice
versa. ΔPH quantifies the ratio between the differences in
hazard functions to the sum of hazard functions.

Remark 4. Consider the Maclaurin Series expansion of
tanh(x), we have

ΔPH

γz
=

tanh(−γz

2 )

γz
= −1

2
+ o(γz). (3.3)

Theorem 3. Under the mixture cure model defined in (2.8),
when the prognostic variables are available, the unified esti-
mand ΔM is defined as the average treatment effect (ATE)
based on the finite-sample population by integrating out the
covariates, such that

ΔM = EX̃ [E[sgn(T1 − T0) | X̃]]

= π01 tanh(−
γz
2
) + π1 − π0,

(3.4)

where π01 = P(T1, T0 < ∞) =∫ exp(β0+βz+X̃
�
β̃)

1+exp(β0+βz+X̃
�
β̃)

exp(β0+X̃
�
β̃)

1+exp(β0+X̃
�
β̃)
dP (X̃),

π1 = P(T1 = ∞) =
∫

1

1+exp(β0+βz+X̃
�
β̃)
dP (X̃), and

π0 = P(T0 = ∞) =
∫

1

1+exp(β0+X̃
�
β̃)
dP (X̃) are the cured

probabilities for the treatment and control arms.

See proof in Appendix A.
The following Remarks reveal that the unified estimand

connects and bridges the risk difference definition from the
binary endpoint and the hazard ratio definition from the
survival endpoint.
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Remark 5. When β0 → ∞, the cured probabilities
converge to 0 for both the treatment and control arms
(limβ0→∞ π0 = limβ0→∞ π1 = 0), the model reduces to the
proportional hazards model.

ΔM → ΔPH = tanh(−γz
2
).

Remark 6. If there is no treatment effect for the non-cured
population (γz = 0), ΔM = π1 − π0, which coincides with
the definition of risk difference.

Theorem 4. Under the promotion time cure model defined
in (2.15), let ζz denote the log hazard ratio between the treat-
ment and control arms. The unified estimand is a one-to-one
transformation of the log hazard ratio ζz.

ΔP =
1− exp(ζz)

1 + exp(ζz)
= tanh(−ζz

2
).

Theorem 4 is straightforward following Theorem 2 and
thus the proof is omitted.

4. BAYESIAN INFERENCE UNDER CURE
MODELS

4.1 Priors and Posteriors
4.1.1 Mixture Cure Model

For the mixture cure model, it has been shown in Theo-
rem 2 of [3] that if we take an improper uniform prior for β
[i.e., π0(β,γ, α) ∝ π0(γ, α)], the posterior distribution

π(β,γ, α | Dobs) ∝ L(β,γ, α | Dobs)π0(γ, α)

is always improper regardless of the propriety of π0(γ, α),
i.e., ∫

Θ

π(β,γ, α | Dobs)dθ = ∞.

Thus, a uniform improper prior π0(θ) ∝ 1 cannot guaran-
tee convergence of MCMC sampling. Instead, weak inde-
pendent normal priors will be put on each parameter in β,
that is, π0(θ) ∼

∏
j φ(βj ; 0, σ

2
β), where φ(x;μx, σ

2) denotes
the probability density function of the normal distribution
N(μx, σ

2). The posterior distribution of (β,γ, α) given the
observed data Dobs can be written as

π(β,γ, α | Dobs)

∝ Lobs
M (β,γ, α | Dobs)π0(β).

(4.1)

4.1.2 Promotion Time Cure Model

Suppose that we consider a joint weak informative prior
for the parameters under the promotion time cure model.
Suppose π0(ζ, α, μ) ∝ π0(α | ν0, τ0)π0(μ), where π0(α |
ν0, τ0) is a gamma prior for shape parameter α, and π0(μ)

is a week normal prior for μ. The posterior distribution of
(ζ, α, μ) given the observed data Dobs can be written as

π(ζ, α, μ | Dobs)

∝ Lobs
P (ζ, α, μ | Dobs)π0(α | ν0, τ0)π0(μ).

(4.2)

4.2 Bayesian Hypothesis Testing
We consider a clinical trial that aims to demonstrate that

a new treatment presents treatment benefits for the popu-
lation. Each patient will be randomly allocated into one of
the two arms: the treatment arm and the active control arm.
We assume the randomization ratio is fixed as 1:1, and the
total sample size is denoted by n. Progression-free survival
(PFS) or Relapse-free survival (RFS) is the primary end-
point, and the survival time and event indicator (ti, δi) will
be collected for each patient.

The general hypothesis can be expressed as

H1(g) : g(θ) > 0 v.s. H0(g) : g(θ) ≤ 0 (4.3)

or

H1(g) : g(θ) < 0 v.s. H0(g) : g(θ) ≥ 0, (4.4)

where the treatment effect parameter we are interested in,
g(θ), can take any functional form of model parameters θ.
Also, constructing the functional form of g(θ) may include
prognostic factors as well.

