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Abstract
Supervised dimension reduction (SDR) has been a topic of growing interest in data science, as it enables the reduction of

high-dimensional covariates while preserving the functional relation with certain response variables of interest. However,
existing SDR methods are not suitable for analyzing datasets collected from case-control studies. In this setting, the
goal is to learn and exploit the low-dimensional structure unique to or enriched by the case group, also known as the
foreground group. While some unsupervised techniques such as the contrastive latent variable model and its variants have
been developed for this purpose, they fail to preserve the functional relationship between the dimension-reduced covariates
and the response variable. In this paper, we propose a supervised dimension reduction method called contrastive inverse
regression (CIR) specifically designed for the contrastive setting. CIR introduces an optimization problem defined on the
Stiefel manifold with a non-standard loss function. We prove the convergence of CIR to a local optimum using a gradient
descent-based algorithm, and our numerical study empirically demonstrates the improved performance over competing
methods for high-dimensional data.

keywords and phrases: Case-control studies, Supervised dimension reduction, Optimization on Stiefel manifold.

1. INTRODUCTION
The field of data science has seen the growing impor-

tance of dimension reduction (DR) techniques as a prelimi-
nary step in processing large-scale biological datasets, such
as single-cell RNA sequencing data. These techniques aid
in tasks like data visualization, structural pattern discovery,
and subsequent biological analyses. Within this broader con-
text, Supervised Dimension Reduction (SDR, also known as
sufficient dimension reduction) methodologies have gained
significant attention [16, 37]. In the study by [61], a com-
parison is drawn between SDR techniques and unsupervised
counterparts like Principal Component Analysis (PCA),
Spherelets [40], and Spherical Rotation Component Anal-
ysis [46], emphasizing the increasing prominence and utility
of SDR in contemporary data science.

Given paired observations (x, y) ∈ R
p × R, where x con-

sists of p covariates, and y is the corresponding response or
output variable, the common assumption in SDR is that

y = ϕ
(
V �x, ε

)
, for some function ϕ, (1.1)

where V ∈ R
p×d with d � p is the projection matrix from a

high-dimensional to a low-dimensional space, ε is the mea-
surement error independent of x, and ϕ is an arbitrary un-
known function. For example, in a single-cell RNA sequenc-
ing dataset, x could be the expression of genes for a cell and
y could be the cell type.

∗Corresponding author. Data and code available in https://github.
com/myueen/contrastive-inverse-regression.

Under assumption (1.1), although the low-dimensional
representation V �x is determined by a linear transforma-
tion, the function ϕ is an arbitrary unknown function. In
this paper, we stick to the assumption in (1.1) to focus on
linear DR methods for two reasons. First, linear methods
are computationally more efficient, particularly for large p
and large n. Second, linear methods are more interpretable,
which is an essential characteristic in scientific applications.
For instance, in the example above, each column of V �x
is often considered as a genetic pathway [4]. Although our
proposed method can be extended to nonlinear cases by the
kernel method, we will leave this for future work.

Sliced Inverse Regression (SIR, [41]) is a well-established
technique for supervised dimension reduction that is widely
applicable in multiple scenarios due to its roots in regres-
sion analysis. It has been shown to have strong consistency
results in both fixed dimensional [32] and high-dimensional
[45] settings. The goal of SIR is to capture the most relevant
low-dimensional linear subspace without any parametric or
nonparametric model-fitting process for ϕ.

Moreover, SIR offers a geometric interpretation by con-
ditioning on the sufficient statistics of the input distribu-
tion [41, 18]. SIR incorporates the idea of linear dimension
reduction with statistical sufficiency. In SIR, given a pair of
features x ∈ R

p and univariate response y ∈ R, the goal is
to find a matrix V ∈ R

p×d, d < p such that y is condition-
ally independent of x given V �x. Although the matrix V
is not identifiable, the column space of V , denoted C(V ), is
identifiable.

Motivated by emerging modern high-dimensional [25, 44,
64] and biological datasets [28, 42], SIR evolved and ad-
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mitted several generalizations, including localized SIR [68],
kernel SIR [67], SIR with regularization [42], SIR for longi-
tudinal data [34, 43], metric response values [60], and online
SIR [10].

In this article, we focus on a specific type of high-
dimensional biological data, where the dataset consists of
two groups — a foreground group, also known as treat-
ment group or case group, and a background group, also
known as control group. The goal is to identify the low-
dimensional structure, variation, and information unique to
the foreground group for downstream analysis. This situa-
tion arises naturally in many scientific experiments with two
subpopulations. For example, in Electronic Health Record
(EHR) data, the foreground data could be health-related
covariates from patients who received certain medical treat-
ment, while the background data could be measurements
from healthy patients who did not receive any treatment.
In this case, the goal is to identify a unique structure in
patients who received the treatment that can predict future
outcomes. In a genomics context, the foreground data could
be gene expression measurements from patients with a dis-
ease, and the background data could be measurements from
healthy people. In this case, the goal is to predict a certain
phenotype for the diseased patient for disease analysis and
future therapy.

Previous contrastive models, such as the contrastive la-
tent variable model (CLVM, [73]), contrastive principal
component analysis (CPCA, [1]), probabilistic contrastive
principal component analysis (PCPCA, [38]), and the con-
trastive Poisson latent variable model (CPLVM, [35]), have
shown that using the case-control structure between fore-
ground and background groups can greatly improve the ef-
fectiveness of dimension reduction over standard DR meth-
ods such as PCA and its variants. However, to the best
of our knowledge, none of these unsupervised contrastive
dimension reduction methods is directly applicable to the
SDR setting.

In this work, we move from these unsupervised con-
trastive dimension reduction methods to a supervised con-
trastive dimension reduction setting. By combining the idea
of contrastive loss function and the sufficient dimension re-
duction considered in the SIR model, we propose the Con-
trastive Inverse Regression (CIR) model, which exactly re-
covers SIR when a certain parameter is zero. The CIR model
sheds light on how to explore and exploit the contrastive
structures in supervised dimension reduction.

Table 1. Categorization of DR methods by whether they are
supervised or contrastive.

