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Abstract
Variable rate irrigation (VRI) seeks to increase the efficiency of irrigation by spatially adjusting water output within an

agricultural field. Central to the success of VRI technology is establishing homogeneous irrigation zones. In this research,
we propose a fusion of statistical modeling and deep learning by using artificial neural networks to map irrigation zones
from simple-to-measure predictors. We further couple our neural network model with spatial correlation to capture smooth
variations in the irrigation zones. We demonstrate the effectiveness of our model to define irrigation zones for a farm of
winter wheat crop in Rexburg, Idaho.
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1. INTRODUCTION

1.1 Problem Background and Data
The management of agricultural fields (i.e. farming) in

the era of data science has evolved to use spatial mapping,
remote sensing, soil and terrain measurements, weather
measurements and other data sources to improve the quan-
tity and quality of crops [21, 9]. The management of agri-
cultural fields using advanced data analytics is referred to,
collectively, as “precision agriculture” [5, 8] and is quickly
becoming industry standard. Broadly, precision agriculture
attempts to use the spatial variability within a field to man-
age individual crop locations rather than treat a field as spa-
tially and temporally homogeneous. The spatial variability
within a field can be influenced by differences in elevation,
aspect, or other topographical features of the field that influ-
ence both irrigation and crop yield. Given that agriculture
fields often occupy multiple acres of space, precision agricul-
ture has been shown to outperform basic farming techniques
by increasing crop yield [30, 32].

Crop yield is heavily driven by the volumetric water con-
tent (VWC; the ratio of the volume of water currently in the
soil to the unit volume of soil, or in other words the quantity
of water contained in the soil) and, in arid regions, irriga-
tion is a practiced method for controlling and adjusting the
VWC. As such, variable rate irrigation (VRI) is a practice
within precision agriculture focused on using data to adjust
the amount of water applied throughout the field according
to spatial and temporal variations [20, 39, 40, 25, 60]. Such
management zones can be temporally dynamic to help in-
form day-to-day watering decisions [13] or, as is the case in
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this application, static to inform season-long watering deci-
sions.

One approach to VRI is to partition the field into man-
agement zones (or irrigation zones) wherein irrigation rates
are homogeneous within each management zone but differ-
ent across zones rather than utilizing a constant irrigation
rate throughout the entire field [18, 61, 57, 38, 37]. Bene-
fits of using VRI with management zones include reductions
in water and energy input, increased crop productivity, de-
creased runoff (i.e. less waste) and reductions in chemical
inputs and soil pollution [42, 3, 25].

Effective irrigation zones should partition the agricultural
field based on VWC [31]. However, obtaining VWC is a la-
bor intensive process and is often only sparsely measured for
the entire field [27]. As an example, consider Figure 1 which
shows 66 VWC measurements averaged over four time pe-
riods between April and September 2019 for an agricultural
field of winter wheat in Rexburg, Idaho along with the asso-
ciated irrigation zone for each location. Although the VWC
was recorded at 66 different locations, the available data do
not adequately cover the field to the point where precise irri-
gation decisions and zones can be precisely defined. That is,
based on such sparse measurement the boundaries between
zones are unclear.

Rather than using the VWC directly, agricultural scien-
tists have begun to use alternative, more easily obtained,
data to inform irrigation zones [50, 56, 26, 24]. Examples of
such possible data for the Rexburg field considered in this
research are shown in Figure 2 and include historical yields,
normalized difference vegetation index (NDVI), elevation,
topographical wetness index (TWI), aspect, and slope (more
details on these covariates are given in the application Sec-
tion 3.1 below). These alternative covariates to VWC were
recorded for over 5000 unique locations in the field using
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Figure 1: The scatterplot on the left shows the average VWC
at the 66 samples throughout the field in Rexburg, Idaho.
The edges of the field were excluded from this study. The
scatterplot on the right shows the classified zone at the 66
samples throughout the field in Rexburg, Idaho. The aver-
age VWC was calculated from 4 VWC measurements taken
between April and August of the same year.

simple remote sensing mounted on drones or tractors mak-
ing these data readily available to farmers.

The primary issue of using alternative covariates to VWC
such as that in Figure 2 to define VRI zones is that such co-
variates are non-linearly related to VWC and, hence, may
result in less water efficient zones than ones defined directly
by VWC. Figure 3 shows scatterplots of a few of the vari-
ables against the VWC for the Rexburg field demonstrat-
ing clear non-linear relationships. In fact, the scatterplots in
Figure 3 show a highly complex relationship between these
alternative covariates and VWC suggesting that zones de-
fined directly on the covariates may vary considerably from
the more water-efficient zones defined on VWC.