Under the mixture cure model, denote the vector of pa-
rameters as θM = {β,γ, α}. The treatment effect parameter
may include

(i) g1(θM ) = βz for testing the conditional treatment effect
in the cure fraction,

(ii) g2(θM ) = γz for testing the conditional treatment effect
in the non-cured survival component, and

(iii) g3(θM ) = ΔM for testing the unconditional treatment
effect in the unified estimand defined for MCM in Sec-
tion 3.

Under the promotion time cure model, let θP = {ζ, α, μ}
be the vector of parameters. The treatment effect parameter
could take the following form:

(iv) g4(θP ) = ζz for testing the conditional treatment effect
in log hazard ratio, and

(v) g5(θP ) = ΔP for testing the unconditional treatment
effect in the unified estimand defined for PTCM in Sec-
tion 3.

To be noted that although ΔM and ΔP are defined based
on different model assumptions, both of them represent the
unified estimand Δ.

From Bayesian hypothesis testing point of view, the hy-
pothesis H0(g) can be rejected and the data is in favor of
H1(g) if the posterior predictive probability

P(H1(g) | D(n)) ≥ γ∗, (4.5)
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where γ∗ is a pre-specified threshold, which equals 0.95 by
default, for rejecting H0(g). On the other hand, the null
hypothesis, H0(g), cannot be rejected if P(H1(g) | D(n)) <
γ∗.

4.3 Model Comparisons
In an ideal scenario, clinicians and researchers ought to

predetermine the choice between the two types of cure mod-
els based on an in-depth understanding of the disease mech-
anism and the nature of the intervention. Nevertheless, when
the cure model type has not been pre-specified, goodness-of-
fit (GoF) can be evaluated to facilitate selection and com-
parison. By using the unified estimand proposed, the model
selection and variable selection processes do not alter the
definition of the estimand since it reflects the unconditional
treatment effect.

In this section, we consider two Bayesian model compar-
ison criteria, including the Deviance Information Criterion
(DIC) [22] and the Logarithm of Pseudo-Marginal Likeli-
hood (LPML) [14]. These two goodness-of-fit measures can
help choose from the two types of cure model when it is
needed.

The DIC is defined as

DIC = Dev(θ) + 2pD,

where deviance Dev(θ) = −2 log(Lobs(θ | Dobs)) and
Lobs(θ | Dobs) refers to either (2.9) or (2.17) depending on
the model, Dev(θ) is the deviance evaluated at the posterior
mean of θ, and pD = Dev(θ)− Dev(θ) represents the effec-
tive number of parameters. The DIC offers a measure of the
trade-off between the fit of the model and its complexity,
selecting models that provide a good fit without overfitting.

Besides DIC, the LPML is another commonly used cri-
terion for Bayesian model comparison, which is a summary
statistics based on CPOi’s and judges the predictive perfor-
mance of different models based on the predictive distribu-
tion for each observation. The LPML is defined as

LPML =
∑
i

log(CPOi). (4.6)

Under the cure models, we define the conditional predic-
tive ordinate (CPO) statistics for the i-th subject as

CPOi = f(ti | xi,Dobs(−i))δiS(ti | xi,Dobs(−i))1−δi

=

∫
fi(ti | xi,θ)

δiSi(ti | xi,θ)
1−δiπ(θ | Dobs(−i))dθ,

where Dobs(−i) is the observed data Dobs with the i-th ob-
servation ignored, and π(θ | D(−i)) is the posterior given
Dobs(−i) given in (4.1) or (4.2).

By [4],

CPOi =

(∫
1

fi(ti|xi,θ)δiSi(ti|xi,θ)1−δi
π(θ | Dobs)dθ

)−1

,

and it can be approximated via posterior computation after
obtaining the MCMC samples {θ(l), l = 1, . . . , L} from the
posterior distribution π(θ | Dobs) by

ĈPOi =

[
1

L

L∑
l=1

1

fi(ti|xi θ
(l))δiSi(ti|xi,θ

(l))1−δi

]−1

.

Plugging it in (4.6), we have

L̂PML =
∑
i

log(ĈPOi).

4.4 Bayesian Computation

4.4.1 Mixture Cure Model

Under the mixture cure model, conditioning on the hid-
den state Y , the cure rate component and the non-cured
survival component can be separated, and both are log-
concave to the set of parameters. The Gibbs sampler can be
developed to draw MCMC samples from the posterior dis-
tribution by an accept-reject sampling scheme, which yields
dependent samples.

The pseudo-algorithm for the updating scheme is written
in Algorithm 1.

Algorithm 1 Gibbs sampler for the mixture cure model
with normal initial priors.

1: Initialization: β(0) ← β̂, γ(0) ← γ̂, α(0) ← α̂, y(0)
i ← 1− δi.