Contrastive
Supervised No Yes

No PCA, CCA SIR, LDA, LASSO
Yes CPCA, PCPCA CIR

Table 1 lists several popular DR methods and their prop-
erties. The table categorizes these methods as “contrastive”
and “supervised”, based on whether they are designed for
case-control data and able to identify low-dimensional struc-
ture unique to the case group, and if they take the response
variable y into consideration and use V �x to predict y. For
example, PCA, the most well known DR method, is neither
contrastive nor supervised. Similarly, canonical correlation
analysis (CCA, [31]) does not utilize y or the unique infor-
mation of one group, which makes it neither contrastive nor
supervised. Methods such as CLVM, CPCA, PCPCA, and
CPLVM are contrastive but not supervised. On the other
hand, classical supervised DR methods including SIR [41],
linear discriminant analysis (LDA, [26]), and the least ab-
solute shrinkage and selection operator (LASSO, [58]) are
supervised but not contrastive. Our proposed method, CIR,
combines both contrastive and supervised features by uti-
lizing both the response y and the case-control structure.

It is important to note that the assumption (1.1) does
not limit the response variable y to be continuous or cate-
gorical, and thus we do not distinguish between regression
and classification. However, some methods listed in Table 1
are specifically designed for either continuous y (regression,
LASSO) or categorical y (classification, LDA). CIR han-
dles both scenarios with the only difference being in the
choice of slices, as explained in Section 2. Furthermore, not
all existing DR methods are included in this table. For exam-
ple, the recently proposed linear optimal low-rank projection
(LOL, [61]) is designed for the classification setting and re-
quires the number of classes to be smaller than the reduced
dimension d. This can be restrictive, for example, when ap-
plied to a single-cell RNA sequencing dataset, where d is
required to be greater than the number of cell types. In con-
trast, CIR does not require such data-dependent constraints
on the reduced dimension d. Similarly, data visualization
algorithms that require d = 2 such as the t-distributed
stochastic neighbor embedding (tSNE, [59]) and uniform
manifold approximation and projection (UMAP, [5]) are not
listed in the table.

We now present our proposed methodology, including an
algorithm for solving the associated nonconvex optimization
problem on the Stiefel manifold. We also provide analysis of
the convergence of the algorithm, and conduct extensive ex-
periments to demonstrate its superior performance on high-
dimensional biomedical datasets when compared to existing
DR methods. All proofs are provided in the appendix, and
additional experimental details are in the supplement ma-
terial.

2. METHOD
To maintain consistency, we will use the terms “fore-

ground group” and “background group” instead of “case-
control” or “treatment-control” in the remaining sections.
First, we briefly review SIR as our motivation.
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Definition 1 (Stiefel manifold). St(p, d) := {V ∈ R
p×d :

V �V = Id} admits a smooth manifold structure equipped
with a Riemannian metric, called the Stiefel manifold.

Recall that under the assumption in Equation (1.1), the
centered inverse regression curve, E[x|y]− E[x], lies exactly
in the linear space spanned by columns of ΣxxV , denoted by
C(ΣxxV ), where Σxx is the covariance matrix of x. This lin-
ear subspace is called the effective dimension reduced (e.d.r.)
space [41]. As a result, the objective of SIR is to minimize
the expected squared distance between E[x|y] and C(ΣxxV ):

min
V ∈St(p,d)

Ey

[
d2(E[x|y]− E[x], C(ΣxxV )

]
(2.1)

where d is the Euclidean distance.
In the contrastive setting, denote foreground data by

(x, y) ∈ R
p × R and background data by (x̃, ỹ) ∈ R

p × R.
For convenience, we assume that x and x̃ are centered at
the origin so that E[x] = E[x̃] = 0.

Our goal is to find a low-dimensional representation of x,
denoted by V �x, such that y is determined by V �x while
ỹ is not determined by V �x̃. The goal of CIR is to find a
low-dimensional subspace represented by V such that{

y = ϕ(V �x, ε), for some function ϕ,

ỹ �= ψ(V �x̃, ε̃), for any function ψ.
(2.2)

That is, the column space of V captures the low-dimensional
information unique to the foreground group so that we can
use V �x to predict y through ϕ, but cannot use V �x̃ to
predict ỹ through any function ψ. Instead of optimizing a
single loss similar to SIR, CIR aims at optimizing the sub-
space C(ΣxxV ) to minimize the “contrastive loss function”:

f(V ) := Ey

[
d2(E[x | y], C(ΣxxV )

]
− αEỹ

[
d2(E[x̃ | ỹ], C(Σx̃x̃V )

]
, (2.3)

where α ≥ 0, Σxx = Cov(X) and Σx̃x̃ = Cov(X̃) ∈ R
p×p,

and d is the Euclidean distance. Define the following nota-
tion:

vy = E[x | y], vỹ = E[x̃ | ỹ] ∈ R
p

Σx = Cov(vy), Σx̃ = Cov(vỹ) ∈ R
p×p

vy (and vỹ) are called the centered inverse regression curves
[41, 60]. The resulting loss function f balances the effec-
tiveness of dimension reduction between the foreground and
background groups. We can adjust the hyperparameter α
to express our belief in the importance of the background
group. Note that the parameter α appears naturally in other
contrastive DR methods, including CPCA and PCPCA.
Proposition 1. The objective function f given by Equa-
tion (2.3) is simplified as

f(V ) = − tr
(
V �AV

(
V �BV

)−1)
+ α tr

(
V �ÃV

(
V �B̃V

)−1)

where A = ΣxxΣxΣxx, B = Σ2
xx, Ã = Σx̃x̃Σx̃Σx̃x̃, and

B̃ = Σ2
x̃x̃.

Note that V is not identifiable, and is identifiable only up
to a d-dimensional rotation. However, the contrastive loss f ,
determined by V V �, the projection matrix to the column
space of V , is invariant under such rotations. This noniden-
tifiability issue is common in other DR methods, including
PCA, CPCA, SIR, etc, where the convention is to refer to
the column space of V . Therefore, this nonidentifiability is
consistent with standard practices and does not impact the
validity of our results.

Observe that in the case where α = 0, CIR reduces to
SIR. In this case, the problem can be reparameterized by
V ∗ = B1/2V so that the columns are orthogonal, which
reduces the loss function to a quadratic form, yielding a
closed-form solution (as a generalized eigenproblem). In the
case where α > 0, however, we cannot perform the same
trick for both B and B̃, so we must resort to numerical
approximations. We adopt gradient-based optimization al-
gorithms on St(p, d), which are based on the gradient of f
given by the following lemma.
Lemma 1. The gradient of f is given by

grad f(V )

= −2
(
AV

(
V �BV

)−1−BV
(
V �BV

)−1
V �AV

(
V �BV

)−1)
+ 2α

(
ÃV

(
V �B̃V

)−1

− B̃V
(
V �B̃V

)−1
V �ÃV

(
V �B̃V

)−1)
.