1.2 Research Goals and Contributions
In this research, we seek to implement a method to delin-

eate irrigation zones based on VWC using the data displayed
in Figure 2 as covariate information. Specifically, we define
a model relating the easily obtained and spatially dense co-
variate data to the sparse VWC data. To do so, we integrate
deep learning into a statistical modeling framework for ir-
rigation zones to capture the complex relationship between
the covariate data and the response variable.

Deep learning is a subfield of machine learning focused
on using highly flexible algorithms called neural networks

Figure 2: Heat maps for the alternative data to VWC across
the field in Rexburg using remote sensing.

to learn complex relationships between covariates and re-
sponse variables [53]. Deep learning algorithms have been
successfully implemented across a wide range of applica-
tions leading to their explosion in popularity in recent years
[1, 41, 49, 12]. More recently, deep learning (and machine
learning more generally) have successfully incorporated spa-
tial correlation [48, 45] into these algorithms.

From a statistical perspective, deep learning algorithms
do not inherently account for uncertainty in the predictions
and are often so complex that they are uninterpretable (so-
called “black box” methods). Yet, recent efforts in the statis-
tics community have started to fold deep learning into sta-
tistical models [34, 54, 46, 11]. While we acknowledge that
some methods (such as dropout) can give uncertainty esti-
mates [see 15], we consider embedding a deep neural network
into a statistical model and follow [52] by estimating associ-
ated parameters using a fully Bayesian paradigm. Further,
we implement Bayesian versions of partial dependence plots
to give some interpretability to the deep neural network be-
tween the covariates and the response variable.

With a deep neural network accounting for the com-
plex relationships between the covariates and response, our
model also creates smooth irrigation zones by incorporating
spatial correlation. Specifically, we use spatial basis func-
tions distinctly from the neural network portion of the model
thereby successfully merging deep learning into a spatial
modeling framework.

The primary quantity of interest in this research is the
irrigation zone of each location on the field – not necessarily
the VWC. Admittedly, we could predict the VWC first and
then create irrigation zones by splitting based on predicted
VWC quantiles. However, here we perform modeling for the
associated zone as the response of interest given by the right
panel of Figure 1. We focus on the zone rather than VMC
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Figure 3: Scatterplots of the water content against elevation, TWI, slope, and yield throughout the field. It is evident,
especially for elevation and slope, that the relationship between these covariates and the water content is non-linear,
justifying the use of neural networks to model this relationship.

for a few reasons. First, our data is unique in that we have
the exact VWC measurements. However, given the cost, ob-
taining exact VWC data is exceptionally rare in agricultural
practice (our data being an exception rather than the rule).
Predicting continuous VWC would be applicable only to this
field in Rexburg and would not be able to be tested on other
fields. Rather, most agriculture fields are able to only collect
ambiguous VWC levels of “low” or “high.” By focusing on
irrigation zone, our statistical model will be more aligned
with typical data available in other crop fields. Second, VRI
technology is typically done by applying “less than average”
water to some locations and “more than average” to others.
Hence, what is required to implement VRI is knowledge of

which locations are “low” and which are “high” rather than
the exact VWC.

Given the focus on irrigation zones, the response variable
is thus an ordered multinomial response. Under this dis-
cretization, we build our model following the latent variable
approach of [2], [22] and [4] to facilitate Bayesian compu-
tation. While others have developed statistical models for
neural networks [see 16, 34], to our knowledge, this is the
first attempt at building a deep spatial statistical model for
an ordered categorical response.

We view this work as a contribution to the growing body
of literature of spatial deep learning methods [see 58]. Alter-
native approaches include [7] use spatial bases as inputs into
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neural networks. However, here we use spatial bases sepa-
rately from the neural network because using such bases as
inputs may sacrifice some spatial smoothness which is cru-
cial to our application. Likewise, [59] use generalized squared
error loss functions with a spatial covariance to fit spatial
graphical neural networks. Our approach is inherently dif-
ferent from this because our response is non-Gaussian so
squared error loss functions are not directly applicable.

The remainder of this paper is outlined as follows. Sec-
tion 2 describes our spatial neural network model along with
our Bayesian strategy to estimate model parameters. Sec-
tion 3 describes the result of the model fit to the Rexburg
field including model tuning, predicted zone delineation and
effect interpretation. Finally, Section 4 concludes by pin-
pointing strengths and weaknesses of our approach along
with areas for future research.

