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Abstract
Growth curve analysis (GCA) has a wide range of applications in various fields where growth trajectories need to

be modeled. Heteroscedasticity is often present in the error term, which can not be handled with sufficient flexibility
by standard linear fixed or mixed-effects models. One situation that has been addressed is where the error variance
is characterized by a linear predictor with certain covariates. A frequently encountered scenario in GCA, however, is
one in which the variance is a smooth function of the mean with known shape restrictions. A naive application of
standard linear mixed-effects models would underestimate the variance of the fixed effects estimators and, consequently,
the uncertainty of the estimated growth curve. We propose to model the variance of the response variable as a shape-
restricted (increasing/decreasing; convex/concave) function of the marginal or conditional mean using shape-restricted
splines. A simple iteratively reweighted fitting algorithm that takes advantage of existing software for linear mixed-effects
models is developed. For inference, a parametric bootstrap procedure is recommended. Our simulation study shows that
the proposed method gives satisfactory inference with moderate sample sizes. The utility of the method is demonstrated
using two real-world applications.

keywords and phrases: Shape-restricted splines, Linear mixed-effects model, Parametric bootstrap.

1. INTRODUCTION
Growth curve analysis (GCA) plays a critical role in

various fields such as agronomy [46], animal science [37],
biology [41], clinical trials [56], and psychological stud-
ies [9, 26, 6], among others. A GCA provides information
about not only the mean but also the variation of the growth
trend of a certain population. For example, reference growth
charts for children’s height, weight, and other physical char-
acteristics are widely used in wellness checks. A growth chart
typically depicts a collection of quantiles of the distribution
of physical characteristics of the reference population as a
function of age. Accurate characterizations of the growth
trajectory in both the mean level and the variation level are
needed to make valid inferences and draw meaningful con-
clusions. The mean level of a growth trajectory has been
extensively studied with a variety of functional forms such
as fractional polynomial [16, 40] and smoothing splines [8].
In contrast, the variation has been studied but far less ex-
tensively.

Heteroscedasticity is a commonly encountered challenge
in GCA. We often observe larger variance as the mean
gets bigger or as the growth pattern proceed with time.
The error variance can be modeled as a smooth function
of time or the mean response. Kernel-based methods have
been used, which led to uniformly consistent estimator of
∗Corresponding author.

the variance function [5, 28]. Covariates could be incorpo-
rated into the variance by an additional regression for the
dispersion [43, 29]. For predictive purposes, a parametric
distribution at any time point is often desired. The lambda-
mu-sigma (LMS) method handles heteroscedasticity along
with non-normality. In particular, it assumes that, after be-
ing standardized by a time-specific median μ and Box–Cox
transformed with a time-specific power λ, the response fol-
lows a normal distribution with mean zero and time-specific
standard deviation σ [7, 8]. The functions μ, σ, and λ are
assumed to evolve smoothly with time, which can be mod-
eled by splines of time. Distributions other than the normal
distribution can be used with time-specific parameters in
the generalized additive modeling framework for location,
scale, and shape (GAMLSS) [34, 36, 35]. Quantile regres-
sion is a distribution-free method that directly models the
age-specific quantiles of the response, possibly conditioning
on covariates [51].

Clustered data, which often arise in GCA, bring an
additional challenge of handling the within-cluster depen-
dence. The number of repeated measures over time on the
same subject can be as many as 30–40 [45]. The linear
mixed-effects model (LMM) introduces within-cluster de-
pendence through cluster-level random effects. Splines can
be used to get a non-parametric estimation of the grow-
ing curve [33, 20, 21, 53]. An additional model on the
variance or scale leads to the mixed-effects location-scale
model [38, 17, 18]. The variance model is formulated with
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covariates or through a scale-mixture with, for example,
an inverse gamma scale. The lme() function in R package
nmle [30] can fit LMMs with heteroscedasticity in a set
of pre-programmed forms [60, p.71–100], and the best form
can be selected using Akaike information criterion (AIC) [1]
or Bayesian information criterion (BIC) [42]. The covari-
ance structure can be modeled directly with nonparamet-
ric methods for flexible shapes [e.g., 13]. The normal dis-
tribution assumption of the response variable can be re-
laxed by using GAMLSS with random effects in the additive
terms [44, p.247–252]. The generalized estimating equation
(GEE) method [24] focuses on the marginal modeling. It has
been generalized to handle heteroscedasticity and within-
cluster correlations [55], but marginal models in general are
not suitable for subject-specific predictions.

Despite the extensive GCA literature, there are two limi-
tations in routine analyses. The first is that there is no con-
venient way to put shape restrictions, such as monotonic-
ity and/or convexity/concavity, on the variance in addition
to the mean of a growth curve. Existing methods such as
GAMLSS [44] allow flexible shapes in the mean or variance
structure, but there is no direct way yet to ensure shape
restrictions. If effectively used, such restrictions could im-
prove the efficiency in inferences. The second limitation is
that the existing methods do not have the flexibility to al-
low the variance to be modeled as a function of the mean,
which is common in generalized linear models. The R pack-
age nmle [30] only allows the mean for independent data
and the marginal mean for clustered data in the variance
structure, but not the conditional mean given random ef-
fects for clustered data. Variance as a function of the mean
could, again, improve the efficiency in inferences, especially
when the mean depends on multiple covariates.

To break the aforementioned two limitations, we propose
to model the variance in GCA as a shape-restricted function
of the growth level [23]. The shape restrictions include mono-
tonicity and/or convexity/concavity, accommodated with
shape-restricted splines such as monotone splines [32] or con-
vex splines [27] with evenly spaced knots and constrained
parameters. This can enable us to tickle the scenario where
variance gets bigger at the end or beginning of the growth
curve. For clustered data, the variance model can incorpo-
rate the growth level either through the marginal mean or
the conditional mean given the cluster-level random effects.
Either AIC or BIC can be used to select the degrees of free-
dom of the splines and to select between marginal and con-
ditional mean models. The parameters are estimated in an
iteratively reweighted fitting algorithm. The performance of
the proposed methods is validated through an extensive sim-
ulation study and applications to two real examples.

The rest of this paper is organized as follows. Section 2
gives a review of the shape-restricted spline basis. Growth
models with shape-restricted Heteroscedasticity for both in-
dependent and clustered data are presented in Section 3.
A simulation study is reported in Section 4 to assess the

performance of the methods. We illustrate the use of the
proposed approach with the fetal pancreas length data and
the chicken weight data in Section 5. A discussion concludes
in Section 6. The computing code is publicly available at
https://github.com/JieyingJiao/GCA_Code.

2. SHAPE-RESTRICTED SPLINES
Splines are piecewise polynomials, differentiable up to a

certain degree. They offer great flexibility in approximating
unknown smooth curves, and is often preferred to simple
polynomial basis. It can give similar results to polynomial
basis even with a lower degree, while avoiding the Runge’s
phenomenon for higher degree.

Applying splines to independent or clustered data such
as longitudinal data has been extensively studied in the lit-
erature, such as B-spline [33, 20, 21, 53]. There are other
type of splines that have certain shape restrictions, such as
monotonicity and convexity. Using shape-restriction splines
to estimate smooth curves with certain shapes hasn’t been
discussed before.

Specifically, a shape-restricted curve is approximated by
a linear combination of a set of shape-restricted spline bases,
where the coefficients are restricted to get the desired pat-
tern. Before introducing our proposed method, which em-
ploys the I-spline bases and C-spline bases, we first briefly
review how they are constructed.

To define shape-restricted spline bases, we start from M-
splines. M-spline bases are standardized versions of B-spline
bases so that they integrate to 1 [10]. An M-spline of degree k
over an interval [l, u] is defined recursively as

M
(1)
i (x) =

⎧⎨
⎩

1

ti+1 − ti
, ti ≤ x ≤ ti+1,

0, otherwise,

M
(k)
i (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k[(x− ti)M
(k−1)
i (x) + (ti+k − x)M

(k−1)
i+1 (x)]

(k − 1)(ti+k − ti)
,

ti ≤ x ≤ ti+k

0, otherwise,

i = 1, . . . ,m+ 2k, where ti’s are the knots with

l = t1 = · · · = tk < · · · < tm+k+1 = · · · = tm+2k = u,

and m is the number of internal knots. The M-spline bases
are positive over [l, u]. A linear combination of M-spline
bases with nonnegative coefficients is non-negative. Same as
B-splines, it is continuously differentiable up to k − 1 times
for k ≥ 1.