Note that the gradient grad f is different from the stan-
dard gradient in Euclidean space, denoted by Df = ∂f

∂V .
The difference is that grad f lies in the tangent space of
St(p, d) at V , while the Euclidean version may escape from
the tangent space.
Theorem 1. If V is a local minimizer of the optimization
problem (2.3), then

AV E(V )− αÃV Ẽ(V ) = BV F (V )− αB̃V F̃ (V ),

where E(V ) = (V �BV )−1, Ẽ(V ) = (V �B̃V )−1,
F (V ) = (V �BV )−1V �AV (V �BV )−1, and F̃ (V ) =

(V �B̃V )−1V �ÃV (V �B̃V )−1.
Let G(V ) = V �AV and G̃(V ) = V �ÃV . Note, then, that

the local optimality condition is equivalent to

AV E(V )− αÃV Ẽ(V )

= BV E(V )G(V )E(V )− αB̃V Ẽ(V )G̃(V )Ẽ(V ). (2.4)

In Appendix G, we discuss how Equation (2.4) may lead
to a gradient-free algorithm that involves solving an asym-
metric algebraic Ricatti equation.

So far, we have discussed the population version, which
relies on the distributions of x, x̃, y, and ỹ that are unknown
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Algorithm 1: CIR.
Input: Foreground data (X,Y ) ∈ R

n×p × R
n, Background

data (X̃, Ỹ ) ∈ R
m×p × R

m, α > 0, d ∈ Z+.
xi = xi − 1

n

∑n
i=1 xi; x̃j = x̃j − 1

m

∑m
j=1 x̃j .

Σxx = 1
n

∑n
i=1 xix

�
i ; Σx̃x̃ = 1

m

∑m
j=1 x̃j x̃

�
j .

for h = 1, . . . , H do
Calculate slice proportions ph = 1

n

∑n
i=1 I(yi ∈ Ih).

Calculate slice mean mh = 1
nph

∑
yi∈Ih

xi.
end for
Σx =

∑H
h=1 mhm

�
h .

for h̃ = 1, . . . , H̃ do
Calculate slice proportions p

˜h = 1
m

∑m
j=1 I(ỹj ∈ I

˜h).
Calculate slice mean m

˜h = 1
mp

˜h

∑
ỹj∈I

˜h
x̃j .

end for
Σx̃ =

∑
˜H
˜h=1

m
˜hm

�
˜h

.
Compute A = ΣxxΣxΣxx, B = Σ2

xx,
Ã = Σx̃x̃Σx̃Σx̃x̃, B̃ = Σ2

x̃x̃.
Find V ∗ = argminV ∈St (p,d) f(V ; A, B, Ã, B̃, α) for f
defined in (2.3).
Return V ∗.

in practice. In real applications, we observe finite samples
(xi, yi)

n
i=1 as foreground data and (x̃j , ỹj)

m
j=1 as background

data. We denote X ∈ R
n×p, X̃ ∈ R

m×p where each row
represents a sample; similarly, each entry of Y ∈ R

n and
Ỹ ∈ R

m represents a response value. In this case, we can re-
place the expectation by the sample mean to get estimates
of Σx, Σx̃, Σxx, and Σx̃x̃ and have the corresponding plug-in
estimates for A, B, Ã, and B̃. Throughout this paper, we
assume p < n so that all covariance matrices are nonsingu-
lar. The extension to p > n is discussed in Section 5. After
computing these matrices, the problem is reduced to a man-
ifold optimization problem [2]. The estimates of Σx and Σx̃

deserve further discussion. As shown by [41] and [10] among
others, for continuous response y, the observed support of
response y can be discretized into slices Ih = (qh−1, qh], for
h = 1, . . . , H. An estimate of Σx is given by

∑H
h=1 mhm

�
h

where mh = 1
nph

∑
yi∈Ih

xi with ph = 1
n

∑n
i=1 I(yi ∈ Ih).

On the other hand, if y and ỹ are categorical, the slices are
naturally chosen as all possible values of y and ỹ. Combin-
ing these pieces, we present our empirical version of the CIR
algorithm in Algorithm 1.

It is worth noting that our optimization of f as a func-
tion of V ∈ St (p, d) cannot be considered as an opti-
mization problem in R

p×d with orthogonality constraints
V �V = Id [23, 7]. Because the term (V �BV )−1 in f is
not well defined unless V is full rank, our loss function f
cannot be extended to the full Euclidean space R

p×d. We
consider it as an optimization problem intrinsically defined
on St (p, d) as laid out by [2]. This key property excludes
some commonly used optimizers on manifolds, and we will
discuss more details in the next section.

Algorithm 2: SGPM [50].
Input: V0 ∈ St (p, d), η ∈ [0, 1], μ, ρ1, ε, δ ∈ (0, 1).
Set Q0 = 1, C0 = f(V0), and k = 0
while ‖∇V L(Vk)‖ > ε do

Set A = ∇f(Vk)V
�
k − Vk∇f(Vk)

�

Set Dμ,τk = (Ip + μτkA)−1

Let Y (τ) := Vk − τ(Ip − μτA)−1∇f(Vk)
Pick τk > 0 so that f(Y (τk)) > Ck + ρ1τkDf(Xk)[Ẏ (0)]
Update Vk+1 = π(Vk − τDμ,τ∇f(Vk))
Update μ and Ck+1

Set k = k + 1
end while
V ∗ = Vk

3. THEORY
In this section, we discuss two concrete optimization al-

gorithms for the last step in Algorithm 1 to find V ∗ and
show their convergence. The optimization problem outlined
in Equation (2.3) does not follow the classic Li-Duan theo-
rem for regression-based dimension reduction due to its non-
convex nature (see, e.g., [17, Prop. 8.1]). The convergence
of the algorithm is discussed in detail below.

The first algorithm we consider is the scaled gradient pro-
jection method (SGPM) specifically designed for optimiza-
tion on the Stiefel manifold [50]. We first define an analog
to Lagrangian multiplier L(V,Λ) := f(V )− 1

2 〈Λ, V �V − Id〉,
then the SGPM algorithm is summarized in Algorithm 2,
where π(X) = argminQ∈St (p,d) ||X − Q||F is the orthogo-
nal projection to the Stiefel manifold. Note for Algorithm 2
that the update for μ and Ck+1 is intricate; see [50] for more
details.