2: while l < L do
3: Update β: β(l) ← q(β | Y(b−1)) ∝ exp(

∑n
i=1(1 −

y
(b−1)
i )x�

i β − log(1 + exp(x�
i β)))π0(β,γ, α);

4: Update πi by (2.6);
5: Update γ, α: q(γ(l), α(l)) ← q(γ, α | Y(b−1)) ∝

α

∑

y
(l)
i

=0
δi ∏

y
(l)
i =0

(t
δi(α−1)
i exp(−tαi exp(x�

i γ
(b−1))))

π0(β,γ, α).
6: Update Y:
7: y

(l)
i ← min{Bernoulli(

π
(l)
i

π
(l)
i +(1−π

(l)
i )Si(ti|xi,γ

(l))
), 1− δi};

After MCMC samples {θ(l)
M , l = 1, . . . , L} are obtained,

Δ
(l)
M = g3(θ

(l)
M ) for the l-th iteration can be estimated by

g-estimation as

Δ
(l)
M = g3(θ

(l)
M )

= tanh(−γ
(l)
z

2
)
1

n

n∑
i=1

(
(1− π

(l)
i0 )(1− π

(l)
i1 )

)
+

1

n

n∑
i=1

(
π
(l)
i1 − π

(l)
i0

)
,

(4.7)
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where

π
(l)
i1 =

1

1 + exp(β
(l)
0 + β

(l)
z + x̃�

i β̃
(l)
)

and

π
(l)
i0 =

1

1 + exp(β
(l)
0 + x̃�

i β̃
(l)
)

(4.8)

are the l-th posterior predicted cured probabilities for pa-
tient i if the i-th patient is assigned to the treatment or
control arms, correspondingly.

Then, the posterior mean ΔM = 1
L

∑L
l=1 Δ

(l)
M will be used

as a point estimate of ΔM from the Bayesian computation,
and the posterior inference can be made based on {Δ(l)

M , l =
1, . . . , L}.
4.4.2 Promotion Time Cure Model

After MCMC samples {θ(l)
P , l = 1, . . . , L} are obtained,

Δ
(l)
P = g5(θ

(l)
P ) for the l-th iteration can be estimated by

g-estimation as

Δ
(l)
P = g5(θ

(l)
P ) = tanh(−ζ

(l)
z

2
). (4.9)

The posterior mean ΔP = 1
L

∑L
l=1 Δ

(l)
P will be used as a

point estimate of ΔP from the Bayesian computation, and
the posterior inference can be made based on {Δ(l)

M , l =
1, . . . , L}.

5. SIMULATION
In the simulation study, we simulate independent data

from (2.8) for mixture cure models or (2.15) for promo-
tion time cure models with θtrue based on a 1:1 random-
ization ratio with arm sizes n1 = n0 = 200. The covariates
x̃, including sex and gender, for each patient are randomly
drawn from the melanoma cancer E1684 dataset. More de-
tails about the E1684 dataset are introduced in Section 6.
The time-to-event data is generated with independent cen-
soring, but no maximum follow-up period is set.

Our main focus is on comparing the performance of the
Bayesian inference with different choices of the five func-
tional forms of treatment effect parameters g(θ) mentioned
in Section 4.2. In addition, we evaluate and compare the
performance when the model is either correctly specified or
misspecified between the two types of cure models. Based
on the posterior samples obtained from MCMC, the rejec-
tion probability (RP), root mean square error (RMSE), and
coverage probability (CP) serve as Frequentist evaluations
of the Bayesian inference for those parameters based on B
replicates. When the model is correctly specified, we assess
the RP, RMSE, and CP of the treatment effect parameter
g(θ) by

RP (g(θ)) =
1

B

B∑
b=1

[
1{0 ∈ (g(θ)LL(b), g(θ)UL(b))}

]
,

RMSE(g(θ)) =

√√√√ 1

B

B∑
b=1

(
g(θ)

(b) − g(θtrue)
)2

,

and

CP (g(θ)) =
1

B

B∑
b=1

[
1{g(θtrue) ∈ (g(θ)LL(b), g(θ)UL(b))}

]
,

where (g(θ)LL(b), g(θ)UL(b)) is the 95% highest posterior
density (HPD) interval of g(θ) from the b-th replicate. How-
ever, when the type of cure model is misspecified, we assess
the RP, RMSE, and CP of the unified estimand Δ by

RP (Δmis) =
1

B

B∑
b=1

[
1{0 ∈ (Δ

LL(b)
mis ,Δ

UL(b)
mis )}

]
,

RMSE(Δmis) =

√√√√ 1

B

B∑
b=1

(
Δmis

(b) −Δtrue
)2

,

and

CP (Δmis) =
1

B

B∑
b=1

[
1{Δtrue ∈ (Δ

LL(b)
mis ,Δ

UL(b)
mis )}

]
,

where Δtrue = g(θtrue) is the associated with the true
model, Δmis

(b) is the posterior mean and (Δ
LL(b)
mis ,Δ

UL(b)
mis )

is the 95% highest posterior density (HPD) interval of Δ
based on the misspecified model from the b-th replicate.