I-splines are integrals of M-splines [32]. The I-spline bases
with degree k over the interval [l, u] are

I
(k)
i (x) =

∫ x

l

M
(k)
i (s) ds, l ≤ x ≤ u, i = 1, . . . ,m+2k.
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Because their derivatives are M-splines, which are non-
negative, I-spline bases can be used for modeling monotonic
functions. A linear combination of I-spline bases with non-
negative (or non-positive) coefficients are non-decreasing (or
non-increasing). An intercept is always needed when using
I-spline bases since their lowest order is linear.

C-splines are integrals of I-splines [27]. The C-spline bases
with degree k over the interval [l, u] are

C
(k)
i (x) =

∫ x

l

I
(k)
i (s) ds, l ≤ x ≤ u, i = 1, . . . ,m+2k.

This set of bases does not have a linear or a constant term,
both of which need to be added when fitting curves. With
restrictions on the coefficients, C-splines can be used to
approximate functions with specific combinations of mono-
tonicity (increasing or decreasing) and shape (convexity or
concavity) [49]. A commonly seen pattern in growth curve
is non-decreasing concave, which can be implemented by
restricting the first derivatives to be positive and second
derivatives to be negative.

In implementation, we used the I-spline and C-spline
bases from R package splines2 [49]. As illustrated later,
the degrees of freedom can be chosen by AIC or BIC. For
a typical GCA, a moderately complicated pattern can be
approximated by spline bases with a few (3–5) degrees of
freedom.

3. GCA WITH SHAPED-RESTRICTED
HETEROSCEDASTICITY

Although clustered or longitudinal data is often encoun-
tered for GCA, there are also situations that only one mea-
sure is collected from each subject, such as the pancreas
data presented in Section 5. The shape restrictions in mean
and error terms can exist in both data types in GCA, but
haven’t been systematically discussed.

The proposed method can be applied to either linear re-
gression model for independent data or LMM for clutered
data, depending on if there are repeated measurements on
same subject. For clarity of presentation, we start from the
independent data setting which is simpler, and then con-
sider the more complicated clustered data setting which is
also more common in GCA. Inferences and model selection
come next.

3.1 Model for Independent Data
Suppose the data is collected from n subjects, and each of

the subjects was only observed once at a random time point.
Specifically, let the observed data or measurement for the ith
subject be yi, and the observed time be ti, i = 1, 2, . . . , n.
Since yi are from different subjects, they are independent
to each other. Additional information except time are pos-
sible, such as gender or treatment group. They are repre-
sented by a p-dimensional xi for the ith subject. To intro-
duce heteroscedasticity, we use a smooth function g(νi) to

characterize the standard deviation of the regression error
of the ith subject, where vi is some index variable. The in-
dex variable can be observed such as time, or unobserved
such as the mean of the corresponding subject from the lin-
ear model. The smooth function g(·) areis parametrized by
shape-restricted splines.

The growth pattern against time is often non-linear and
present certain shape restrictions, such as increasing with
time. This can be realized by using shape-restricted spline
of time in the mean model. Once the degree and degree of
freedom of spline bases being chosen, it can be represented
using the same format as the parametric part: linear combi-
nation of coefficient and spline bases. Using spline bases in
the mean pattern has been discussed extensively in the pre-
vious work [33, 20, 21, 53], and our focus is more on using
the spline on the variance part. For the simplicity of expres-
sion, we choose to include the spline bases of time as part
of the vector xi instead of explicitly show them separately.
The process to chose the degree and degree of freedom is
the same as for the splines in the error term.

Using I-splines as an example, a heteroscedastic linear
model is

yi = x�
i β + εi, i = 1, . . . , n,

εi ∼ N(0, g2(vi,θ)),

g(vi;θ) = θ0 +

K∑
k=1

θkI2,k(vi),

(3.1)

where β is a p-dimensional regression coefficient vector
for xi, εi is the normally distributed regression error with
mean zero and standard deviation g(νi;θ), {I1,k(·), k =
1, . . . ,K} are I-spline bases with K degrees of freedom, and
θ = (θ0, . . . , θK) is a (K +1)-dimensional coefficient vector.
The degree and degrees of freedom for each spline bases need
to be selected using model selection method introduced in
Section 3.3, and the internal knots are evenly spaced. The
coefficients θ can be restricted to control the shape of the
heteroscedasticity as a function of νi. For example, if the
variance increases with the mean (or time), the coefficients
θ can be restricted to be non-negative.

If concavity or convexity is desired, the I-splines can be
replaced with C-splines and a linear term of time with ap-
propriate restrictions on the coefficients, as introduced in
Section 2. Interaction terms can be introduced in the mean
function to allow the covariates have time-varying coeffi-
cients [20, 21].

3.2 Model for Clustered Data
When more than one measures were collected from each

of the n subjects, the observed data will have a clustered
structure. Let the number of repeated measures on the ith
subject be ni, and it might be different for each subject and
sometimes might be small or even just 1. The jth observa-
tion of the ith subject is yi,j which is collected at time ti,j ,
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where j = 1, . . . , ni, i = 1, . . . , n. Same as before, we still use
spline bases to estimate the error variance in order to put
the shape restrictions, but with a linear mixed-effects model
to account for the dependence structure within the dataset.
We use the matrix notation for simplicity of demonstration:

yi =

⎛
⎜⎜⎜⎜⎝

yi,1
.
.
.

yi,ni

⎞
⎟⎟⎟⎟⎠ , Xi =

⎛
⎜⎜⎜⎜⎝

x�
i,1

.

.

.
x�
i,ni

⎞
⎟⎟⎟⎟⎠ , εi =

⎛
⎜⎜⎜⎜⎝

εi,1
.
.
.

εi,ni

⎞
⎟⎟⎟⎟⎠ .

Again using I-Splines as an example, the model for the ith
subject is

yi = Xiβ + Zibi + εi, i = 1, . . . , n,

εi ∼ MVN
(
0, diag(g2(vi,1,θ), . . . , g

2(vi,ni ,θ))
)
,

g(vi,j ,θ) = θ0 +

K∑
k=1

θkIk(vi,j), j = 1, . . . , ni,

(3.2)

where xi,j is a p dimensional covariate vector for fixed effects
which can include the spline bases of time, Zi is an ni ×
q design matrix for random effects, β is a p dimensional
fixed effects vector, bi is a q-dimensional random effects
vector with covariance matrix B parameterized by vector
α, and MVN is the multivariate normal distribution. Shape
restrictions can be applied on the coefficient of spline bases,
and K need to be selected using the model section method
in Section 3.3. Other notations are the clustered analogs to
those in Equation (3.1).

A special choice for the index variable vij is the mean of
the response variable. For a mixed-effects model, this mean
can be conditional on the random effects or not. If random
effects are conditioned on, the mean is

μi,c = E[yi | bi] = Xiβ + Zibi; (3.3)

otherwise it is

μi,m = E[yi] = Xiβ. (3.4)

For ease of referencing, we call them conditional mean
and marginal mean, respectively. When the error variance
changes with the marginal mean, the response variable still
has a multivariate normal distribution. If the conditional
mean is in the error variance structure, there is dependence
between the random effects and the error term, and the
response variable no longer has a multivariate normal dis-
tribution. To calculate the likelihood function for this sit-
uation, as needed in AIC and BIC calculations, numerical
integration is needed. See details in Section 3.3.

Same as for the indepdent data, C-splines can be used
for concavity or convexity shape restriction, and interaction
terms in the mean function can allow time-varying coeffi-
cients for the covariates.

3.3 Inference
The maximum likelihood method can be used to get

parameter estimates in theory as long as appropriate re-
strictions on the coefficients are imposed to enforce the
shape restrictions. To obtain the maximum likelihood es-
timator, we propose an iteratively reweighted fitting proce-
dure that takes advantage of existing software packages for
linear mixed-effects models allowing weights. This method is
flexibile to deal with different scenarios including the error
variance changing with conditional or marginal mean. It can
also be easily computed since no closed-form solutions need
to be derived. The steps are summarized in Algorithm 1 for
clustered data when the error variance is changing with the
mean. We use μi in the algorithm to represent either the
conditional mean or the marginal mean, and μ̂i for the es-
timated value of the mean. Algorithm for independent data
is similar and simpler, and will not be repeated here. The
shape restrictions on the heteroscedasticity (and the mean
model) can be imposed with a constrained optimizer, such
as the constrOptim() function in R.