2. A SPATIAL NEURAL NETWORK MODEL
2.1 Model Specification

Let Y (s) ∈ {1, . . . , R} denote the irrigation zone for lo-
cation s = (s1, s2)

′ ∈ R
2 where R is the number of desired

irrigation zones for a field. Given the current state of vari-
able rate irrigation systems, usually R will only be as high
as 4 or 5. Further, because each irrigation zone is given a
different amount of water (i.e. dry irrigation zones receive
more water), we can treat Y (s) as an ordered, discrete spa-
tial random variable. Due to the difficulty of performing
spatial analysis on a discrete scale, we follow [2], [22] and [4]
by augmenting Y (s) with a latent variable Z(s) ∈ R such
that

(
Y (s) | {cr}, Z(s)

)
=

R∑
r=1

r1
(
cr−1 ≤ Z(s) < cr

)
(2.1)

where 1(·) is an indicator function and c0 = −∞ < c1 =
0 < c2 < · · · < cR = ∞ are cut points used to determine
the probability that location s belongs to a specific zone.

Under Equation (2.1) and given the cut points c0, . . . , cR,
Y (s) is completely determined by Z(s) so that modeling
Z(s) will induce a statistical model for Y (s). Using this
relationship between Y (s) and Z(s), we assume(

Z(s) | w(s)
)
∼ N

(
fL

(
X(s)

)
+ w(s), 1

)
(2.2)

where fL(X(s)) is the univariate output function of an L-
layer feed forward neural network (FFNN) or, alternatively
referred to as a multilayer perceptron (MLP) with input co-
variates X(s) = (X1(s), . . . , XP (s))

′ and w(s) is a spatial
random effect. Under this model structure, we follow [2] by
fixing the variance at 1 to identify the scale of the weights of
the neural networks (coefficients) and we set c1 = 0 to iden-
tify a bias term. This model, importantly, accounts for the
various challenges of determining irrigation zones via sta-
tistical modeling discussed in Section 1.2. First, the FFNN

in (2.2) utilizes a nonlinear relationship between the set of
covariates X(s) and the associated irrigation zone (see Fig-
ure 3). Second, the spatial random effect w(s) in (2.2) en-
sures that the fitted irrigation zones change smoothly over
space thereby creating zones that can be reasonably imple-
mented via VRI. Consider each piece of the model in the
following paragraphs.

FFNNs have become known for the strong performance
in prediction, especially where non-linear relationships exist
between covariates and the response variable as is the case
here [12]. A FFNN with L layers, consists of three different
types of layers: an input layer, hidden layers and an output
layer each consisting of a different number of units. More
succinctly, let fl(X(s)) = (f�1(X(s)), . . . , f�P�

(X(s)))′ be
the vector of P� units at layer � of the FFNN. The transfor-
mation from layer to layer occurs via

f�

(
X(s)

)
= a�

(
λ(�−1)0 +Λ�−1f�−1

(
X(s)

))
(2.3)

where a�(·) is a element-wise nonlinear activation function
used at layer �, λ(�−1)0 = (λ(�−1)01, . . . , λ(�−1)0P�

)′ is the
vector of intercepts (biases) applied to layer � − 1 and
Λ�−1 = {λ(�−1)ij}i,j is the P� × P�−1 matrix of coefficients
(weights) used to transition from layer �− 1 to layer �. For
the input layer (i.e. � = 1), we take f1(X(s)) = X(s) such
that P1 = P is the number of covariates included in the
model. From a statistical point of view, the weights and bi-
ases (intercepts and coefficients) {λ�0,Λ�}L−1

�=1 are the model
parameters to be estimated from the data while the number
of layers L, the layer dimensions {P�} and the activation
functions are known as “tuning parameters” and are fixed
via cross-validation to optimize prediction performance.

The flexibility of FFNNs to capture complex relationships
comes from appropriate choice of L, {P�} and {a�(·)}. First,
deeper networks (larger L) may be required to allow for
more complex transformations of X(s) between the input
and output layers. Conversely, in the simplest case, when
L = 2, the relationship between X(s) and Z(s) would be
linear provided aL(x) = x is the identity function.