To study the convergence of Algorithm 2, we need to
study the Karush-Kuhn-Tucker (KKT) conditions for CIR:
Lemma 2 ([50]). The KKT conditions are given by

DV L(V,Λ) = ∇f − V Λ = 0

DΛL(V,Λ) = V �V − Id .

Now we can state the convergence theorem of Algo-
rithm 2:
Theorem 2. Let {Vk}∞k=1 be an infinite sequence gener-
ated by Algorithm 2, then any accumulation point V∗ of
{Vk}∞k=1 satisfies the KKT conditions in Lemma 2, and
limk→∞ ‖DV L(Vk)‖ = 0.

Although Algorithm 2 is guaranteed to converge, there
are two drawbacks. First, the accumulation point V∗ is only
guaranteed to satisfy the KKT conditions, but not neces-
sarily a critical point. Second, we do not know how fast Vk

will converge to V∗. Next, we introduce an accelerated line
search (ALS) algorithm as an alternative to SGPM that
converges to a critical point with a known convergence rate.
ALS is summarized by Algorithm 3, where tAk is the step
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Algorithm 3: ALS [2].
Input: V0 ∈ St (p, d), retraction R from T St (p, d) to
St (p, d); scalars α > 0, c, β, σ ∈ (0, 1).
for k = 0, 1, . . . do

ηk = − grad f(Vk)
Select Vk+1 so that
f(Vk)− f(Vk+1) ≥ c(f(Vk)− f(RVk (t

A
k ηk)))

end for

size, called the Armijo step size for given α, β, σ, ηk and R
is a retraction to St(p, d), see [2] for more details.

Algorithm 3 can be shown to have linear convergence to
critical points if the hyperparameters are chosen properly.
For other choices of ηk, see Appendix E for more details.
The following adaptation of Theorem 4.5.6 in [2] indicates
linear convergence to stationary points.
Theorem 3. Let {Vk}∞k=1 be an infinite sequence generated
by Algorithm 3 with ηk = − grad f(Vk) converging to an
accumulation point V∗ of {Vk}∞k=1, then V∗ is a critical point
of f , and limk→∞ ‖ grad f(Vk)‖ = 0.

Furthermore, assuming V∗ is a local minimizer of
f with 0 < λl := min eig(Hess(f)(V∗)) and λu :=
max eig(Hess(f)(V∗)), then, for any r ∈ (r∗, 1) where

r∗ := 1−min

(
2σᾱλl, 4σ(1− σ)β

λl

λu

)
,

there exists an integer K �= 0 such that

f(Vk+1)− f(V∗) ≤
(
r + (1− r)(1− c)

)(
f(Vk)− f(V∗)

)
,

for all k ≥ K, where ᾱ, β, σ, c are the hyperparameters in
Algorithm 3.

The difference between Algorithm 2 and 3 deserves fur-
ther comment. While we empirically observe that Algo-
rithm 2 often converges faster, Algorithm 3 has theoreti-
cal properties which allow for a proof of linear convergence
in terms of an upper bound on the number of iterations.
In practice, for smaller datasets we suggest running Algo-
rithm 3, while for larger datasets we recommend using Al-
gorithm 2 for efficiency.

The computational complexity of CIR for both the
SGPM-based optimization and the ALS-based optimization
is compared to various competitors in the table below. Here,
we assume that 1 ≤ d < p < m,n, where the background
and foreground data have m and n samples, respectively.
Specifically, we assume that ε denotes the stopping error
such that f(Vk) − f(V∗) ≤ ε. It is noteworthy that a p-
dimensional singular value decomposition can be achieved
within O(p3). We present the comparison in the table below.

4. APPLICATION
When applying CIR, several hyperparameters must be

tuned, such as the weight α, the reduced dimension d, and

Table 2. Computational time-complexity of CIR and
competitors.

Algorithm Theoretical Algorithmic Complexity
CIR, SGPM-based O((m+ n)p2)
CIR, ALS-based O(− log(ε)p3 + (m+ n)p2)

LDA O(np2)
PCA O(np2)

CPCA O((m+ n)p2)
SIR O(np2)

the slices Ih and I
˜h for estimation of Σx and Σx̃. In some

cases, it may also be necessary to determine the definition of
the foreground and background groups and to assign back-
ground labels Ỹ .

The value of α ≥ 0 can be determined by cross-validation.
In particular, we suggest the following 2-step method. First,
identify the rough range of α at the logarithmic scale. Be-
cause CIR coincides with SIR when α = 0, running SIR ini-
tially can provide insights: better performance of SIR sug-
gests a smaller α, and vice versa. Once a rough range is
identified, standard cross-validation can be used within this
range. Our numerical experiments show that CIR is robust
to the choice of α; that is, the performance of the method
changes continuously with α. Tables supporting this obser-
vation are provided in the supplement material.

Additionally, the choice of reduced dimension d may de-
pend on the goal of the investigator. If visualization is con-
sidered important, d = 2 is appropriate. If the goal is pre-
diction, the elbow point of the d versus prediction error plot
may suggest an optimal d. However, as with other DR meth-
ods, determining the optimal value of d is still a topic of
ongoing research [12, 13].

The definition of foreground data X and Y should be the
data and the target variable of interest, while the choices
of background data X̃ and Ỹ may not be as straightfor-
ward. These data are intended to represent “noise” that is
“subtracted” from the foreground data. For example, in the
biomedical context, if the population of interest is a group
of sick patients, the background dataset may include obser-
vations of healthy individuals. In other contexts, however, it
may be appropriate to use X̃ = X. In this case, the choice
of background label Ỹ may be unclear. If another outcome
variable was collected, it could be used as Ỹ ; otherwise, ran-
domly selected values in the support of Y could be used to
represent “noise”.