To construct reference quantiles in a GCA, we suggest
using parametric bootstrap. This is very similar to the
resampling-subject bootstrap (RSB) method [20, 53] since
the bootstrap sample is generated on subject level to main-
tain the cluster structure. The main difference is that our
bootstrap sample is generated with estimated parameter,
instead of the residuals. This is because the error variance
in our model is estimated with spline bases. The bootstrap
method avoids deriving the likelihood function and the Hes-
sian matrix [39, p. 227], which is challenging when the er-
ror variance changes with the conditional mean. This is of
particular importance when some of the estimated θ’s are
on the boundaries of the constrained parameter space [2].
Since we focus on the final fitted curve instead of the ba-
sis coefficients, bootstrap provides a natural solution for the

Algorithm 1 Iteratively reweighted fitting algorithm for
clustered data.

� Input {yi,Xi, ti,Zi, i = 1, . . . , n}.
1: procedure
2: Fit a linear mixed-effects model without weight.
3: Get estimate β̂ of β, estimate α̂ of α, residuals ei, and

fitted (marginal or conditional) mean μ̂i i = 1, 2, . . . , n.
4: repeat
5: Treat residuals ei’s as an observation from

N(0, g2(μ̂i,θ)), i = 1, 2, . . . , n.
6: Get maximum likelihood estimate θ̂ with monotone

constraints that θ > 0.
7: Fit a linear mixed-effects model with weight

{g−1(μ̂i, θ̂), i = 1, 2, . . . , n}
8: Get updated β̂, α̂, ei, and μ̂i, i = 1, 2, . . . , n.
9: until β̂ converges.

10: end procedure
� Output β̂, α̂, and θ̂.
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Algorithm 2 Steps to get one parametric bootstrap sample
for clustered data.

� Input β̂, α̂, and θ̂.
1: procedure
2: Generate random effects b∗i ’s from N(0,B(α̂)), i =

1, 2, . . . , n.
3: Let μ∗

i = (μ∗
i1, . . . , μ

∗
ini

) be Xiβ̂ + Zib
∗
i when use condi-

tional mean, or Xiβ̂ when use marginal mean.
4: Generate error terms ε∗i from

MVN
(
0, diag(g2(μ∗

i1, θ̂), . . . , g
2(μ∗

ini
, θ̂))

)
, i = 1, 2, . . . , n.

5: Let y∗
i = Xiβ̂ + Zib

∗
i + ε∗

i , i = 1, 2, . . . , n.
6: Apply Algorithm 1 to {y∗

i ,Xi, ti,Zi, i = 1, 2, . . . , n} and
record the output β̂∗, α̂∗, and θ̂∗.

7: end procedure
� Output One bootstrap copy {β̂∗, α̂∗, θ̂∗}.

quantitles of the fitted curve regardless of whether some of
the estimated θ’s are on the boundaries.

Algorithm 2 summarizes the steps to get one paramet-
ric bootstrap sample for clustered data. Same as before,
the algorithm for independent data will be similar and will
not be displayed here. Repeating this process gives a large
sample of bootstrap copies of the point estimates of the
model parameters. Their empirical standard deviations are
then used as the standard errors of the model parameter
estimates. For mixed-effects models, parametric bootstrap
method has better performance compared with bootstrap
methods that only re-sample observations or residuals, as
it produces more accurate standard deviation of estimated
parameters, and closer-to-nominal coverage rates for confi-
dence intervals [11, 54, 47].

After the model fitting process, model checking can be
done using the residuals. The standardized residuals, i.e.,
the residuals divided by the estimated error standard de-
viation, should follow a standard normal distribution, and
their normality can be checked visually using a normal Q-Q
plot, or other normality testing methods.

3.4 Model Selection
With the internal knots evenly spaced, the values of de-

gree and degree of freedom are needed to generate the spline
bases. They should depend on the sample size n and the
number of observations each subject has ni for clustered
data. Additionally, for clustered data, candidate models can
either have the conditional mean or the marginal mean in
the error variance function in Model (3.2).

Different values of spline degree and degree of freedom,
and the choice of using conditional mean or marginal mean,
will significantly impact the model fitting results. The pop-
ular model selection criteria for such problems are AIC and
BIC [33] as they consider both the fitting accuracy and the
model complexity. It can give similar results to the ‘delet-
ing subject cross validation’ method, and is faster to com-

pute [33, 20]. Details are as follow:

AIC = −2 logL+ 2P,

BIC = −2 logL+ P logn,

where L is the likelihood function of the fitted model, P is
the number of parameters, and n is the sample size. Models
with smaller AIC or BIC are preferred.

The numerical integration is needed for the scenario when
the model has error variance changing with the conditional
mean (3.3). From the definition in Model (3.2), the error
variance now depends on the random effects, and the likeli-
hood function should be:

L =

n∏
i=1

∫ +∞

−∞
f(yi | bi)f(bi) dbi,

bi ∼ MVN
(
0, B̂

)
,

yi | bi ∼ MVN
(
Xiβ̂ + Zibi, g2(vi, θ̂)

)
,

where f(yi | bi) is the probability density function (pdf) of
the response vector yi conditioning on the random effects bi,
and f(bi) is the pdf of the random effects bi. The distribu-
tions are showed in the equation. There is no closed-form
result for this integral, but it can be numerically calculated.

4. SIMULATION STUDY
The proposed methods were validated with an extensive

simulation study which covers the most commonly seen sce-
narios for both independent data and clustered data. For the
mean pattern in the simulation setting, only the parametric
part was used instead of the spline bases of time, since the
fitting process will be the same for each candidate value of
degree of freedom of the spline bases, and the same model
selection method can be used for selecting the best value.

4.1 Independent data
This study mimics a scenario where each subject has one

measure; see the fetal pancreas length application in Sec-
tion 5.1. The data generating model was

yi = β0 + β1x1i + β2x2i + εi, i = 1, . . . , n,

where yi is ith response, x1i is a Bernoulli(0.5) variable,
x2i is a Uniform(0, 2) variable, (β0, β1, β2) = (1, 1, 1), and
εi is a zero-mean normally distributed error term with
heteroscedasticity. Specifically, the standard deviation of
εi is g(μi), where μi = β0 + β1x1i + β2x2i. Three func-
tional forms were considered for g: g1(μ) = 0.25(μ − 0.9),
g2(μ) = 0.02(μ3+1.2), and g3(μ) = 0.1(5Φ(μ−2)/0.3)+1),
where Φ(·) is the cumulative distribution function of the
standard normal distribution. The specific parameter val-
ues in these functions were chosen such that the function
values were positive, the ratio of the maximum value over
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Table 1. Summary of simulation results for the independent data scenario: SE is the empirical standard error; ŜE is the
average of bootstrap standard errors, and CP is the empirical coverage percentage of 95% confidence intervals.

naive method (×10−2) proposed method (×10−2)

n g coef bias se ŝe CP Bias SE ŜE CP

100 g1 β0 0.6 7.5 7.4 96.0 0.0 2.3 2.7 97.0
β1 −0.4 8.8 8.8 94.2 −0.1 7.1 7.0 94.5
β2 −0.4 8.0 7.9 93.7 −0.0 5.0 5.0 94.0

g2 β0 −0.0 10.0 9.7 93.6 −0.1 2.3 2.0 90.6
β1 0.1 10.8 10.5 94.8 0.1 6.2 6.0 94.1
β2 0.1 10.6 10.2 92.5 0.2 4.3 4.1 93.5

g3 β0 −0.1 8.0 7.5 94.6 −0.3 3.7 3.4 90.0
β1 −0.1 9.9 9.9 94.7 −0.1 9.3 9.0 93.7
β2 0.2 9.1 8.4 91.9 0.4 6.7 6.4 93.6

200 g1 β0 −0.0 5.5 5.2 93.5 −0.0 1.6 1.9 97.7
β1 0.0 6.2 6.2 95.0 −0.0 5.1 4.9 94.1
β2 −0.0 6.0 5.6 92.7 −0.0 3.5 3.5 94.6

g2 β0 0.1 6.9 7.0 95.9 −0.0 1.5 1.4 92.3
β1 −0.0 7.2 7.5 95.0 0.1 4.1 4.2 95.3
β2 −0.1 7.4 7.3 94.5 0.0 2.9 2.9 94.7

g3 β0 −0.1 5.5 5.3 94.8 −0.0 2.7 2.4 92.3
β1 0.2 6.9 7.0 95.0 −0.1 6.3 6.2 94.5
β2 0.1 6.1 5.9 94.3 0.0 4.7 4.5 92.7

the minimum value was around 30, and the resulting signal-
to-noise ratio in the linear regression model was around 3.
Two sample sizes were considered n ∈ {100, 200}.