To fit the simulated data by the mixture cure model, we
apply independent normal initial priors for each parameter
in β to ensure identifiability. The variance of the initial prior
is set to σ2

β = 100 for each parameter of β. We set the ini-
tial prior for the shape parameter α to π(f)(α) ∝ 1. To sum
up, the initial prior is set as π(f)(θM ) =

∏
j=1 φ(βj ; 0, 10

2).
For the initial priors of the promotion time cure model,
we set π(f)(ζj) ∼ N (0, 1002) for each dimension in ζ,
consider the shape parameter α as unknown, and set the
prior for μ and α to be flat π(f)(μ, α) ∝ 1. Therefore, for
the promotion time cure model, the initial prior is set as
π(f)(θP ) =

∏
j=1 φ(ζj ; 0, 100

2).
All Bayesian simulation studies are based on Markov

Chain Monte Carlo samples of size L = 1000, with addi-
tional 1000 burn-in iterations unless otherwise noted. We
set γ∗ = 0.95 for making the Bayesian decision. B = 30, 000
replications are used for evaluating the performance under
null hypothesis at 5% level of significance and B = 5, 000
replications are used for evaluating the performance under
alternative hypothesis.

5.1 Simulation Results
The MCMC samples demonstrate adequate convergence

and mixing across all examined scenarios, which sup-
ports the posterior propriety and model identifiability. The
MCMC trace plot and mixing diagnoses are thus omitted.
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Figure 5.1: The contour plots of the posterior sample means
βz and γz with different βz, γz.

5.1.1 The Mixture Cure Model

For the true model, we choose βz from {0,−0.25,−0.5},
which correspond to odds ratios of {1, 0.78, 0.61} for the
cured probability, and γz from {0,−0.2,−0.4}, which cor-
respond to hazard ratios of {1, 0.82, 0.67} for the non-cured
population. We specify the shape of the Weibull distribu-
tion as 1 and assume an independent censoring rate of
0.2. The other hyperparameters are set to be β0 = 1,
β̃ = (0.3,−0.5)�, γ0 = 0, and γ̃ = (0.2,−0.4)� such that
the event rates are ranged between 40% and 60%.

Figure 5.1 presents contour plots of the posterior samples
means βz and γz obtained from the mixture cure model.
Different subplots correspond to different βz and γz in the
true model, with the red point indicating the true values
of (βz, γz). The plots illustrate that the posterior sample
means converge and the mode of the posterior sample means
is close to the truth of βz and γz. Remarkably, the negative
correlations stated in Remark 2 are evident in all scenarios.

The results of RP (g(θ)) under the mixture cure model
are shown in Table 5.1. Each row represents different true
values for βz, γz, and their resulting ΔM . When βz = γz = 0,
RP (g(θ)) characterizes the probability of rejecting H0(g)
under null hypothesis (false rejection) for the treatment ef-
fect parameters g(θ). As shown in the first row of Table 5.1,
RP (βz), RP (γz), and RP (ΔM ) are right around the pre-
specified level of significance 0.05. When the data are incor-
rectly fitted by the promotion time cure model, the rejec-
tion probability RP (ΔP ) = 0.054 is slightly over the level
of 0.05. When βz and γz become larger in absolute value,
RP (g(θ)) characterizes the probability of favoring H1(g) un-
der alternative hypothesis (true rejection) for the treatment
effect parameters g(θ). When the investigational treatment
shows efficacy for the cure fraction only (row 4 and 7 in
Table 5.1), the rejection probability of the unified estimand

Table 5.1. Results of RP (g(θ)) under MCM.

Truth of θM Fitted model: MCM PTCM

βz γz ΔM g(θ): βz γz ΔM ΔP

0 0 0 RP (g(θ)): 0.053 0.052 0.051 0.054
0 −0.2 0.052 0.049 0.373 0.234 0.212
0 −0.4 0.103 0.049 0.812 0.546 0.481

-0.25 0 0.050 0.235 0.054 0.214 0.230
-0.25 −0.2 0.098 0.204 0.372 0.499 0.498
-0.25 −0.4 0.146 0.191 0.817 0.830 0.751
-0.5 0 0.103 0.602 0.052 0.547 0.565
-0.5 −0.2 0.148 0.561 0.376 0.819 0.799
-0.5 −0.4 0.192 0.552 0.799 0.963 0.937

ΔM , RP (Δ), is slightly smaller than RP (βz). When the
treatment shows efficacy on the non-cured survival only (row
2 and 3 in Table 5.1), RP (Δ) is about 60%–70% of RP (γz).
When the investigational treatment shows efficacy for both
cure fraction and non-cured survival (row 5,6,8, and 9 in
Table 5.1), the rejection probability of the unified estimand
ΔM , RP (Δ), is greater than RP (βz) or RP (γz) when look-
ing at βz and γz alone. Also, when the model is misspecified,
the RP (Δ) remains comparable with the correctly specified
model in all simulation circumstances.