Beyond the number of layers, the number of units per
layer (denoted by P�) can also be modified to capture com-
plex relationships between the covariates and the response
variable. For example, if P� > P1 for any � > 1 then the
FFNN uses a dimension expansion to model the relation-
ship between covariates and the response [55, 6, 47]. As
recently shown by [28] and [33] but pioneered by [35], an
infinite dimension expansion would mimic a Gaussian pro-
cess regression model between the covariates and response.
Conversely, if P� < P1 for any � > 1 then the transition
in (2.3) acts similar to a principal components regression
model by reducing the dimension of the input space [see 14,
Chapter 5].

The activation functions {a�(·)}Ll=2 in (2.3) are typically
non-linear to ensure that the relationship between X(s) and
Z(s) is also non-linear. Typical choices of a�(·) include rec-
tified linear units, hyperbolic tangents and identity (see [36]
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and [44] for a discussion of these activations). However, sim-
ple algebraic manipulations show that if a�(x) = x (the
identity activation) for all � then the relationship between
Z(s) and X(s) would be linear. Notably, to increase flexibil-
ity, different layers can utilize different activation functions
but, traditionally, the same activation function is used for
all layers with the exception of the output layer where the
domain of aL(·) must match the support of Z(s) (which, in
our cases, aL(·) is the identity function).

While fL(X(s)) captures the non-linear relationship be-
tween the response and covariates, the spatial random ef-
fect w(s) serves to smooth the predicted zones over space.
To achieve this smoothing, we opt to use the Moran basis
function expansion for w(s) advocated by, among others,
[23]. To calculate the Moran basis functions, we first deter-
mine an adjacency matrix A = {aij} between all observed
locations and desired prediction locations according to the
inverse weighting distance

aij =

{
0 if i = j

1
‖si−sj‖ otherwise

(2.4)

where si and sj are two locations on the field (either ob-
served or predicted). Let P = I −11′/n where 1 is a vector
of ones and n is the total data size (number of observed
locations plus the number of desired prediction locations).
Let B be the n×K matrix of the K eigenvectors associated
with the K largest positive eigenvalues of PAP . Then, we
set

w(s) = b′(s)β (2.5)

where b′(s) the row of B associated with location s and
β is a vector of coefficients to be estimated from the data.
Generally, as K increases then the associated fitted spatial
surface from the Moran basis is more variable. Hence, for
purposes of this research, we treat K as an additional tuning
parameter that we will choose via cross-validation.

2.2 Parameter Estimation
Even though neural networks are typically fit via loss

minimization, in an effort to merge machine learning and
statistical modeling, we adopt a Bayesian approach for pa-
rameter estimation to ensure that our predicted irrigation
zone surface accounts for associated parameter uncertainty.
Accounting for uncertainty here is important so that the
predicted irrigation zones can be potentially altered to more
easily be incorporated into a VRI system. For example, if
the zone assigned to a certain location is highly uncertain,
then that location can be manually assigned to a zone by
the farmers to increase the overall efficiency of the VRI.

Under the Bayesian approach, prior distributions are re-
quired for all the neural network parameters {λ�0,λ�}, the
Moran basis coefficients (β) and the cut points c2, . . . , cR
and parameter estimation is done via posterior inference.

Because the β parameter vector is simply coefficients in
an ordered probit regression model, we assume a vague
N(0, 100I) prior distribution because the data can gener-
ally estimate these parameters well [22]. Because the cut
points are ordered so that 0 < c2 < · · · < cR = ∞, each
cutpoint was transformed according to c�2 = log(c2) and

c�r = log(cr − cr−1) (2.6)

for r = 3, . . . , R−1 and a N (0, 10) prior was used for each c�r .
The corresponding back transformation cr =

∑r
i=2 exp{c�i }

ensures the ordering constraint.
The priors for the FFNN weights {Λ�} and biases {λ0�}

need to be chosen with care to avoid overfitting. As doc-
umented by, among others, [10], neural networks can eas-
ily overfit training data resulting in poor predictive perfor-
mance. One common approach for restricting neural net-
works is via penalization (regularization). In a Bayesian set-
ting, regularization is enforced via informative prior con-
straints [see 43, for a review]. As such, we assume a priori
independent N (0, 0.01) priors for all biases and weights. The
highly informative 0.01 variance constrains the biases and
weights to be near zero; thus preventing overfitting similar
to ridge and LASSO regression models. For our application
below, we tried a few different values for the prior variance
here but ultimately settled on 0.01 as the best performing
prior in terms of predictive accuracy (see Section 3.1 below).
Admittedly, a Laplace prior could be used for the weights
because it corresponds to the LASSO penalty [51]. For our
purposes, the above Gaussian prior worked adequately to
prevent overfitting as demonstrated by our cross-validation
study below.