For each configuration, 1000 datasets were generated. For
comparison, both the naive linear regression model with het-
eroscedasticity ignored and the proposed GCA with shape-
restricted heteroscedasticity were fitted to each dataset. For
the naive model, the variances of the regression coefficients
were obtained using the robust estimator to account for the
heteroskedasticity [52, 25] as implemented in the R pack-
age sandwich [59, 57, 58]. In the proposed method, I-spline
bases were used to enforce monotonicity. As more degrees
of freedom were needed for fitting more complex patterns
with satisfying accuracy, we picked quadratic I-spline ba-
sis with 2, 3, and 7 degrees of freedom when fitting the
three g(·) patterns, respectively, with evenly spaced inter-
nal knots. Parametric bootstrap was used to calculate the
standard deviation of the estimates and to construct 95%
confidence interval of the regression coefficients and the er-
ror variance curve. The number of bootstrapping replicates
was 1000.

Table 1 summarizes the empirical bias, empirical stan-
dard error (se), estimated standard error (ŝe), and the cov-
erage percentage (CP) of the 95% confidence intervals of
parameter estimates. The bias from the proposed method
is close to zero under all the scenarios. The estimated stan-
dard deviations from parametric bootstrap ŝe is close to the
empirical value from the proposed method, and the CP is
close to the nominal level 95%. The point estimate of β2 has
lower variation than that for β1, which is expected because

the continuous covariate x2 provides more information than
the binary x1. As sample size increases, all standard errors
decreases. In comparison with proposed method, the naive
method leads to much higher standard deviations in the re-
gression coefficient estimation. Although the 95% confidence
intervals from the naive method seem to have appropriate
coverage percentage, they are much longer than those from
the proposed method as evident from the standard errors.

Figure 1 displays the estimated heteroscedasticity form
and the averaged point-wise 95% confidence intervals from
the proposed method using parametric bootstrap. The aver-
aged estimates represented by the solid lines are close to the
true curves in dashed lines, and the true curves lie within
the 95% point-wise confidence intervals. The wider intervals
near the right boundary, especially in the case of g3, reflect
that this is a challenging situation; the functional form is
convex first and concave later, which needs more degrees of
freedom to capture.

4.2 Clustered data
For clustered data, we considered a setting where each

subject has repeated measures; see the chicken weight ap-
plication in Section 5.2. The data generating model was a
mixed-effects model with a random effect at the subject
level,

yij = β0 + β1x1i + β2x2ij + bi + εij ,

i = 1, . . . , n, j = 1, . . . , 5,

where yij is the response variable for the jth observation
from the ith subject, x1i is a subject-level covariate gener-
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Figure 1: Error variance estimation for independent data simulation. The red dashed line is the truth, and the black solid
line is the estimation. The grey region is the 95% point-wise confidence interval.

ated from Bernoulli(0.5), x2ij is an observation-level contin-
uous covariate generated from Uniform(0, 5), (β0, β1, β2) =
(1, 1, 1), bi is the subject-level random effect generated from
N(0, σ2

b ) with σb = 0.1, and εij is a zero-mean normally dis-
tributed error term with heteroscedasticity. The standard
deviation of εij was set to be g(νij), where g ∈ {g1, g2, g3}
is same as in the independent data setting, νij is either the
conditional mean or the marginal mean of the jth observa-
tion of the ith subject defined in Equation (3.3) and (3.4),
respectively. The total number of subjects was set to be
again n ∈ {100, 200}.

Three different estimation methods were compared. The
first is the naive method that fits a linear mixed-effects
model with constant error variance. To better capture the
standard error, the robust sandwich estimator is used [48].
The second method uses the function lme() from the R
package nlme, which provides some preset forms of het-
eroscedasticity. For settings where g1 and g2 are used and μ
is the conditional mean, we used the true setup to specify the
error variance when fitting the model. For other settings, the
correct setup is not available in the lme() function, but we
still used a power function of the conditional mean to spec-
ify the heteroscedasticity. The third method is the proposed
method, where quadratic I-spline bases were used with de-
grees of freedom 5 for g1 and g2, and 7 for g3. Internal knots
of spline bases were chosen to be evenly spaced. The number
of replications for parametric bootstrap was 1000. For each
configuration, results were obtained for 1000 datasets.

Tables 2 and 3 summarize the simulation results for the

variance as a function of marginal mean and conditional
mean, respectively. All three methods seem to give unbi-
ased point estimates for the regression coefficients, as they
all have correct specification of the regression model. Their
differences are in their uncertainty levels and coverage per-
centages of the 95% confidence intervals. The naive method
has the worst performance since it did not consider the het-
eroscedasticity at all. The method with function lme() per-
forms better than the naive method, but is still not satisfac-
tory due to the misspecified heteroscedasticity form through
the limited choices offered by lme(). Even in settings where
the heteroscedasticity is correctly specified by the power
function g2() with conditional mean as the index variable,
see Table 3, its coverage percentages for β2 are much lower
than 95%. In contrast, in all three settings, the proposed
method gives point estimates with lower standard errors as
well as confidence intervals with coverage percentage close
to 95%. As the sample size n increases, the performance
becomes better as expected.

Also reported in Tables 2 and 3 are estimates of the stan-
dard deviation σb of the random effects. It is known that the
standard errors of the random-effects variance parameters
are hard to get and confidence intervals constructed from
profile likelihood or parametric bootstrap are preferred [4].
So here we focus on the point estimate of σb. When the
heteroscedasticity takes more complicated forms such as g2
and g3, the proposed method has much smaller bias than
the lme() method. In some settings such as g = g2; the
lme() estimates of σb have bias but lower variation com-
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Table 2. Summary of simulation results when error variance changes with the marginal mean: SE is the empirical standard
error; ‘ŜE is the average of bootstrap standard errors, and CP is the empirical coverage percentage of 95% confidence intervals.

naive method (×10−2) lme (×10−2) proposed method (×10−2)

n g coef Bias SE ŜE CP Bias SE ŜE CP Bias SE ŜE CP

100 g1 β0 0.1 8.8 8.4 94.0 −1.6 6.9 6.6 93.4 −0.1 6.9 6.6 93.4
β1 −0.2 10.0 9.5 94.2 0.1 8.3 8.4 95.4 −0.2 8.3 8.2 94.3
β2 −0.1 3.5 3.3 93.3 0.2 3.0 2.8 92.3 −0.0 3.0 2.9 92.8
σb −0.7 9.9 0.4 8.7 −0.9 8.7

g2 β0 −0.4 9.5 9.7 95.2 −2.9 4.3 3.5 81.0 −0.1 4.0 3.7 93.0
β1 0.1 10.4 10.4 94.6 0.2 5.0 5.6 96.2 −0.1 4.9 4.9 94.7
β2 0.2 4.4 4.3 93.6 1.1 2.6 2.2 87.6 0.1 2.4 2.3 93.6
σb −0.4 10.8 4.6 2.8 −0.1 5.4

g3 β0 −0.1 7.1 7.1 95.0 −3.8 6.4 5.1 82.5 −0.1 5.4 5.2 93.8
β1 0.3 9.0 9.0 95.4 1.3 6.3 7.2 97.6 0.1 5.8 6.1 95.2
β2 0.0 3.1 3.1 94.5 1.1 2.8 2.4 88.8 0.0 2.5 2.6 95.1
σb −1.2 9.2 6.0 6.6 −0.8 6.7