Table 5.2 displays the results of root mean square er-
ror (RMSE) and coverage probability (CP). Within the
Bayesian framework, the initial prior with a variance of 100
performs well recovering the truth since the RMSEs of all
treatment effect parameters are relatively low and the cov-
erage probabilities are close to 0.95. The coverage probabil-
ities are slightly lower than 0.95 when an informative prior
(shrinkage prior) is implemented when constructing the ini-
tial prior. The estimation is more accurate for the unified
estimand Δ than looking at the conditional treatment ef-
fect parameters {βz, γz} since the RMSE of Δ is close to
zero for each and every simulation scenario. For the mis-
specified model fittings, the RMSEs are slightly larger than
the correctly-specified model, and the coverage probabilities
are slightly smaller. The difference appears to increase as βz

and γz deviate from 0, but the RMSE and the CP for the
misspecified model are pretty robust overall.

5.1.2 The Promotion Time Cure Model

For the true model, we choose ζz from {0,−0.25,−0.5},
corresponding to hazard ratios of {1, 0.78, 0.61} for the
conditional treatment effect. We specify the shape of the
Weibull survival time to be 1 with an independent censor-
ing rate of 0.1. The other hyperparameters are set as ζ0 = 1
and ζ̃ = (0.3,−0.5)�.

The results of RP (g(θ)) under the promotion time cure
model are shown in Table 5.3. When ζz and its resulting
ΔP are 0, RP (g(θ)) represents the probability of reject-
ing H0(g) under null hypothesis (false rejection) for g(θ).
As shown in the first row of Table 5.3, RP (ζz) = 0.053
and RP (ΔP ) = 0.053. When the model is misspecified as
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Table 5.2. Results of Bayesian RMSE(g(θ)) and CP (g(θ)) under MCM.

RMSE(g(θ)) CP (g(θ))

Truth of θP Fitted Models (f): MCM PTCM MCM PTCM

βz γz ΔM g(θ): βz γz ΔM ΔP βz γz ΔM ΔP

0 0 0 0.002 0.002 0.0001 0.0002 0.944 0.941 0.940 0.937
0 −0.2 0.052 0.021 0.005 0.001 0.001 0.944 0.942 0.945 0.937
0 −0.4 0.103 0.026 0.008 0.001 0.002 0.945 0.941 0.938 0.935

-0.25 0 0.050 0.007 0.005 0.0002 0.009 0.940 0.940 0.943 0.933
-0.25 −0.2 0.098 0.014 0.006 0.002 0.011 0.942 0.943 0.945 0.931
-0.25 −0.4 0.146 0.005 0.019 0.005 0.012 0.941 0.935 0.941 0.931
-0.5 0 0.103 0.026 0.004 0.001 0.019 0.943 0.942 0.942 0.920
-0.5 −0.2 0.148 0.017 0.014 0.003 0.021 0.943 0.936 0.940 0.922
-0.5 −0.4 0.192 0.026 0.014 0.006 0.023 0.940 0.942 0.940 0.917

Table 5.3. Results of RP (g(θ)) under PTCM.

Truth of θP Fitted Models (f): PTCM MCM

ζz ΔP g(θ): ζz ΔP βz γz ΔM

0 0 RP (g(θ)): 0.053 0.053 0.037 0.068 0.058
-0.25 0.124 0.612 0.612 0.070 0.583 0.636
-0.5 0.24 0.981 0.981 0.132 0.899 0.980

Table 5.4. Results of Bayesian RMSE(g(θ)) and CP (g(θ)) under PTCM.

RMSE(g(θ)) CP (g(θ))

Truth of θP Fitted Models: PTCM MCM PTCM MCM

ζz ΔP g(θ): ζz ΔP ΔM ζz ΔP ΔM

0 0 0.001 0.0005 0.001 0.942 0.941 0.927
-0.25 0.124 0.005 0.001 0.004 0.936 0.934 0.924
-0.5 0.24 0.007 0.001 0.005 0.938 0.935 0.920

the mixture cure model, RP (βz) is deflated to 0.037, and
RP (γz) is inflated to 0.068. Hence, making inference based
on βz and γz will not maintain the rejection probability at
the proper level. However, the RP (ΔM ) is less affected by
model misspecification, which is 0.058.

When the assumed treatment effect becomes larger as
ζz decreases from 0, RP (ΔP ) is similar to RP (ζz) con-
sidering the one-to-one relationship under promotion time
cure model shown in theorem 4. If the model is misspec-
ified, among the examined scenarios, the rejection proba-
bility RP (ΔM ) is higher than RP (βz) or RP (γz). In ad-
dition, RP (ΔM ) is comparable to the rejection probability
RP (ΔP ) from the correctly specified model.

Table 5.4 displays the results of root mean square er-
ror (RMSE) and coverage probability (CP). Within the
Bayesian framework, the models with a variance of 1002 in
the initial prior converge pretty well and could recover the
truth as the RMSEs of treatment effect parameters ζz and

ΔP are all rather low and the coverage probabilities are close
to 0.95. The coverage probabilities with model misspecifica-
tion are slightly lower, and RMSEs are slightly larger than
those fitted by the correct model, but the misspecified model
remains comparable with the correctly specified model.