Posterior inference for our model parameters was accom-
plished by using Markov chain Monte Carlo (MCMC) sam-
pling. Conditional on all other parameters, the complete
conditional distribution for Z(s) is a truncated Gaussian
distribution with mean fL(X(s)) + b′(s)β, variance 1 and
endpoints cY (s)−1 and cY (s). Because each Z(s) is condition-
ally independent, this sampling can be done independently
and efficiently. Next, because Z(s) ∈ R, we use assume aL(·)
is the identity activation and PL = 1 so that

Z(s)
iid∼ N

(
λ0(L−1) + f ′

L−1

(
X(s)

)
ΛL−1 + b′(s)β, 1

)
(2.7)

which can be rewritten simply as Z(s) ∼ N (X ′
�(s)β

�, 1)
where β� = (λ0(L−1),Λ

′
L−1,β

′)′ and X�(s) =
(1,f ′

L−1(X(s)), b′(s))′. Under the above Gaussian pri-
ors, the complete conditional for β� is Gaussian and can be
sampled directly.

While {Z(s)} and {λ0(L−1),ΛL−1,β} can be sampled di-
rectly from the corresponding complete conditional distri-
butions, the cut points c2, . . . , cR−1 and other FFNN pa-
rameters {λ0l,Λl}L−2

l=1 need to be sampled indirectly via
Metropolis-Hastings or other algorithms. In early phases of
this research, the weights and biases were sampled individ-
ually or a single column at a time. However, this proved to
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be computationally expensive and there was high correla-
tion between the different weights within each layer. As a
result, our final MCMC algorithms sampled the neural net
weight matrix Λ� and the biases λ0� were sampled jointly
for each layer (with each layer being sampled separately).
For our MCMC algorithm, we used the adaptive Metropo-
lis algorithm from [17] to update the proposal variance and
achieve better mixing for the FFNN parameters. Finally,
this adaptive Metropolis algorithm was again used to sample
the transformed cutpoints c�2, . . . , c

�
R−1 after marginalizing

out Z(s) as suggested by [22].

3. APPLICATION TO REXBURG FIELD

3.1 Model Settings and MCMC Diagnostics

For our application, we used ten covariates: elevation,
yield, NDVI index for 2018 and 2019, two different mea-
sures of slope at a location, the x and y aspect of a location
and a topographical wetness index (TWI). Each of the co-
variates were observed at 5062 10 m2 areas in the field (see
Figure 2). In this application, NDVI (a measure of vegeta-
tion greenness) was calculated using an aerial drone at four
distinct times throughout a growing season and averaged as
a single NDVI measurement for the year. Yield was mea-
sured per 10 m2 unit of land using a grain yield monitor
installed on the harvester. TWI, is a static measure, calcu-
lated from a digital elevation models, and indicates where
water will accumulate in an area with elevation variability.
Slope as well as the x and y aspects were likewise calculated
from a digital elevation model.

The data of irrigation zone consisted of only the 66 ob-
servations shown in the right panel of Figure 1. For our
implementation, we set the number of irrigation zones, R,
to 3. As previously mentioned, R will rarely if ever be higher
than 4 or 5 and, in discussion with the farm owner, 3 zones
was determined to be reasonable based on the field’s VRI
capacities. We also used rectified linear unit activation func-
tions for all the activation functions with the exception of
the output layer which was an identity activation to match
the support of Z(s). Certainly, other activation functions
could be used but the rectified linear units is one of the
most common.

Beyond the above model settings, implementation of our
spatial neural network model requires tuning the number of
layers (L), the number of units per layer ({P�}), the number
of Moran basis functions (K) and the penalization for the
weights in the prior (the prior variance). Computationally,
fitting the neural network model at a single setting took
about 3.5 hours on a 2.60GHz CPU. For each parameter
setting in Table 1 and for each of 0.1, 0.01 and 0.001 for the
prior variance of the weights, we implemented a 6-fold cross
validation and calculated the average adjusted Rand index

Table 1. Cross Validation results. The first column lists the
number of neurons for each layer, the second column

indicates the number of layers for the neural net, the third
column shows the number of Moran basis functions, and the
fourth column gives the average adjusted Rand index over the