200 g1 β0 0.2 6.1 6.0 94.9 −1.3 4.9 4.6 92.9 0.2 4.8 4.7 94.0
β1 −0.4 6.8 6.8 95.3 −0.0 5.8 5.9 95.5 −0.3 5.8 5.8 95.2
β2 0.0 2.3 2.4 95.7 0.3 2.0 2.0 94.3 −0.0 2.0 2.0 94.8
σb −0.8 8.6 0.5 7.3 −0.5 7.5

g2 β0 0.0 6.9 6.9 94.7 −2.7 3.1 2.5 75.7 0.1 2.8 2.7 93.7
β1 −0.0 7.3 7.4 94.8 0.2 3.7 4.0 96.3 −0.1 3.6 3.5 94.2
β2 0.0 3.1 3.1 94.3 1.0 1.8 1.6 87.8 −0.0 1.6 1.6 94.1
σb −0.9 9.1 4.9 2.0 0.8 3.9

g3 β0 0.1 4.9 5.0 95.2 −3.9 4.6 3.6 74.6 0.0 3.8 3.7 94.5
β1 −0.0 6.3 6.4 95.2 1.3 4.8 5.1 96.0 0.1 4.5 4.3 94.0
β2 −0.0 2.2 2.2 95.4 1.1 2.0 1.7 86.4 −0.0 1.8 1.8 95.5
σb −1.3 8.1 7.1 4.8 −0.5 5.7

pared to those from the proposed method. This echos that
caution is needed when using standard errors of the random
effect variance. The empirical standard errors of the point
estimates from the proposed method decrease as the sam-
ple size increases, but apparently not at the rate of 1/

√
n,

suggesting that a larger sample size is needed for the asymp-
totic properties of the random-effect variance estimator to
hold.

Figure 2 displays the fitted heteroscedasticity from the
proposed method. The two panels show the results with
the index variables being the marginal mean and the condi-
tional mean, respectively. Similar to the independent data
scenarios, the estimated curve is close to the true curve, and
is within the averaged 95% point-wise confidence intervals.
The intervals are narrower than those in the independent
data scenarios as the repeated measures provide more infor-
mation.

5. APPLICATIONS
5.1 Fetal Pancreas Length

Fetus pancreatic dysplasia and hypertrophy, i.e., abnor-
mality of fetal pancreas, are associated with congenital mal-
formations [31, 19]. The fetal pancreas growth curve is a

critical tool for prenatal screening for disorders. The growth
pattern of fetal pancreas’ lengths during the prenatal pe-
riod has been investigated [12, 22, 15], but not the changing
variation of the measurements. The proposed method allows
capturing the fetal pancreas’ growing patterns in both the
mean level and the variation level.

One of the authors of this paper, Dr. Wenling Song from
the Second Hospital of Jilin University, collected the healthy
pancrea length data and provided it for analysis in this pa-
per. The data were collected from 44 pregnant women at
different stages of pregnancy who visited the Second Hospi-
tal of Jilin University in China during April to July of 2012.
The data is provided by Dr.Wenling Song, who is also the
author of this paper. No patient showed any external pathol-
ogy or anomaly. The dataset contains a single measure of the
fetal pancreas’ length from each patient. Figure 3 (I) shows
the pancreas’ lengths in millimeters versus the pregnant du-
ration in days. It is reasonable to assume that the growth
speed slows down as the fetus matures, in which case the
growth curve would be increasing and concave. It is also
reasonable to assume that the variation increases with time.
Therefore, we use C-splines to model the mean growth level
and use I-splines for the heteroscedasticity. Specifically, the
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Table 3. Summary of simulation results when the error variance changes with the conditional mean: SE is empirical standard
error; ŜE is the average of bootstrap standard errors; and CP is the empirical coverage percentage of 95% confidence interval.

naive method (×10−2) lme (×10−2) proposed method (×10−2)

n g coef Bias SE ŜE CP Bias SE ŜE CP Bias SE ŜE CP

100 g1 β0 −0.3 8.5 8.5 95.1 −1.8 6.7 6.6 93.9 −1.3 6.8 6.8 94.4
β1 0.5 9.4 9.5 94.6 0.7 8.0 8.3 95.3 0.5 8.0 8.3 95.7
β2 0.1 3.4 3.3 95.1 0.4 2.9 2.8 94.9 0.3 2.9 2.9 94.5
σb −1.5 9.4 −0.3 8.4 −1.4 8.7

g2 β0 0.4 9.8 9.7 94.2 −2.5 4.3 3.5 83.1 −0.5 4.1 3.8 92.7
β1 −0.2 10.3 10.4 94.4 0.1 5.1 5.6 97.2 −0.4 5.0 5.0 94.8
β2 −0.1 4.4 4.3 93.9 0.9 2.6 2.2 87.5 0.0 2.4 2.3 92.7
σb −0.7 10.7 4.5 3.0 −0.1 5.4

g3 β0 0.0 7.4 7.1 93.7 −3.7 6.6 5.1 81.2 −0.3 5.6 5.3 94.0
β1 −0.3 9.4 9.0 93.9 0.9 6.4 7.2 97.6 −0.5 6.2 6.1 94.6
β2 0.2 3.2 3.1 94.0 1.2 3.0 2.4 87.3 0.0 2.7 2.6 95.4
σb −1.9 9.0 6.0 6.7 −1.0 6.7

200 g1 β0 0.0 6.0 6.0 94.9 −1.4 4.9 4.6 92.4 −1.0 4.8 4.8 94.7
β1 0.0 6.7 6.7 94.7 0.4 5.8 5.9 95.4 0.3 5.8 5.8 94.2
β2 0.0 2.4 2.4 95.1 0.3 2.0 2.0 94.3 0.2 2.0 2.1 95.6
σb −1.9 8.1 0.1 7.2 −0.9 7.6

g2 β0 0.1 6.9 6.9 93.8 −2.9 3.0 2.5 73.5 −0.7 2.8 2.7 92.7
β1 −0.1 7.4 7.4 95.7 0.4 3.7 4.0 96.8 −0.2 3.6 3.5 95.2
β2 −0.0 3.1 3.1 94.5 1.1 1.8 1.6 85.0 0.0 1.7 1.6 94.9
σb −0.9 9.4 4.6 2.0 0.3 4.1

g3 β0 0.1 5.3 5.0 93.4 −4.1 4.9 3.6 72.8 −0.3 3.9 3.8 94.0
β1 −0.2 6.8 6.4 93.6 1.3 4.8 5.1 95.4 −0.1 4.4 4.3 94.7
β2 0.0 2.4 2.2 93.4 1.2 2.1 1.7 83.8 −0.1 1.9 1.8 94.3
σb −1.5 8.1 7.2 5.1 −0.4 5.6

model is

yi = β0 + β1ti +

K1∑
k=1

βk+1Ck(ti) + εi,

εi ∼ N

⎛
⎝0,

(
θ0 +

K2∑
k=1

θkIk(ti)

)2
⎞
⎠ ,

where yi is the ith length measurement, ti is the correspond-
ing time with linear coefficient β1, Ck(ti) is the kth C-splines
basis evaluated at ti with coefficient βk+1, k = 1, . . . ,K1, εi
is the independent error term with heteroscedasticity, and
Ik(ti) is the kth I-spline basis evaluated at ti with coefficient
θk, k = 1, . . . ,K2. The spline bases were selected using the
method stated in Section 3.4. The internal knots of both
spline bases were evenly spaced. The degrees of freedom K1

and K2 for the C-splines and I-splines, respectively, were
both chosen to be 4 by BIC.

Figure 3 shows fitted results for the growth curve of the
pancreas length. By shape restrictions, the fitted curve is
increasing and concave while the variance is increasing over
time. The estimated curve and the point-wise confidence

intervals in panel (I) accurately capture the mean and vari-
ation pattern. The residual plot with fitted 95% confidence
intervals in panel (II) shows good performance on estimat-
ing the heterogeneous pattern of error standard deviation.
The Q-Q plot of the standardized residuals in panel (III)
shows no alarming deviation from the normality.

The fitted results show accurate estimate of the pancrea
growth curve along with pregnancy days, including the mean
and the quantiles. This can provide a better guidance of
screening abnormality specifically for babies in that area.

5.2 Chicken Weight
The chicken weight data, which is available in R package

datasets, is a classic example of clustered data for GCA [14,
p. 4]. It contains the body weights in grams of 50 chicks
measured at birth date and every other day thereafter until
day 20, plus an additional measurement on day 21. These 50
chicks were divided into four groups to have different protein
diets, and the scatter plots of weight versus time for each
group are shown in Figure 4. We removed Chick No. 24 as an
outlier from the original dataset since its weight stopped in-
creasing after day 6. All four groups show increasing trends
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Figure 2: Heteroscedasticity estimation for clustered data when it changes with marginal mean (upper) and conditional
mean (lower). The red dashed line is the truth, and the black solid line is the estimation. The grey region is the averaged 95%
point-wise confidence interval.

on both the mean the variation level. Previous studies fo-
cused on building regression models on weight gain [14], i.e.,
the weight change, but no work has been done to directly
capture the heteroscedasticity in GCA.