The estimates for Σx and Σx̃ are partly determined by
whether y and ỹ are categorical or continuous. If these vari-
ables are categorical, then each value of y (or ỹ) can be
considered as a separate slice, resulting in |supp(Y )| (or
|supp(Ỹ )|) total slices. On the other hand, if these variables
are continuous, slices can be taken to represent an equally
spaced partition of the range of Y (or Ỹ ), with the number
of slices being tunable hyperparameters.
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4.1 Mouse Protein Expression
The first dataset we consider was collected for the

purpose of identifying proteins critical to learning in a
mouse model of Down syndrome [27]. The data contain
1095 observations of expression levels of 77 different pro-
teins, along with genotype (t=Ts65Dn, c=control), be-
havior (CS=context-shock, SC=shock-context), and treat-
ment (m=memantine, s=saline). The behavior of CS corre-
sponds to the scenario in which the mouse was first placed in
a new cage and permitted to explore for a few minutes before
being exposed to a brief electric shock; conversely, SC cor-
responds to mice immediately given an electric shock upon
being placed in a new cage, and then being permitted to ex-
plore. Of the data, 543 samples contain at least one missing
value. Taking into account the relatively large sample size,
we consider only the 552 observations with complete data.
We do not perform any normalization or any other type of
preprocessing to the raw data prior to analysis.

In this example, X ∈ R
552×77 represents the expression

of 77 proteins of all mice without a missing value, while
yi ∈ {0, 1, . . . , 7} represents the combination of 3 binary
variables: genotype, treatment, and behavior. For example,
yi = 1 means that the i-th mouse received memantine, was
exposed to context-shock, and has genotype Ts65Dn. To
visualize the data, we apply unsupervised DR algorithms
PCA, tSNE and UMAP to X and supervised DR methods
LDA, LASSO and SIR to (X,Y ), with d = 2 for all algo-
rithms. The 2-dimensional representation is given in Fig-
ure 1, where each color represents a class of mice among 8
total classes.

Figure 1: 2-d representation of mouse protein data. Sil-
houette scores: (PCA, −.20), (CPCA, −.13), (LDA, .42),
(LASSO, −.17), (SIR, .03), (CIR, .29), (tSNE, −.14),
(UMAP, −.00).

PCA, LASSO, SIR, tSNE, and UMAP fail to distin-
guish between classes, whereas LDA successfully separates
5 classes but with 3 classes (c-CS-m, c-CS-s, t-CS-m) mixed
together. Now we take advantage of the background data.
We let X̃ be the protein expression from mice with genotype
= control, which coincides with the background group used
in previous studies of this application [1, 38]. We set Ỹ as

the binary variable representing behavior and apply CPCA
to (X, X̃) and CIR to (X,Y, X̃, Ỹ ) with d = 2 as well. The
2-dimensional representations with their Silhouette scores
[53] are shown in Figure 1, which indicates that CIR out-
performs all other competitors except LDA in terms of the
Silhouette score. In particular, the three classes that were
not separated in LDA are less mixed in CIR, supported by
the Silhouette scores for these three classes: −0.10 for LDA
and 0.23 for CIR. We provide other objective scores [11, 22]
in the supplementary material.

Next, we show the classification accuracy based on XV ,
the dimension-reduced data. Here, we vary d from 2 to 7
because for higher d, the accuracy is close to 1. The mean
prediction accuracy of KNN, the best classifier for this ex-
ample, over 10 replicates versus the reduced dimension d is
shown in Figure 2, clearly indicating that CIR outperforms
all competitors especially when d is small. We present the
accuracy of other classifiers and their standard deviations in
the supplement material.

Figure 2: Classification accuracy by KNN for mouse protein
data.

4.2 Single Cell RNA Sequencing
The second dataset we consider is from a study of single-

cell RNA sequencing used to classify cells into cell types
based on their transcriptional profile [3]. The data include
3500 observations of expression levels of 32838 different
genes, along with cell labels as one of the 9 different cell
types, namely CD8 T cell, CD4 T cell, classical monocyte,
B cell, NK cell, plasmacytoid dendritic cell, non-classical
monocyte, classic dendritic cell, and plasma cell. We select
the top 100 most variable genes for our analysis to be con-
sistent with previous analyses of these data [71, 1]. In this
example, X ∈ R

3500×100 represents the expression of 100
genes, while yi ∈ {0, 1, . . . , 8} represents the cell type. For
example, yi = 1 means that the i-th cell is a CD4 T cell.

To visualize the data, we apply unsupervised DR algo-
rithms PCA, tSNE, and UMAP to X and supervised DR
methods LDA, LASSO, and SIR to (X,Y ), for d = 2
for all algorithms. In this case, there is no obvious choice
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of background data. So, we use X̃ = X and randomly
draw independent and identically distributed samples Ỹ ∼
uniform{0, . . . , 8} in order to apply CPCA and CIR. The 2-
dimensional representations with their Silhouette scores are
given in Figure 3, which indicates that CIR has the best
performance.

Figure 3: 2-d representation of single-cell RNA sequencing
data. Silhouette scores: (PCA, −.25), (CPCA, −.25), (LDA,
.11), (LASSO, −.30), (SIR, −.10), (CIR, .15), (tSNE, −.17),
(UMAP, −.17).

For each d = 2, . . . , 10, we compare the accuracy of a
KNN classifier based on dimension-reduced data among var-
ious methods, with the raw data as the baseline. We repeat
this process 10 times to reduce the impact of random split
in cross-validation. The prediction accuracy versus reduced
dimension d is shown in Figure 4, where CIR has the best
overall performance especially when d = 2, 3. We show the
accuracy of other classifiers and their standard deviations in
the supplement material.

The improved performance of CIR over SIR deserves fur-
ther comment. While the background data and labels (X̃, Ỹ )
used in CIR do not add new information beyond what SIR
used, because the background label is chosen randomly, we
attribute the improved performance to CIR “denoising” the
foreground data.

Figure 4: Classification accuracy by KNN for single-cell
RNA sequencing data.

4.3 COVID-19 Cell States
The third dataset we consider is also a single-cell RNA

sequencing dataset, with samples from 90 patients with
COVID-19 and 23 healthy volunteers [56]. In total, the
dataset contains 48083 cells from diseased patients and
14426 cells from healthy volunteers. We treat the cells from
the patients with disease as foreground and the cells from
the healthy volunteers as background. On each cell, RNA
expression levels on 24727 different genes were measured.
For the features, we selected the 500 genes with the largest
variances in RNA expression, in accordance with prior anal-
ysis with this dataset [21].