6 folds.
Neurons Layers Spatial Rand index

10 1 0 .06767
(10,10) 2 0 .1776

20 1 0 .12296
10 1 5 .31795

(10,10) 2 5 .22377
20 1 5 .13879

(ARI). The ARI is given by

ARI =

∑
ij

(
nij

2

)
− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]
/(

n
2

)
1
2 [
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]
/(

n
2

)
where ar is the number locations predicted to belong to
irrigation zone r and br is the number of true locations be-
longing to irrigation zone r for r = 1, . . . , R and nij is num-
ber of location classified as zone i in the predictions and
zone j in the truth. ARI, intuitively, is a measure of similar-
ity between two data clusterings (in our case, the similarity
between the true zone and the predicted zone) and ranges
from −1 to 1 where 1 indicates perfect agreement between
the two clusterings, 0 indicates a random agreement and
−1 indicates that the two clusterings are completely differ-
ent. Prior to fitting the models in Table 1, a larger grid
was first used to get a general idea of the reasonable values
for the tuning parameters. Given our data set consisted of
only 66 observations, an effort was made to keep the total
number of the parameters low. Deeper neural networks, gen-
erally, require big data to be effective. Hence, the grid search
only examines one or two layer neural networks (in addition
to the input and output layers). The maximum number of
Moran basis functions considered was 10 in order to make
sure that the zones were being determined by the neural
network predictions rather than being overly driven by the
spatial aspect of our model.

Table 1 shows the cross validation results using the 0.01
prior variance because this value was uniformly better in
terms of predictive accuracy. Cross-validation finds that a
single hidden layer with 10 neurons and 5 Moran basis func-
tions were the ideal parameters for this data. The results
displayed in the following subsections are from this model
setting. Note that, generally, from Table 1, adding spatial
basis functions improved the model’s predictive ability sug-
gesting that merging spatial modeling techniques with deep
learning is of value in this particular setting.

When using Markov chain Monte Carlo sampling in a
Bayesian framework as is the case here, it is important to
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make sure that the algorithm provides samples of the pa-
rameters from posterior distribution via convergence diag-
nostics. The supplementary material to this article includes
trace plots of fL(X(s)) + w(s) for four different locations
along with a trace plot of an example cut point. We focus
on these trace plots as fL(X(s)) + w(s) and the cut point
because these are the main quantities from which we derive
our irrigation zone delineation. These trace plots show that
these parameters have converged and they can be used to
for posterior inference.

3.2 Model Comparisons
As a means to validate the use of the spatial neural net-

work model proposed in this analysis, three additional al-
ternative models were fit to the data and the ARI was again
calculated for the 66 locations across the field in Rexburg.
The four models compared are ordinal logistic regression
with linear effects (Logistic), ordinal logistic regression with
natural splines (NSLogistic), ordinal logistic regression with
natural splines and spatial bases (Spatial NSLogistic), the
neural network model with no spatial basis functions (NN)
and our full neural network model with spatial basis func-
tions (Spatial NN). Ordinal logistic regression is a common
approach to modeling discrete ordinal multinomial response
variables. One of the drawbacks is the assumptions that the
relationship between predictors and the response is linear.
Splines are a common approach to modeling non-linear re-
lationships for statisticians, while neural networks are often
a machine learning approach to account for these non-linear
relationships. These two models can provide a comparison
between these two different approaches to model a non-
linear relationship. While neural networks and splines are
able to account for the non-linear relationships, they don’t
incorporate any spatial correlation. For irrigation zone de-
lineation, the spatial correlation is used to smooth out the
irrigation zone predictions across the field. As a result, we
also included the spatial basis functions beyond the natural
splines and/or neural network to help improve the predic-
tions of the zones.

Table 2 shows the adjusted Rand index for the four mod-
els using all 66 locations in the field. The results show that
the ordinal logistic regression model is least able to delin-
eate zones. This is, perhaps, not surprising given this model
doesn’t account for the non-linear relationships between pre-
dictors and the response variable or the spatial correlation.

Table 2. RAND index for the four different models for the 66
locations in the field.

Model ARI
Logistic 0.2065

NSLogistic 0.2273
Spatial NSLogistic 0.2412

NN 0.2245
Spatial NN 0.2741

Figure 4: Prediction map for the field as well as the uncer-
tainty in the field. The prediction map is obtained by taking
the zone with the highest probability for each location. The
uncertainty in the predictions for each location and shown
in the probability maps, which show the probability of each
location being in each of the three zones.

The spline model and neural network without spatial ba-
sis functions had a very similar performance and both seem
to be effective approaches to modeling a non-linear rela-
tionship. However, this effectiveness was enhanced in both
models by the addition of spatial basis functions. The best
model was the neural network with the spatial basis func-
tions, which validates the use of the model proposed in this
analysis since it accounts for both the non-linear relation-
ships and spatial correlation.