We fitted Model (3.2) to this dataset. The model includes
fixed effects consisting of linear I-spline bases of time and
their interactions with the diet, as well as a chick-level ran-
dom effects on the slope of time. Heteroscedasticity is char-
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Figure 3: Pancreas length data analysis: (I) original data with estimated mean and 90% and 95% point-wise confidence
intervals; (II) the residual versus fitted mean plot with 95% point-wise confidence interval; (III) Q-Q plot of standardized
residual.

Figure 4: Weights over time in days for chicks in the four diet groups in the chicken weight dataset.

acterized by an I-spline of an index variable, which is either
the marginal mean or the conditional mean of the linear
effects model. Specifically, the model is

yij = β0 +

K1∑
k=1

(
βkI1k(tij) + β

(2)
k I1k(tij)D

(2)
i

+ β
(3)
k I1k(tij)D

(3)
i + β

(4)
k I1k(tij)D

(4)
i

)
+ bitij + εij ,

bi ∼ N(0, σ2
b ),

εij ∼ N

⎛
⎝0,

(
θ0 +

K2∑
k=1

θkI2k(νij)

)2
⎞
⎠ ,

where yij is the weight of chick i at time tij , {I1k(tij) :
k = 1, . . . ,K1} is a set of I-splines bases with K1 degrees
of freedom used in the mean model, (D2

ij , D
(3)
ij , D

(4)
ij ) are

the dummy variables of diet using diet 1 as the reference
level, bi is a normally distributed chick-level random effect

with variance σ2
b , the error term εij is normal with mean

zero and variance changing with index variable νij (either
marginal or conditional mean), {I2k(μij) : k = 1, . . . ,K2} is
a set of I-spline bases with K2 degrees of freedom used in
the heteroscedasticity model, and the regression coefficients
to be estimated are {βk, β

(2)
k , β

(3)
k , β

(4)
k : k = 1, . . . ,K1}

and {θk : k = 1, . . . ,K2}. The internal knots of spline bases
were always chosen to be evenly spaced.

We first need to decide whether to use the marginal mean
or the conditional mean as the index variable in the het-
eroscedasticity model. For both situations, the BIC chose
the same number of degrees of freedom of the I-splines. The
I-spline bases for the mean pancreas length had degree 0
with 3 degrees of freedom. The I-spline bases for the vari-
ance model had degree 1 and 9 degrees of freedom. Since
both the marginal mean model and the conditional mean
model had the same number of parameters, we can choose
the best model by only comparing the log-likelihood. The
conditional mean model had a log-likelihood of −2164.899,
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Figure 5: Diagnostics of chicken weight data analysis. Left: naive model; Middle: heteroscedastic model with variance
changing with marginal mean; Right: heteroscedastic model with variance changing with conditional mean. Upper: Q-Q
plots of standard residual; Lower: residual versus fitted means, with the 95% point-wise confidence intervals.

which is significantly higher than that of the marginal mean
model, −2199.183. Both of them were much higher than
−2315.220, the log-likelihood of the naive model that did
not consider heteroscedasticity.

Figure 5 shows the diagnostic plots for the three models.
For the naive model, the residual plot suggests increasing
variance as fitted value increases and the Q-Q plot suggest
heavier tail than the normal distribution. After consider-
ing heteroscedasticity with the proposed method, the model
with variance changing with the marginal mean model still
has heavy tail problem as seen from the Q-Q plot. The model
with variance changing with the conditional mean, however,
shows no obvious deviation from the normal distribution
in the Q-Q plot of the standardized residuals. These diag-
nostics are consistent with the model comparison results in
terms of log-likelihood.

Point-wise quantiles are of important practical value in
GCA since they can be used as reference to check if an indi-
vidual is in the normal range. For this linear mixed-effects

model, we approximated the quantiles by generating 10,000
individuals using the random effects and for each of them,
simulating their grow curve using the fitted model. The up-
per and lower 5% quantiles will give us 90% confidence inter-
val, and the upper and lower 2.5% quantiles will form the
95% confidence interval. Finally, the fitted growth curves
for the four diet groups along with their point-wise 90%
and 95% confidence intervals from the model with residual
variance changing with the conditional mean are shown in
Figure 6. Also overlaid are the fitted individual curves for all
the chicks in each diet group. It indicates that diet 3 works
best for the chicks with fastest growing speed and highest
weight at the end of the experiment, while diet 1 is the least
favorable. The estimated results along with other informa-
tion such as diet cost, can help the farmer decide which diet
to use to generate the highest profit. The quantile estimation
can also provide guidance on unhealthy chicken screening,
and stop potential disease spead at early stage.
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Figure 6: Fitted growing curves for all four Diet groups overlaid with the point-wise 90% and 95% confidence intervals .
The solid lines are the fixed effects, and the dashed lines represent the chicks with random effects on Time.

6. DISCUSSION
Shape-restricted splines provide great flexibility in in-

corporating prior knowledge about the shapes of the
curves to be fitted. With the recently available R package
splines2 [49], such fitting is facilitated in routine data anal-
ysis. GCA is an important area where shape restrictions
often need to be enforced. In addition to the mean growth
level, the heteroscedasticity can also have shape restrictions.
Such shape restrictions are enforced through constrained op-
timizations in an iteratively reweighted fitting procedure,
which takes advantage of existing software routines that al-
low weights. For clustered data, the variance of the error
term can be changing with either the marginal mean or the
conditional mean. In the latter case, the likelihood is hard
to calculate as the marginal distribution of the response vec-
tor is no longer within the multivariate normal family. This
is not too much of an inconvenience because the iteratively
reweighted fitting procedure does not need to evaluate this
likelihood. It is only needed in calculating model compari-
son criteria, which only needs to be done once for each fitted
model.

Although proposed in the context of GCA, our method
is applicable to the general setting of linear mixed-effects
models or multi-level models with shape restricted het-
eroscedasticity. In fact, our simulation studies were done
in a general setting. More accurate point and interval es-
timators are expected when the heteroscedasticity is appro-
priately accounted for. The parametric bootstrap for infer-
ences also works well in providing valid uncertainty mea-
sures for the estimated parameters. Alternative approaches
to shape restrictions are possible. For example, isotonic re-
gression [3, 50] can be used to enforce monotonicity, but
its implementation and extension to curvature restrictions
may not be as simple. Beyond linear models, application of

shape restrictions in generalized additive models for loca-
tion, scale, and shape [34] or quantile regressions [51] merits
further investigation. More complicated shape restrictions
beyond monotonicity and concavity/convexity can be dis-
cussed for future work, especially when the shape is a com-
bination of concavity and convexity such as the function g3
in our simulation setting, or the variance is bigger on both
end of the boundaries.

Accepted 8 July 2024

REFERENCES
[1] Akaike, H. (1998). Information Theory and an Extension of the

Maximum Likelihood Principle. In Selected Papers of Hirotugu
Akaike 199–213 Springer. MR1486823

[2] Andrews, D. W. K. (1999). Estimation When a Parameter is on
a Boundary. Econometrica 67(6) 1341–1383. Accessed 2023-05-
02. https://doi.org/10.1111/1468-0262.00082. MR1720781

[3] Barlow, R. E. and Brunk, H. D. (1972). The Isotonic Regres-
sion Problem and Its Dual. Journal of the American Statistical
Association 67(337) 140–147. MR0314205

[4] Bolker, B. (2016). Wald Errors of Variances. Online; accessed
Jan 3, 2022.

[5] Carroll, R. J. (1982). Adapting for Heteroscedasticity in Linear
Models. The Annals of Statistics 10(4) 1224–1233. MR0673657

[6] Carter, R. L., Resnick, M. B., Ariet, M., Shieh, G. and
Vonesh, E. F. (1992). A Random Coefficient Growth Curve Anal-
ysis of Mental Development in Low-Birth-Weight Infants. Statis-
tics in Medicine 11(2) 243–256.

[7] Cole, T. J. (1988). Fitting Smoothed Centile Curves to Reference
Data. Journal of the Royal Statistical Society. Series A (Statistics
in Society) 151(3) 385–418.