For each cell in the dataset, its cell type is identified,
which we use as the labels. As recommended in a previous
analysis [21], we consider only the cells for which at least
250 observations were available. This filtering resulted in
14 distinct cell types, with 40411 observations in the fore-
ground and 13041 in the background. As in the previous
example, we have X ∈ R

40411×500 to represent the expres-
sions of 500 genes in the cells of patients with COVID-19
and X̃ ∈ R

13041×500 to represent the gene expressions in the
healthy volunteers, while yi, ỹj ∈ {0, 1, . . . , 13} represents
the cell type.

As with the previous two examples, we first apply DR
methods to visualize the data. With d = 2, we apply PCA,
tSNE, and UMAP to X, and we apply LDA, LASSO, and
SIR to (X,Y ). We also apply CPCA to (X, X̃) and CIR to
(X,Y, X̃, Ỹ ). The 2-dimensional representations with their
Silhouette scores are provided in Figure 5. Although CIR
is not the best overall in terms of the Silhouette score, it
outperforms its direct competitors, CPCA and SIR.

Figure 5: 2-d representation of COVID-19 data. Silhouette
scores: (PCA, −.29), (CPCA, −.29), (LDA, .02), (LASSO,
−.48), (SIR, −.27), (CIR, −.05), (tSNE, −.03), (UMAP,
.11).

For d = 2, . . . , 7, we compare the accuracy of a KNN
classifier based on the dimension-reduced data among var-
ious DR methods, with the raw data as baseline. As with
the previous examples, we repeat this process 10 times for
each method to reduce the effect of the cross-validation ran-
dom split on the results. The prediction accuracy for each
reduced dimension d is shown in Figure 6, where we see that
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Figure 6: Classification accuracy by KNN for COVID-19
data.

CIR is an improvement over all other methods for d = 2, 3.
We show the accuracy of both the KNN-based classifier and
the tree-based classifier in the supplementary material.

4.4 Plasma Retinol
The final dataset we consider is the plasma retinol

dataset [49]. The dataset contains 315 observations of 14
variables, including age, sex, smoking status, BMI, vitamin
use, calories, fat, fiber, cholesterol, dietary beta-carotene, di-
etary retinol consumed per day, number of alcoholic drinks
consumed per week, and levels of plasma beta-carotene and
plasma retinol.

In this example, X ∈ R
315×12 represents measurements

of the first 12 variables listed for all subjects, while yi repre-
sents the measurement of plasma beta-carotene, a variable
of particular interest to scientists [49]. In contrast to the
previous two examples, note that here yi is continuous, not
categorical.

We apply unsupervised DR algorithms PCA, tSNE, and
UMAP to X and supervised DR algorithms LDA, LASSO,
and SIR to (X,Y ) for d = 1, . . . , 8. Similarly to the single-
cell RNA sequencing application, we let X̃ = X because
there is no natural choice of background data. For the back-
ground label, we set Ỹ as the continuous variable represent-
ing the level of plasma retinol, which shares certain infor-
mation with yi, and apply CPCA to (X, X̃) and CIR to
(X,Y, X̃, Ỹ ) for d = 1, . . . , 8. We skip the visualization step
in this case due to the poor visibility in terms of yi.

After trying a few regression methods, namely linear re-
gression [24], regression trees [9], Gaussian process regres-
sion [14], and neural networks [30], we present the predic-
tion mean squared error (MSE) for the best method for this
dataset, linear regression. That is, for each d and the out-
put V from each DR algorithm, we fit a linear regression
model to (XV, Y ). We also compare to a linear regression
model based on raw data (X,Y ) as the baseline. Figure 7
demonstrates that CIR outperforms all other competitors,
but matches SIR when d ≥ 3.

Figure 7: MSE of linear regression for plasma retinol data.

Note that because Y and Ỹ are continuous, the num-
ber of slices to estimate Σx and Σx̃ needs to be care-
fully chosen and adjusted to ensure optimal performance.
We use cross-validation to select 4 equally spaced parti-
tions for the support of Y and Ỹ . In the three applica-
tions presented above, CIR demonstrates superior overall
performance over its supervised, unsupervised, contrastive,
and non-contrastive competitors, especially in low dimen-
sion, i.e., d = 2, 3, which are the most crucial dimensions for
visualization purposes.

In all four examples we considered, we consistently ob-
served that CIR is the best among all methods when d =
2, 3. However, the gain is not obvious for higher dimensions.
A possible reason for this is that when d is relatively large,
methods that use only the foreground data, such as SIR
or LDA, capture both shared information and unique infor-
mation in the foreground. Consequently, the improvement
from incorporating the background group, or any contrastive
model, becomes incremental. Fortunately, d ≤ 3 are often
the most important dimensions because they allow for visu-
alization and interpretation.

5. DISCUSSION AND FUTURE WORK
In this work, we propose the CIR model and the asso-

ciated optimization algorithm for supervised dimension re-
duction for datasets that are split into foreground and back-
ground groups. We provide a theoretical guarantee of the
convergence of the CIR algorithm under mild conditions.
We have shown that our CIR model outperforms competi-
tors in multiple biomedical datasets, including mouse pro-
tein expression data, single-cell RNA sequencing data, and
plasma retinol data. However, there are several important
future directions that remain unaddressed in this paper, as
outlined below.

Multi-Treatment It is natural to consider how our model
can be extended to studies with multiple treatments. For ex-
ample, in medical treatment, there might be more than one
treatment for patients with certain disease. In [61], it has
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been shown that the number of treatment groups puts a hard
constraint on the target dimension. It is interesting to gener-
alize from a single-treatment structure to a multi-treatment
structure (e.g., [47]), where the loss function needs more so-
phisticated design.

Another direction in multi-group scenario is to combine
multiple CIR models trained on different pairs of bi-groups.
As pointed out by [65], the generalization error in the con-
trastive regression model stacking needs to be controlled,
and one possible way is to follow divergence mixing as pro-
posed by [29], with a careful normalization. The major dif-
ficulty in training such stacking model is how to devise a
sequential optimization for model training.

Consistency and Sufficient Dimension Reduction The con-
sistency of the proposed CIR model remains open. Theo-
rems 2 and 3 ensure that the resulting solution must be a
stationary point, but we did not discuss whether these sta-
tionary points are consistent estimates. The consistency of
the estimates is also affected by the choice of α, because
α = 0 will render this CIR into a classical SIR for the fore-
ground group. This consistency problem also has practical
importance, as it explicitly expresses the trade-off between
the expressive contrastiveness and the emphasis on the ef-
fective lower-dimensional structures. The group information
and statistical sufficiency compete against each other, as we
observed in the experiments, thus a range of α that bal-
ances between these two factors are of interest and might
be answered by the consistency result.