3.3 Field-wide Irrigation Zone Delineation
The primary goal of the analysis was to obtain predictions

of the irrigation zones for the whole field for use in the VRI
system. The fitted spatial neural network model was used to
make predictions of which irrigation zone a location should
be classified in across the whole field. Due to Monte Carlo
sampling, the uncertainty in the zone delineation was also
able to be calculated. Figure 4 shows the highest probability
zone by location (top left) along with the probabilities of
each location being assigned to each of the three zones. The
predictions appear to be fairly spatially contiguous zones (as
desired) with the exception of middle of the field in areas
between zone 1 and 2.

While zone prediction map in Figure 4 produces zones
that are spatially smoothed by the spatial basis function, the
covariates produce some non-contiguous regions that would
be difficult to implement using variable rate irrigation given
the current state of precision agriculture. Rather, for VRI
implementation purposes, we desire to further smooth the



8 M. J. Heaton, D. Teuscher, and N. C. Hansen

Figure 5: Clustered irrigation zones based on expected zone. The clusters are relatively similar and follow the same general
patterns as the predictions but could more reasonably be implemented as irrigation zones using VRI technology.

predicted zones into purely contiguous zones. For purposes
of VRI implementation, we use the spatial clustering algo-
rithm of [19] based on finite differences to achieve more con-
tiguous zones. Specifically, we spatially cluster using ward
dissimilarity [see 19, for details] based on the expected zone

E
(
Y (s)

)
= 1×

[
Φ
(
0−

(
f̂L

(
X(s)

)
+ ŵ(s)

))]
+ 2×

[
Φ
(
ĉ2 −

(
f̂L

(
X(s)

)
+ ŵ(s)

))
(3.1)

− Φ
(
0−

(
f̂L

(
X(s)

)
+ ŵ(s)

))]
+ 3×

[
1− Φ

(
c2 −

(
f̂L

(
X(s)

)
+ ŵ(s)

))]
(3.2)

where Φ(·) is the standard normal cumulative density func-
tion. The result from this clustering process is shown in
Figure 5 and compared with the original predictions. While
there are still some discrepancies between the clustered
zones and the original zones, they are relatively similar and
the clustering provides contiguous zones that would be vi-
able to be implemented with VRI. We note that clustering
the model results (using any spatial clustering method) is
not required but is simply beneficial for our application and
the implementation of the estimated zones for the growing
season.

3.4 Effect of Covariates
While prediction was the primary goal of the analysis, it

may also be of interest to examine the effect of the covari-
ates on zone classification. However, one of the drawbacks

of using neural network models as we have here is that the
parameters have no intuitive interpretation. Indeed, inter-
pretability of neural networks, generally, is an open area of
research [29]. One possible solution is to use partial depen-
dence plots (PDPs) and feature importance to intuitively
understand the effects of covariates on the response. First,
partial dependence plots are used to show the marginal ef-
fect of a covariate on the predicted outcome. Mathemati-
cally, the partial dependence plot for a covariate, say Xp, is
calculated as

PDP(Xp) =
1

n

n∑
i=1

(
f̂L

(
Xp,X−p(si)

)
+ ŵ(si)

)
(3.3)

where X−p(si) is the vector of covariates with Xp(si) re-
moved and f̂L(·) and ŵ(·) is our fitted spatial neural network
model. The above is calculated for a grid of Xp in the do-
main of Xp(s) to produce a curve representing the marginal
effect of Xp(s). Intuitively, the partial dependence measure
is calculated by replacing the variable of interest (Xp(s))
with a fixed singleton value for all observations in the data
and averaging the associated prediction across observations.
Because we adopted the Bayesian approach, the uncertainty
for these partial dependence plots are accounted for as well
via Monte Carlo sampling.

Figure 6 shows the partial dependence plots for some of
the covariates that were used in the analysis (covariates with
no effect were omitted for brevity) where the black line rep-
resents the posterior mean of the marginal effect for the
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Figure 6: Partial dependence plots for influential covariates. The black line shows the marginal effect for the variable and
the shaded area is the 95% credible interval for the marginal effect.

covariate and the shaded region is the 95% credible interval
for the marginal effect. Elevation, yield, and the NDVI for
2018 and 2019 seemed to heavily influence the probability
of belonging to an irrigation zone. For example, as elevation
increases, the probability of belonging to a lower-water zone
increases (Zone 1 corresponds to the zone with the smallest
VWC which, in turn, would get the most irrigation to com-
pensate). The other covariates appear to have a minimal
effect on the predicted zone.