[8] Cole, T. J. and Green, P. J. (1992). Smoothing Reference Cen-
tile Curves: The LMS Method and Penalized Likelihood. Statistics
in Medicine 11(10) 1305–1319.

[9] Curran, P. J., Obeidat, K. and Losardo, D. (2010). Twelve Fre-
quently Asked Questions About Growth Curve Modeling. Journal
of Cognition and Development 11(2) 121–136.

[10] Curry, H. B. and Schoenberg, I. J. (1966). On Pólya Frequency
Functions IV: the Fundamental Spline Functions and Their Lim-

https://mathscinet.ams.org/mathscinet-getitem?mr=1486823
https://doi.org/10.1111/1468-0262.00082
https://mathscinet.ams.org/mathscinet-getitem?mr=1720781
https://mathscinet.ams.org/mathscinet-getitem?mr=0314205
https://mathscinet.ams.org/mathscinet-getitem?mr=0673657


14 J. Jiao et al.

its. Journal d’Analyse Mathématique 17(1) 71–107. https://doi.
org/10.1007/BF02788653. MR0218800

[11] Das, S. and Krishen, A. (1999). Some Bootstrap Methods
in Nonlinear Mixed-Effect Models. Journal of Statistical Plan-
ning and Inference 75(2) 237–245. https://doi.org/10.1016/
S0378-3758(98)00145-1. MR1678974

[12] Desdicioglu, K., Malas, M. A. and Evcil, E. (2010). Foetal
Development of the Pancreas. Folia Morphologica 69 216–224.

[13] Diggle, P. J. and Verbyla, A. P. (1998). Nonparametric Esti-
mation of Covariance Structure in Longitudinal Data. Biometrics
54(2) 401–415.

[14] Hand, D. J. and Crowder, M. J. (1996) Practical Longitudinal
Data Analysis. Routledge, Boca Raton.

[15] Hata, K., Hata, T. and Kitao, M. (1988). Ultrasonographic
Identification and Measurement of the Human Fetal Pancreas in
Utero. International Journal of Gynecology & Obstetrics 26(1)
61–64.

[16] Healy, M. J. R., Rasbash, J. and Yang, M. (1988). Distribution-
Free Estimation of Age-Related Centiles. Annals of Human Biol-
ogy 15(1) 17–22.

[17] Hedeker, D., Mermelstein, R. and Demirtas, H. (2008). An
Application of a Mixed-Effects Location Scale Model for Analysis
of Ecological Momentary Assessment (EMA) Data. Biometrics
64(2) 627–634. https://doi.org/10.1111/j.1541-0420.2007.00924.
x. MR2432437

[18] Hedeker, D., Mermelstein, R. J. and Demirtas, H. (2012).
Modeling Between-subject and Within-subject Variances in Eco-
logical Momentary Assessment Data Using Mixed-effects Location
Scale Models. Statistics in Medicine 31(27) 3328–3336. https://
doi.org/10.1002/sim.5338. MR3041814

[19] Hill, L. M., Peterson, C., Rivello, D., Hixson, J. and Bel-

far, H. L. (1989). Sonographic Detection of the Fetal Pancreas.
Journal of Clinical Ultrasound 17(7) 475–479.

[20] Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-
Coefficient Models and Basis Function Approximations for the
Analysis of Repeated Measurements. Biometrika 89(1) 111–128.
https://doi.org/10.1093/biomet/89.1.111. MR1888349

[21] Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial Spline
Estimation and Inference for Varying Coefficient Models with
Longitudinal Data. Statistica Sinica 14 763–788. MR2087972

[22] Krakowiak-Sarnowska, E., Flisiński, P., Szpinda, M.,
Sarnowski, J., Lisewski, P. and Flisiński, M. (2005). Mor-
phometry of the Pancreas in Human Foetuses. Folia Morphologica
64 29–32.

[23] Lambert, P. C., Abrams, K. R., Jones, D. R., Halligan,

A. W. F. and Shennan, A. (2001). Analysis of Ambulatory Blood
Pressure Monitor Data Using a Hierarchical Model Incorporating
Restricted Cubic Splines and Heterogeneous Within-Subject Vari-
ances. Statistics in Medicine 20(24) 3789–3805.

[24] Liang, K. -Y. and Zeeger, S. L. (1986). Longitudinal Data Anal-
ysis Using Generalized Linear Models. Biometrika 73(1) 13–22.
https://doi.org/10.1093/biomet/73.1.13. MR0836430

[25] MacKinnon, J. G. and White, H. (1985). Some
Heteroskedasticity-Consistent Covariance Matrix Estimators with
Improved Finite Sample Properties. Journal of Econometrics
29(3) 305–325. https://doi.org/10.1016/0304-4076(85)90158-7.

[26] McArdle, J. J. and Nesselroade, J. R. (2003). Growth Curve
Analysis in Contemporary Psychological Research. Handbook of
Psychology: Research Methods in Psychology 447–480.

[27] Meyer, M. C. (2008). Inference Using Shape-Restricted Regres-
sion Splines. The Annals of Applied Statistics 2(3) 1013–1033.
https://doi.org/10.1214/08-AOAS167. MR2516802

[28] Muller, H. -G. and Stadtmuller, U. (1987). Estimation of
Heteroscedasticity in Regression Analysis. The Annals of Statis-
tics 15(2) 610–625. https://doi.org/10.1214/aos/1176350364.
MR0888429

[29] Nelder, J. A. and Lee, Y. (1998). Joint Modeling of Mean and
Dispersion. Technometrics 40(2) 168–171.

[30] Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core

Team (2022). nlme: Linear and Nonlinear Mixed Effects Mod-
els. R package version 3.1-157. https://CRAN.R-project.org/
package=nlme.

[31] Quinn, A., Blanco, C., Perego, C., Finzi, G., La Rosa,

S., Capella, C., Guardado-Mendoza, R., Casiraghi, F.,
Gastaldelli, A., Johnson, M., Dick, E. and Folli, F. (2012).
The Ontogeny of the Endocrine Pancreas in the Fetal/Newborn
Baboon. The Journal of Endocrinology 214 289–299. https://doi.
org/10.1530/JOE-12-0070.

[32] Ramsay, J. O. (1988). Monotone Regression Splines in Action.
Statistical Science 3 425–461.

[33] Rice, J. A. and Wu, C. O. (2001). Nonparametric Mixed Ef-
fects Models for Unequally Sampled Noisy Curves. Biometrics
57(1) 253–259. https://doi.org/10.1111/j.0006-341X.2001.00253.
x. MR1833314

[34] Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized
Additive Models for Location, Scale and Shape (with Discus-
sion). Applied Statistics 54 507–554. https://doi.org/10.1111/j.
1467-9876.2005.00510.x. MR2137253

[35] Rigby, R. A. and Stasinopoulos, D. M. (2014). Auto-
matic Smoothing Parameter Selection in GAMLSS With
an Application to Centile Estimation. Statistical Methods
in Medical Research 23(4) 318–332. https://doi.org/10.1177/
0962280212473302. MR3246533

[36] Rigby, R. A., Stasinopoulos, D. M. and Voudouris, V. (2013).
Discussion: A Comparison of GAMLSS with Quantile Regres-
sion. Statistical Modelling 13(4) 335–348. https://doi.org/10.
1177/1471082X13494316. MR3179531

[37] Robert-Granié, C., Heude, B. and Foulley, J. -L. (2002).
Modelling the Growth Curve of Maine-Anjou Beef Cattle Using
Heteroskedastic Random Coefficients Models. Genetics Selection
Evolution 34(4) 1–23.

[38] Robert-Granié, C., Heude, B. and Foulley, J. -L. (2002).
Modelling the Growth Curve of Maine-Anjou Beef Cattle Using
Heteroskedastic Random Coefficients Models. Genetics Selection
Evolution 34(4) 423.

[39] Rossi, R. J. (2018) Mathematical Statistics: An Introduction to
Likelihood Based Inference. John Wiley & Sons, Hoboken, NJ.

[40] Royston, P. and Wright, E. M. (1998). A Method for Estimat-
ing Age-Specific Reference Intervals (‘Normal Ranges’) Based on
Fractional Polynomials and Exponential Transformation. Journal
of the Royal Statistical Society: Series A (Statistics in Society)
161(1) 79–101.