6. REAL DATA EXAMPLE
We consider data from the Eastern Cooperative Oncol-

ogy Group’s phase III melanoma clinical trial, E1684 [15],
involving three treatment arms, namely, high-dose inter-
feron, low-dose interferon, or observation. The results of the
E1684 clinical trial suggested that interferon has a signifi-
cant impact on relapse-free and overall survival, which led
to the approval of this regimen by the U.S. Food and Drug
Administration as standard adjuvant therapy for high-risk
melanoma patients. For our analysis, we only consider the
high-dose interferon (treatment) and observation (control).
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Figure 6.1: Kaplan-Meier plot for E1684.

The E1684 dataset includes four predictors: treatment (x1,
coded as 2 for high-dose interferon and 1 for observation),
type of primary tumor (x2, coded as 2 for nodular and 1 for
other), age (x3, coded in years), and gender (x4, coded as 2
for female and 1 for male). We include treatment, age, and
gender as predictors in our real data example.

The outcome variable is relapse-free survival (RFS),
which is defined as the time from randomization until the
progression of the tumor or the occurrence of mortality,
whichever comes first. The RFS time, ti in years, is continu-
ous and subject to right censoring. δi denotes the censoring
indicator, which equals one if the i-th subject relapsed and
0 otherwise.

After eliminating the incomplete data from the E1684
dataset, we have a total of n = 284 patients, with n1 = 144
in the high-dose interferon arm and n0 = 140 in the ob-
servation arm. The Kaplan-Meier curves for the treatment
and placebo arm of E1684 are shown in Figure 6.1. The
Kaplan-Meier curves demonstrate plateau patterns of the
cure models after a sufficiently long follow-up period. The
median relapse-free survival time (95% confidence interval)
for the high-dose interferon and the observation arms are
1.72 (1.09, 3.02) and 0.98 (0.52, 1.70), respectively. The me-
dian overall survival (OS) time (95% confidence interval)

for the high-dose interferon and the observation arms are
3.82 (2.56,∞) and 2.67 (1.83, 4.24), respectively.

We carry out a comprehensive analysis for the relapse-free
survival (RFS) of the E1684 dataset using different models,
including the Cox proportional hazards model, restricted
mean survival time comparison, mixture cure model, and
promotion time cure model. The effect of age and gender
are adjusted in all comparisons, and the unified estimand are
analyzed and compared with individual model parameters
under each model. The results are summarised in Table 6.1.

Under the Cox proportional hazards model, the condi-
tional treatment effect of log hazards ratio βz between the
treatment and control arms shows significance (β̂z =−0.360,
95% confidence interval: (−0.642, −0.079)), resulting in a
significant treatment effect of the unified estimand ΔPH

(Δ̂PH =0.178, 95% confidence interval: (0.039, 0.310)). The
p-values associated with testing βz or ΔPH are 0.006. For
the RMST comparison, the results are sensitive to the choice
of the truncation time t∗, and could lead to entirely dif-
ferent conclusion. When the truncation time is set to be
the last observed event (by default), the difference in re-
stricted mean survival time (RMST) between the treat-
ment and control groups Δ̂RMST (9.63) = −0.022 with a
95% confidence interval (−1.156, 1.112) and p-value 0.970.
When the truncation time is set to be median RFS (1.24
months), Δ̂RMST (1.24) = 0.148 with a 95% confidence in-
terval (0.043, 0.253) and p-value 0.006.

Under the mixture cure model, when looking at the con-
ditional treatment effect parameters, the conditional treat-
ment effect on the cured probability βz is significant (poste-
rior mean: −0.596, 95% credible interval: (−1.169,−0.067),
posterior probability P(βz < 0 | Dobs) = 0.986), but
the conditional treatment effect on non-cured population
γz is not (posterior mean: −0.103, 95% credible interval:
(−0.409, 0.221), posterior probability P(γz < 0 | Dobs) =
0.742)). However, the unconditional treatment effect on the
unified estimand ΔM is significant (posterior mean: 0.114,
95% credible interval: (0.005, 0.231), posterior probability
P(ΔM > 0 | Dobs) = 0.978).

Under the promotion time cure model, the treatment
shows significant efficacy in the conditional treatment effect

Table 6.1. A comparison of E1684 results under different models.

Fitted Models:1 Cox PH RMST MCM PTCM

Parameter g(θ): γz ΔPH ΔRMST (9.63) ΔRMST (1.24) βz γz ΔM ζz ΔP

Estimation1 −0.360 0.178 −0.022 0.148 −0.596 −0.103 0.114 −0.376 0.185
95% lower CI1 −0.642 0.039 −1.156 0.043 −1.169 −0.409 0.005 −0.669 0.055
95% upper CI1 −0.079 0.310 1.112 0.253 −0.067 0.221 0.231 −0.109 0.322

p1 0.006 0.006 0.970 0.006 0.014 0.258 0.022 0.002 0.002

The Cox PH model and Restricted Mean Survival Time (RMST) comparison are performed under the Frequentist framework, while the MCM
and PTCM are fitted by Bayesian procedures. The “parameter estimation” refers to MLE or posterior mean, the “CI” refers to 95% two-sided
confidence intervals or 95% HPD intervals, and p refers to the two-sided p-value or posterior predictive probability of P(H0(g) | Dobs) depending
on the models.
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parameter ζz (posterior mean: −0.376, 95% credible interval:
(−0.669,−0.109), posterior probability P(ζz < 0 | Dobs) =
0.998), resulting in significance in the unified estimand ΔP

(posterior mean: 0.185, 95% credible interval: (0.055, 0.322),
posterior probability P(ΔP > 0 | Dobs) = 0.998).