Furthermore, SIR has the drawback of missing the total-
ity central subspace when the symmetry assumption in x
is lost [37]. [18] proposed the sliced average variance esti-
mator (SAVE) estimator for addressing this problem, which
raises the natural question of how to generalize this high-
moment SDR method to the contrastive setting.

Loss Function Our loss function (2.3) is nonstandard,
which raises many questions. For example, the relation be-
tween number of local minima and A, B, Ã, B̃, α remains
open. Moreover, although f cannot be continuously ex-
tended to the full Euclidean space R

p×d, if we restrict the
domain to be a submanifold of St(p, d), f might be extended
to the convex hull of the submanifold. This extension will
enable us to apply some other efficient optimization algo-
rithms with strong theoretical guarantee [7]. Furthermore,
Appendix G raises the question of the validity of a fixed-
point algorithm based on Ricatti equations that may lead
to a more efficient algorithm to minimize f without involv-
ing the gradient.

Scalability The method we presented in this paper does
not handle high-dimensional data in the sense of p > n,m,
because matrices B and B̃ are singular in this situation.
A possible extension of CIR to p > n is to use the same
technique as sparse PCA [72], which introduces a penalty
term to enforce sparsity.

APPENDIX A. PROOF TO PROPOSITION 1
We need to simplify the loss function f(V ) for subse-

quent analyses. Recall that the projection to the subspace
C(ΣxxV ) and C(Σx̃x̃V ) is given by the following projection
matrices:

PΣxxV := ΣxxV
[
V �Σ2

xxV
]−1

V �Σxx

PΣx̃x̃V := Σx̃x̃V
[
V �Σ2

x̃x̃V
]−1

V �Σx̃x̃.

Because projection matrices are idempotent, that is,
P 2
ΣxxV

= PΣxxV and P 2
Σx̃x̃V

= PΣx̃x̃V , we can rewrite the
loss function as follows:

f(V ) = Ey

[
d2
(
E[x | y], C(ΣxxV )

)]
− αEỹ

[
d2
(
E[x̃ | ỹ], C(Σx̃x̃V )

)]
= Ey

[
‖vy − PΣxxV vy‖2

]
− αEỹ

[
‖vỹ − PΣx̃x̃V vỹ‖2

]
= Ey

[
v�y vy − v�y P

2
ΣxxV vy

]
− αEỹ

[
v�ỹ vỹ − v�ỹ PΣx̃x̃V vỹ

]
= Ey

[
v�y vy − v�y PΣxxV vy

]
− αEỹ

[
v�ỹ vỹ − v�ỹ PΣx̃x̃V vỹ

]
.

The solution to the optimization problem defined by this
loss function, if it exists, leads to our CIR model.

We remove the constant terms Ey[v
�
y vy] and Eỹ[v

�
ỹ vỹ]

that are independent of V and continue to simplify f(V ):

f(V ) = −Ey

[
v�y PΣxxV vy

]
+ αEỹ

[
v�ỹ PΣx̃x̃V vỹ

]
= −Ey

[
tr
(
v�y PΣxxV vy

)]
+ αEỹ

[
tr
(
v�ỹ PΣx̃x̃V vỹ

)]
= − tr(ΣxPΣxxV ) + α tr(Σx̃PΣx̃x̃V )

= − tr
(
V �ΣxxΣxΣxxV

[
V �Σ2

xxV
]−1)

+ α tr
(
V �Σx̃x̃Σx̃Σx̃x̃V

[
V �Σ2

x̃x̃V
]−1)

= − tr
(
V �AV

(
V �BV

)−1)
+α tr

(
V �ÃV

(
V �B̃V

)−1)
,

where A = ΣxxΣxΣxx, B = Σ2
xx, Ã = Σx̃x̃Σx̃Σx̃x̃, and B̃ =

Σ2
x̃x̃.

APPENDIX B. PROOF TO LEMMA 1

∂f

∂V
= −2AV

(
V �BV

)−1

− 2BV
(
V �BV

)−1
V �AV

(
V �BV

)−1

+ α
{
2ÃV

(
V �B̃V

)−1

− 2B̃V
(
V �B̃V

)−1
V �ÃV

(
V �B̃V

)−1}
.

Recall that the projection to the tangent space of the Stiefel
manifold St(p, d) at V is given by

ProjV (Z) = Z − V Sym
(
V �Z

)
, ∀Z ∈ TV St(p, d),

where Sym(X) := X+X�

2 is the symmetrizer. Then observe
that the following equations involving the pair A, B and the
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pair Ã, B̃ have to satisfy the following equations:

V �(2AV (
V �BV

)−1−2BV
(
V �BV

)−1
V �AV

(
V �BV

)−1)
= 0

V �(2ÃV (
V �B̃V

)−1−2B̃V
(
V �B̃V

)−1
V �ÃV

(
V �B̃V

)−1)
= 0.

That is, V � ∂f
∂V = 0. As a result, the gradient of f is given

by

grad f(V )=ProjV

(
∂f

∂V

)
=

∂f

∂V
− V Sym

(
V � ∂f

∂V

)
=

∂f

∂V
.

APPENDIX C. PROOF OF THEOREM 1
If V is a local minimizer (i.e., a stationary point for

the optimization problem (2.3)), then grad f(V ) = 0, from
Lemma 1 we have

AV E(V )− αÃV Ẽ(V ) = BV F (V )− αB̃V F̃ (V ),

where E(V ) = (V �BV )−1, Ẽ(V ) = (V �B̃V )−1,
F (V ) = (V �BV )−1V �AV (V �BV )−1 and F̃ (V ) =

(V �B̃V )−1V �ÃV (V �B̃V )−1.

APPENDIX D. PROOF OF THEOREM 2
By Theorem 1 and Corollary 1 in [50], it suffices to show

f is continuously differentiable, which is a direct corollary
of Lemma 1.

APPENDIX E. OPTIONS FOR ηk

To introduce other options for ηk, we need the following
definition.