[41] Sandland, R. L. and McGilchrist, C. A. (1979). Stochastic
Growth Curve Analysis. Biometrics 35(1) 255–271.

[42] Schwarz, G. (1978). Estimating the Dimension of a Model. The
Annals of Statistics 461–464. MR0468014

[43] Smyth, G. K. (1989). Generalized Linear Models with Varying
Dispersion. Journal of the Royal Statistical Society: Series B
(Methodological) 51(1) 47–60. MR0984992

[44] Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z.,
Voudouris, V. and De Bastiani, F. (2017) Flexible Regression
and Smoothing: Using GAMLSS in R. CRC Press, Boca Raton,
FL. https://doi.org/10.1177/1471082X18759144. MR3799717

[45] Stone, A., Shiffman, S., Atienza, A. and Nebeling, L. (2007)
The Science of Real-Time Data Capture: Self-Reports in Health
Research. Oxford University Press, Oxford, England.

[46] Strydhorst, S., Hall, L. and Perrott, L. (2018). Plant Growth
Regulators: What Agronomists Need to Know. Crops & Soils
51(6) 22–26.

[47] Thai, H. -T., Mentré, F., Holford, N. H., Veyrat-Follet, C.

and Comets, E. (2013). A Comparison of Bootstrap Approaches
for Estimating Uncertainty of Parameters in Linear Mixed-Effects
Models. Pharmaceutical Statistics 12(3) 129–140.

[48] Wang, T. and Merkle, E. C. (2018). merDeriv: Derivative Com-
putations for Linear Mixed Effects Models with Application to
Robust Standard Errors. Journal of Statistical Software, Code
Snippets 87(1) 1–16. https://doi.org/10.18637/jss.v087.c01.

[49] Wang, W. and Yan, J. (2021). Shape-Restricted Regression

https://doi.org/10.1007/BF02788653
https://doi.org/10.1007/BF02788653
https://mathscinet.ams.org/mathscinet-getitem?mr=0218800
https://doi.org/10.1016/S0378-3758(98)00145-1
https://doi.org/10.1016/S0378-3758(98)00145-1
https://mathscinet.ams.org/mathscinet-getitem?mr=1678974
https://doi.org/10.1111/j.1541-0420.2007.00924.x
https://doi.org/10.1111/j.1541-0420.2007.00924.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2432437
https://doi.org/10.1002/sim.5338
https://doi.org/10.1002/sim.5338
https://mathscinet.ams.org/mathscinet-getitem?mr=3041814
https://doi.org/10.1093/biomet/89.1.111
https://mathscinet.ams.org/mathscinet-getitem?mr=1888349
https://mathscinet.ams.org/mathscinet-getitem?mr=2087972
https://doi.org/10.1093/biomet/73.1.13
https://mathscinet.ams.org/mathscinet-getitem?mr=0836430
https://doi.org/10.1016/0304-4076(85)90158-7
https://doi.org/10.1214/08-AOAS167
https://mathscinet.ams.org/mathscinet-getitem?mr=2516802
https://doi.org/10.1214/aos/1176350364
https://mathscinet.ams.org/mathscinet-getitem?mr=0888429
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1530/JOE-12-0070
https://doi.org/10.1530/JOE-12-0070
https://doi.org/10.1111/j.0006-341X.2001.00253.x
https://doi.org/10.1111/j.0006-341X.2001.00253.x
https://mathscinet.ams.org/mathscinet-getitem?mr=1833314
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2137253
https://doi.org/10.1177/0962280212473302
https://doi.org/10.1177/0962280212473302
https://mathscinet.ams.org/mathscinet-getitem?mr=3246533
https://doi.org/10.1177/1471082X13494316
https://doi.org/10.1177/1471082X13494316
https://mathscinet.ams.org/mathscinet-getitem?mr=3179531
https://mathscinet.ams.org/mathscinet-getitem?mr=0468014
https://mathscinet.ams.org/mathscinet-getitem?mr=0984992
https://doi.org/10.1177/1471082X18759144
https://mathscinet.ams.org/mathscinet-getitem?mr=3799717
https://doi.org/10.18637/jss.v087.c01


Heteroscedastic Growth Curve Modeling with Shape-Restricted Splines 15

Splines with R Package splines2. Journal of Data Science 19(3)
498–517.

[50] Wang, X. and Li, F. (2008). Isotonic Smoothing Spline Regres-
sion. Journal of Computational and Graphical Statistics 17(1)
21–37. https://doi.org/10.1198/106186008X285627. MR2424793

[51] Wei, Y., Pere, A., Koenker, R. and He, X. (2006). Quan-
tile Regression Methods for Reference Growth Charts. Statistics
in Medicine 25(8) 1369–1382. https://doi.org/10.1002/sim.2271.
MR2226792

[52] White, H. (1980). A Heteroskedasticity-Consistent Covariance
Matrix Estimator and a Direct Test for Heteroskedasticity.
Econometrica 48(4) 817–838. https://doi.org/10.2307/1912934.
MR0575027

[53] Wu, C. O. and Tian, X. (2018) Nonparametric Models for Lon-
gitudinal Data: with Implementation in R. CRC Press. https://
doi.org/10.1201/b20631. MR3838457

[54] Wu, H. and Zhang, J. -T. (2002). The Study of Long-Term
HIV Dynamics Using Semi-Parametric Non-Linear Mixed-Effects
Models. Statistics in Medicine 21 3655–3675.

[55] Yan, J. and Fine, J. (2004). Estimating Equations for Associ-
ation Structures (Pkg: P859-880). Statistics in Medicine 23(6)
859–874.

[56] Zee, B. C. (1998). Growth Curve Model Analysis for Quality of
Life Data. Statistics in Medicine 17(5–7) 757–766.

[57] Zeileis, A. (2004). Econometric Computing with HC and HAC
Covariance Matrix Estimators. Journal of Statistical Software
11(10) 1–17. https://doi.org/10.18637/jss.v011.i10.

[58] Zeileis, A. (2006). Object-Oriented Computation of Sandwich
Estimators. Journal of Statistical Software 16(9) 1–16. https://
doi.org/10.18637/jss.v016.i09.

[59] Zeileis, A., Köll, S. and Graham, N. (2020). Various Versa-
tile Variances: An Object-Oriented Implementation of Clustered
Covariances in R. Journal of Statistical Software 95(1) 1–36.
https://doi.org/10.18637/jss.v095.i01.

[60] Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. and Smith,

G. M. (2009) Mixed Effects Models and Extensions in Ecol-
ogy With R. Springer, New York. https://doi.org/10.1007/
978-0-387-87458-6. MR2722501

Jieying Jiao. Department of Statistics, University of Connecti-
cut, USA. E-mail address: jieying.jiao@uconn.edu

Wenling Song. Department of Obstetrics, The First
Hospital of Jilin University, China. E-mail address:
songwenlingcarol@163.com

Yishu Xue. Department of Statistics, University of Connecticut,
USA. E-mail address: yishu.xue@uconn.edu

Jun Yan. Department of Statistics, University of Connecticut,
USA. E-mail address: jun.yan@uconn.edu

https://doi.org/10.1198/106186008X285627
https://mathscinet.ams.org/mathscinet-getitem?mr=2424793
https://doi.org/10.1002/sim.2271
https://mathscinet.ams.org/mathscinet-getitem?mr=2226792
https://doi.org/10.2307/1912934
https://mathscinet.ams.org/mathscinet-getitem?mr=0575027
https://doi.org/10.1201/b20631
https://doi.org/10.1201/b20631
https://mathscinet.ams.org/mathscinet-getitem?mr=3838457
https://doi.org/10.18637/jss.v011.i10
https://doi.org/10.18637/jss.v016.i09
https://doi.org/10.18637/jss.v016.i09
https://doi.org/10.18637/jss.v095.i01
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1007/978-0-387-87458-6
https://mathscinet.ams.org/mathscinet-getitem?mr=2722501
mailto:jieying.jiao@uconn.edu
mailto:songwenlingcarol@163.com
mailto:yishu.xue@uconn.edu
mailto:jun.yan@uconn.edu

	Introduction
	Shape-Restricted Splines
	GCA with Shaped-Restricted Heteroscedasticity
	Model for Independent Data
	Model for Clustered Data
	Inference
	Model Selection

	Simulation Study
	Independent data
	Clustered data

	Applications
	Fetal Pancreas Length
	Chicken Weight

	Discussion
	References
	Authors' addresses