The two types of cure models are rigorously compared
using the goodness-of-fit (GoF) criteria introduced in Sec-
tion 4.3. For the MCM, the Deviance Information Crite-
rion (DIC) stands at 772.01 with pd = 8.81, whereas for
the PTCM, it’s 765.95 with pd = 6.19. Additionally, the
Pseudo-Marginal Likelihood (LPML) values for MCM and
PTCM are −386.72 and −382.97, respectively. In summary,
these metrics suggest that the promotion time cure model
exhibits a better fit and displays greater predictive power, as
evidenced by its reduced DIC and enhanced LPML values.

For the mixture cure model, the high-dose interferon
presents significance in βz but insignificance in γz, which
confuses the overall efficacy of high-dose interferon and mak-
ing a final decision. However, the results of the unified es-
timand are easier to interpret, and it allows direct compar-
isons across different models. Other than the inconsistent
inference from RMST comparisons, the other three survival
models lead to similar values for the estimators of Δ and
reach the same conclusions. The similarity in the values of
the estimators from different models reveals the robustness
of the unified estimand against model selections between dif-
ferent types of cure models in capturing the overall uncon-
ditional treatment effect. Therefore, the proposed estimand
provides a unified way to compare the efficacy on treatment
and aids in making informed clinical decisions.

7. DISCUSSIONS
In cancer research, time-to-event endpoints, such as

progression-free survival (PFS) and overall survival (OS),
are critical in evaluating the efficacy of cancer treatments.
However, this process is often time-consuming and costly,
necessitating advanced modeling and inference strategies
about the treatment effect in drug development [25]. In re-
cent years, cure models have gained increasing interest due
to their ability to account for a subset of patients consid-
ered “cured,” who remain event-free after a certain follow-
up period. These models provide more flexible and precise
treatment outcome modeling and enhance decision-making
about the treatment effect in clinical trials.

In this article, we have summarised two types of cure
models and have proposed a unified estimand Δ =
E[sgn(T1 − T0)] for the survival models with cure fraction,
where T0 and T1 denote the potential outcome when assign-
ing to the control group and treatment group, and sgn() de-
notes the sign function. The proposed unified estimand mea-
sures unconditional treatment effect by examining whether
the treatment extends survival for patients. The relation-
ships between the unified estimand Δ and model param-
eters have been established explicitly for the proportional

hazards model, the mixture cure model, and the promo-
tion time cure model, making comparisons across different
models more straightforward. Based on the recent hot topic
about the “Estimand” and “Covariate Adjustment” from
FDA’s guidances, including covariates that are prognostic in
the regression models could potentially increase the power
of RCTs, or it could make the results more interpretable in
non-randomized trials. However, it is well noted that the
estimand from the adjusted analysis about the conditional
treatment effect is not always the same estimand for the
unconditional treatment effect via direct comparison. The
proposed unified estimand Δ is invariant to model and vari-
able selections, and it can be applied to different types of
cure models either without covariates or in regression forms
adjusting for the prognostic covariates, without altering the
definition of treatment effect. Therefore, when the unified
estimand is utilized under the “Estimand” framework, the
inference based on different models with or without covari-
ate adjustment can serve as sensitivity analyses towards the
same unified estimand instead of supplementary analyses
with an altered definition of treatment effect.

Compared with ΔRMST (t
∗), which is highly sensitive to

the choice of truncation time t∗ and the tail of the Kaplan-
Meier curve, the proposed unified estimand Δ reflects an
overall difference in survival profiles, providing a clear and
robust basis for determining treatment efficacy. In addition,
the value of ΔRMST (t

∗) alone does not clearly indicate the
effect size without comparing it to the RMST of the control
arm. However, the unified estimand Δ directly measures the
size of the treatment effect by the proportion of patients who
experience extended survival on treatment.

In addition to proposing the unified estimand, we describe
a general Bayesian inference procedure for the cure models.
The Bayesian computation for the cure models are devel-
oped via Gibbs sampling for Bayesian inference, and model
comparisons among different types of survival models with
cure fraction are made through DIC and LPML.

Based on the simulation study, the Bayesian inference of
the unified estimand Δ maintains the probabilities of re-
jecting H0(g) under null hypothesis at the desired level for
both cure models. The unified estimand Δ demonstrates
larger probabilities of favoring H1(g) when treatment bene-
fits both cure fraction and non-cured survival.

Also, the unified estimand Δ is robust against model mis-
specification between the two types of cure models. When
data are generated from one of the cure models but fitted by
the other one, the inference of the unified estimand Δ always
leads to reasonable probability of rejecting H0(g) under null,
probability of favoring H1(g) under alternative hypothesis,
root mean square error, and coverage probability.