Another common measure for covariate influence on ma-
chine learning models is feature importance. For this anal-
ysis, the permutation feature importance was used as the
feature importance measure. The feature importance was
calculated by permuting values of the feature (covariate)
and calculating the ARI for the model with the permuted
feature. The purpose of permuting the covariate is to break
the relationship between the feature and the response. Un-
der permutation, the prediction accuracy should decrease
for features that are highly predictive of the response. After
calculating the ARI for the model with the permuted fea-
ture, the feature importance for the pth covariate (Xp(s)) is
calculated as:

FIp = ARIorig −ARIperm (3.4)

where ARIorig is the ARI for the model before permuta-
tion and ARIperm is the ARI for the model after feature
Xp(s) had been permuted. Intuitively, higher FIp equates

to more important features in determining the zone delin-
eation.

The feature importance plot in Figure 7 shows the fea-
ture importance for the 10 covariates that were included in
the model. In correspondence with the partial dependence
plots, the results from the feature importance plot also in-
dicates that elevation, yield, and the NDVI index from 2018
and 2019 are important covariates in determining the irri-
gation zone. Hence, for other agricultural fields where irri-
gation zones are desired, collecting the highest importance
features will provide the most effective zones for variable
rate irrigation.

4. CONCLUSION
This analysis presents a Bayesian spatial neural network

model with easily obtainable predictors such as elevation,
slope, and past crop yields to be used for irrigation zone
delineation. We propose this model as an alternative to the
expensive and time consuming process of measuring volu-
metric water content. The model provides a fusion of statis-
tical modeling and deep learning by harnessing the predic-
tive ability of artificial neural networks, while quantifying
uncertainty using Bayesian methods and using spatial mod-
eling to capture spatial correlation in the irrigation zones.
The analysis showed that for the field in Rexburg, Idaho, the
most influential covariates for delineating irrigation zones
were elevation, yield and the NDVI index.
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Figure 7: Feature importance for the covariates. Similar to the partial dependence plots, the most important features
according to the importance measure is elevation, yield, and the NDVI for 2018 and 2019.

There are some issues with the model presented that
could be examined to improve the proposed method. As
mentioned, the posterior mixing of the neural network
weights was a challenge. This is to be expected given the
non-identifiability of neural network weights as discussed in
[10]. While we used efforts such as strong prior assumptions
(the equivalent of penalization in traditional neural network
model fitting), one possible solution to this is to use Hamil-
tonian Monte Carlo techniques which could integrate the
backward-propagation algorithm but in a Bayesian poste-
rior sampling paradigm.

There were 3 irrigation zones chosen for this analysis,
but the performance of the model as the number of zones
increase has yet to be studied and it is unknown if the model
will perform as well when there are more than 3 irrigation
zones. Further, perhaps more irrigation zones would increase
the efficiency of the VRI technology. Future research could
consider the effect of the number of zones on the fitted
model.

In addition to the potential issues that should be further
studied, there is potential future work that can be done
based on the results from the analysis. First, the analysis
and results of this model has only been applied to the one
field in Rexburg. It would be beneficial to be able to use

the model to delineate other fields. The model will be most
beneficial when it is portable to other fields and scenarios.
At the moment, the efficacy of this model is only known for
the field of winter wheat in Rexburg.

In addition, to increase the portability of the model, it
would be useful to consider other possible covariates that
could be used to determine the volumetric water content.
The covariates that were used in the analysis were pro-
vided and consequentially there may be other covariates that
would be beneficial to delineating irrigation zones. For this
analysis, we used ten different covariates and a number of
them did not appear to be extremely important in deter-
mining the irrigation zone based on the partial dependence
and feature importance plots. The impact of adding and
subtracting covariates from the model could be examined
further.

As mentioned in the Introduction, this research focuses
on determining static water management zones. Alterna-
tively, time-varying or dynamic zones could be created to
alter the water within a growing season according to the
needs of the plant [see 13]. We note that our methods could
be used as a foundation for determining dynamic zones but
such an application would not only require within-season
covariates such as daily precipitation but also require con-
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siderations of computational scalability which was less of a
concern for this application.

Overall, the use of Bayesian spatial neural network mod-
els has the ability to create accurate irrigation zones from
easily obtained data about a field without having to put in
painstaking effort to determine the volumetric water con-
tent. As a result, these models could make the implementa-
tion of variable rate irrigation easier for farmers in agricul-
tural fields.
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