Definition 2 (Gradient-related sequence, see [2, p. 62, Defi-
nition 4.2.1]). Given a function f on a Riemannian manifold
M , a sequence in tangent space {ηk}, ηk ∈ TVk

M , where Vk

are defined through the iterative formula Vk+1 = RVk
(tkηk),

and Rxk
can be any retraction (e.g., global retraction map-

ping RetrV : TV M → M, ξ �→ (V + ξ)(Id + ξ�ξ)−1/2 on
St(n, p)), is called gradient-related if, for any subsequence
of {Vk}k∈K⊂{1,2,...,n} that converges to a non-critical point
of f , the corresponding subsequence {ηk}k∈K is bounded
and satisfies

lim sup
k→∞,k∈K

〈
grad f(Vk), ηk

〉
M

< 0.

This means that the cosine of gradient and update ηk
needs to form an acute angle for only critical points. Note
that a naive Newton step is not necessarily gradient-related
(see p. 122 in [2]). In particular, ηk = − grad f(Vk) results
in a gradient-related sequence, and is suggested by [2] as a
natural choice.

APPENDIX F. PROOF OF THEOREM 3
The first assertion regarding consistency is from Theo-

rem 4.3.1 in [2], which requires our loss function f to be
continuously differentiable, a direct corollary of Lemma 1.

By the compactness of St(p, d), the level set L := {V ∈
St(p, d) : f(V ) ≤ f(V0)} is compact for any V0 ∈ St(p, d),
the second assertion follows Corollary 4.3.2 in [2].

The third assertion regarding the convergence rate in-
volves second-order conditions, i.e., the Hessian of f . Let
D2f be the Hessian computed in Euclidean coordinates,
that is, (D2f |V )ij,kl := ∂f

∂Vij∂Vkl
, then for tangent vectors

Ω1,Ω2 ∈ TV St(p, d), the Hessian is given by [2]

Hess(f)(Ω1,Ω2) = D2f |V (Ω1,Ω2)︸ ︷︷ ︸
1

+
1

2
tr
((
grad f(V )�Ω1V

� + V �Ω1 grad f(V )�
)
Ω2

)
︸ ︷︷ ︸

2

−1

2
tr
((
V � grad f(V ) + grad f(V )�V

)
Ω�

1

(
Ip − V V �)Ω2

)
︸ ︷︷ ︸

3

.

By the definition of f , 1 is C∞ in the Euclidean sense,
so is continuous. By the continuity of grad f , 2 and 3
are also continuous since they are product or summation
of continuous functions. Then the convergence rate follows
Theorem 4.5.6 in [2].

APPENDIX G. FIXED-POINT APPROACH
TO OPTIMIZATION

Motivated by the first order optimality condition for
the loss function (2.3), we seek a fixed-point method as
an alternative to a gradient descent-based algorithm. In-
stead of solving equation (2.4) in one algebraic step, we
separate the problem into the following 8 equations, which
can be solved cyclically. Recall that E(V ) = (V �BV )−1,
Ẽ(V ) = (V �B̃V )−1, G(V ) = V �AV , and G̃(V ) = V �ÃV
and suppress the index of Vk, i.e., V = Vk and V1 = Vk+1

for now for legibility:

AV1E(V )− αÃV Ẽ(V )

= BV E(V )G(V )E(V )− αB̃V Ẽ(V )G̃(V )Ẽ(V )

AV E(V )− αÃV1Ẽ(V )

= BV E(V )G(V )E(V )− αB̃V Ẽ(V )G̃(V )Ẽ(V )

AV E(V )− αÃV Ẽ(V )

= BV1E(V )G(V )E(V )− αB̃V Ẽ(V )G̃(V )Ẽ(V )

AV E(V )− αÃV Ẽ(V )

= BV E(V )G(V )E(V )− αB̃V1Ẽ(V )G̃(V )Ẽ(V )

AV E(V1)− αÃV Ẽ(V )
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= BV E(V1)G(V )E(V1)− αB̃V Ẽ(V )G̃(V )Ẽ(V )

AV E(V )− αÃV Ẽ(V1)

= BV E(V )G(V )E(V )− αB̃V Ẽ(V1)G̃(V )Ẽ(V1)

AV E(V )− αÃV Ẽ(V )

= BV E(V )G(V1)E(V )− αB̃V Ẽ(V )G̃(V )Ẽ(V )

AV E(V )− αÃV Ẽ(V )

= BV E(V )G(V )E(V )− αB̃V Ẽ(V )G̃(V1)Ẽ(V )

In each of the first four of these equations, Vk+1 can change
independently, suggesting a convenient corresponding up-
date rule. For the next two equations, we can premultiply
by [(BV )�(BV )]−1(BV )� (and [(B̃V )�(B̃V )]−1(B̃V )�, re-
spectively) to obtain the following equation:[
(BV )�(BV )

]−1
(BV )�AV E(Vk+1)−E(Vk+1)G(V )E(Vk+1)

= α
[
(BV )�(BV )

]−1
(BV )�H1, (G.1)

where H1 = (ÃV Ẽ(V )− B̃V Ẽ(V )G̃(V )Ẽ(V )).
In practice, the cyclic update may not converge to sta-

tionary points of the optimization problem (2.3). However,
when the designated cyclic update converges, it can be
shown that equation (G.1) is in the form of an asymmetric
algebraic Riccati equation in E(Vk+1) [6]. When we obtain
a solution E∗ = E(Vk+1) where V = Vk is not a local op-
timum, the E∗ is not in Sd

++, which means we cannot use
the Cholesky decomposition to solve for Vk+1 in the next
update.

For the final two equations, we can write

V �
k+1AVk+1

=
[(
V E(V )

)�(
V E(V )

)]−1(
V E(V )

)�
B−1H2E(V )−1,

where

H2 = AV E(V ) + α
(
B̃V Ẽ(V )G̃(V )Ẽ(V )− ÃV Ẽ(V )

)
.

However, when V = Vk is not a local optimum, again the
right-hand side is not symmetric positive-definite, and so we
cannot use the Cholesky decomposition to solve for Vk+1 in
the next update.

Note that in order to require Vk+1 ∈ St(p, d), the final
step of each update rule should project the solution for Vk+1

onto St(p, d), which can be done by SVD; if A = UΣV �,
then π(A) = UV �.

Although this cyclic update regime does not immediately
lead to a practical fixed-point optimization algorithm, it
shows that our loss function has the classical link to a Ricatti
equation (G.1), indicating that more efficient algorithms are
possible.

SUPPLEMENTARY MATERIAL
Additional experimental details are included in the sup-

plementary material.
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