In the current simulation scenarios, σ2
β is chosen as 102

for MCM. When σ2
β decreases from ∞ to 1, the probability

of rejecting H0(g) will be expected to decrease generally, and
the RMSEs of the treatment effect estimators will decrease
and then increase, which is similar to the trend from the
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Ridge regressions or using Bayesian shrinkage priors. Thus,
an appropriate variance for the initial prior should be spec-
ified under the mixture cure model. If σ2

β is too large, the
prior will be less informative, and the parameters will suffer
from a lack of identifiability, leading to unreliable inference.
If σ2

β is too small, the prior imposes too much information
on the model, which leads to a biased estimator. A trade-off
choice of σ2

β will balance model identifiability and estimation
unbiasedness. In the end, we conduct an in-depth analysis
of ECOG’s melanoma cancer data E1684 using the unified
estimand Δ under different models, including the propor-
tional hazards model, mixture cure model, and promotion
time cure model.

All three models lead to similar results and consistent
conclusions, which demonstrates Δ’s consistency compared
to the difference in RMST.

Although this article focuses on estimation and Bayesian
inference, the proposed estimand and the Bayesian infer-
ence framework are also useful in the Bayesian clinical trial
designs under survival models with cure fraction. However,
it is crucial to note that the simulation under the null hy-
pothesis in this article corresponds to a sharp null hypothe-
sis, assuming all individual treatment effect parameters are
zero. However, to develop a rigorous Bayesian clinical trial
design applying the proposed estimand, the null hypothesis
should be relaxed to only restrict the expectation form of
the estimand Δ to be 0. Such a relaxation would impact the
size of the hypothesis testing and the sample size determina-
tion. Consequently, there is a need for rigorous evaluations
of the Bayesian type I error and Bayesian power, noting an
important direction for further research.

All computations and implementations detailed in this
paper are developed in the R environment. The correspond-
ing code for the proposed methodologies is available at
https://github.com/hongfei-li/UniCure.

APPENDIX A. PROOFS OF THEOREMS
Proof of Theorem 1. The log observed-data likelihood can
be written as


obsM (θM | Dobs) =
∑
δi=1

(log(1− πi) + log(fnc
i (ti | xi)))+∑

δi=0

log (πi + (1− πi)S
nc
i (ti | xi)) .

The (βz, γz) entry of the observed Fisher information ma-
trix is given by

I(θM )(βz,γz)

=− ∂2

∂βz∂γz

obsM (θM | Dobs)

=−
∑
δi=0

∂2

∂βz∂γz
log(πi + (1− πi)S

nc
i (ti | xi))

=
∑
δi=0

1

(πi + (1− πi)Snc
i (ti | xi))2

∂πi

∂βz

∂Snc
i (ti | xi)

∂γz

> 0.

Proof of Theorem 2. Suppose Spop,0(t) and Spop,1(t) are
the proper survival functions with limt→∞ Spop,0(t) =
limt→∞ Spop,1(t) = 0. Then,∫ ∞

0

Spop,1(t)fpop,0(t)dt+

∫ ∞

0

Spop,0(t)fpop,1(t)dt

=− Spop,0(t)Spop,1(t)

∣∣∣∣∞
0

= 1, and
(1.1)

∫ ∞

0

Spop,1(t)fpop,0(t)dt−
∫ ∞

0

Spop,0(t)fpop,1(t)dt

=ΔPH .

(1.2)

Since hpop,1(t) = exp(γz)hpop,0(t),∫ ∞

0

Spop,0(t)fpop,1(t)dt

=

∫ ∞

0

Spop,0(t)Spop,1(t)hpop,1(t)dt

=exp(γz)

∫ ∞

0

Spop,0(t)Spop,1(t)hpop,0(t)dt

=exp(γz)

∫ ∞

0

Spop,1(t)fpop,0(t)dt.

(1.3)

Solving the matrix equations of (1.1)–(1.3) gives us

ΔPH =
1− exp(γz)

1 + exp(γz)
= tanh(−γz

2
).

Proof of Theorem 3.

ΔM = EX̃ [E[sgn(T1 − T0) | X̃]]

= EX̃ [P(T1, T0<∞|X̃)E[sgn(T1−T0) |T1, T0<∞|X̃]+

P(T1 = ∞, T0 < ∞ | X̃)− P(T0 = ∞, T1 < ∞ | X̃)]

= EX̃ [P(T1 < ∞ | X̃)P(T0 < ∞ | X̃) tanh(−γz
2
)+

P(T1 = ∞ | X̃)− P(T0 = ∞ | X̃)]

=

∫
exp(β0 + βz + X̃

�
β̃)

1+exp(β0+βz+X̃
�
β̃)

exp(β0 + X̃
�
β̃)

1+exp(β0+X̃
�
β̃)

dP (X̃)×

tanh(−γz
2
) +

∫
1

1 + exp(β0 + βz + X̃
�
β̃)

dP (X̃)−∫
1

1 + exp(β0 + X̃
�
β̃)

dP (X̃)
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