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Abstract
Fair Machine Learning endeavors to prevent unfairness arising in the context of machine learning applications embedded

in society. To this end, several mathematical fairness notions have been proposed. The most known and used notions turn
out to be expressed in terms of statistical independence, which is taken to be a primitive and unambiguous notion. However,
two choices remain (and are largely unexamined to date): what exactly is the meaning of statistical independence and
what are the groups to which we ought to be fair? We answer both questions by leveraging Richard Von Mises’ theory
of probability, which starts with data, and then builds the machinery of probability from the ground up. In particular,
his theory places a relative definition of randomness as statistical independence at the center of statistical modelling.
Much in contrast to the classically used, absolute i.i.d.-randomness, which turns out to be “orthogonal” to his conception.
We show how Von Mises’ frequential modeling approach fits well to the problem of fair machine learning and show how
his theory (suitably interpreted) demonstrates the equivalence between the contestability of the choice of groups in the
fairness criterion and the contestability of the choice of relative randomness. We thus conclude that the problem of being
fair in machine learning is precisely as hard as the problem of defining what is meant by being random. In both cases
there is a consequential choice, yet there is no universal “right” choice possible.
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1. INTRODUCTION
Under the name “Fair Machine Learning” researchers

have attempted to tackle problems of injustice, fairness, dis-
crimination arising in the context of machine learning ap-
plications embedded in society [5]. Despite the variety of
definitions of fairness and proposed “fair algorithms,” we
still lack a conceptual understanding of fairness in machine
learning [75, 84]. What does it mean for predictions to be
fair? How does the statistical frame influence fairness? Is
there fair data and what would it look like? For instance
more concretely, how does a population of individuals and
their corresponding predictions look like if a provided defi-
nition of fairness is fulfilled?

We focus on a collection of widely used fairness notions
which are based on statistical independence e.g., [16, 46,
22], but examine them from a new perspective. Surprisingly,
debates concerning these notions have not questioned the
role and meaning of statistical independence upon which
they are based. As we shall argue, statistical independence is
far from being a mathematical concept linked to one unique
interpretation (see §4.2). This paper, in contrast to much
of the literature on fairness in machine learning, e.g., [16,
33, 46, 22], investigates what many definitions of fairness
take for granted: a well-defined and meaningful notion of
statistical independence.
∗Corresponding author.

Another, less popular, strand of research investigates the
role of randomness in machine learning [94]. The standard
randomness notion, independently and often identically dis-
tributed data points, suffers the longstanding critique of be-
ing inadequate (cf. [89]). Again, statistical independence lies
at the foundation of this, hitherto unrelated to fairness, con-
cept. (We will justify below our use of “randomness” as used
here.)

At the core of both our observations is the unreflective
use of a convenient mathematical theory of probability. Kol-
mogorov’s axiomatization of probability theory, developed
1933 in his book [55] (translated in [56]), dominates most re-
search in machine learning. As Kolmogorov explicitly stated,
his theory was designed as a purely axiomatic, mathemat-
ical theory detached from meaning and interpretation. In
particular, Kolmogorov’s statistical independence lacks such
reference. However, the modeling nature of machine learn-
ing and the arising ethical complications within machine
learning applied in society ask for semantics of probabilistic
notions.

In this work, we focus on statistical independence.
We leverage a theory of probability axiomatized by Von
Mises [107] in order to obtain meaningful access to prob-
abilistic notions. (In leaning on Von Mises we are directly
following the explicit advice of Kolmogorov [56, page 3, foot-
note 4].) This theory construes probability theory as “sci-
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entific”1 (as opposed to purely mathematical) with the aim
to describe the world and provide interpretations and veri-
fiability [107, pages 1 and 14]. Von Mises’ theory of proba-
bility provides a mathematical definition of statistical inde-
pendence which describes statistical phenomena observable
in the world. In particular, Von Mises’ statistical indepen-
dence is mathematically, but not conceptually, related to
Kolmogorov’s definition.

In this paper, we, to the best of our knowledge, are the
first to apply Von Mises’ randomness to machine learning
and to interpret randomness in machine learning in a Von
Mises’ way. The paper is structured as follows:

In Section 2, we outline our statistical perspective on
machine learning. We present the “independent and iden-
tically distributed”-assumption (i.i.d.-assumption) as one
commonly used choice for modeling randomness. The fur-
ther occurrence of statistical independence as fundamen-
tal ingredient of fairness notions in machine learning (§3)
pushes us to the question: “How to interpret statistical in-
dependence in (fair) machine learning?” Remarkably, “Inde-
pendence” governs many discussions around fairness in ma-
chine learning without getting to a concrete meaning of this
term. Its deeper semantics remain untouched even in the
considerably exhaustive book by Barocas et al. [5, Chap-
ter 3, p. 13].

We first dissect Kolmogorov’s widely used definition of
statistical independence in Section 4 before we propose an-
other mathematical notion following Von Mises. Von Mises
uses his notion of independence in order to define random-
ness. We contrast his definition and the i.i.d.-assumption in
Section 5. This reveals a general typification of mathemati-
cal definitions of randomness which most importantly differ
in the absoluteness respectively relativity to the problem un-
der consideration (§5.2).

Finally, we leverage Von Mises’ definition of statistical in-
dependence to redefine three fairness notions from machine
learning (§6). Against the background of Von Mises’ prob-
ability theory, we then link randomness and fairness both
expressed as statistical independence (§7). Thereby, we re-
veal an unexpected hypothesis: randomness and fairness can
be considered equivalent concepts in machine learning. Ran-
domness becomes a relative, even an ethical choice. Fairness,
however, turns out to be a modeling assumption about the
data used in the machine learning system.

Due to the frequent use of the word “independence” with
different meanings in this paper, we differentiate. By “in-
dependence” we mean an abstract concept of unrelatedness
and non-influence [92]. We use it interchangeably with “sta-
tistical independence” which emphasizes the probabilistic

1We further use the term “scientific” in order to describe a theory
modeling a phenomenon in the world providing interpretations and
verifiability in the sense of Von Mises (spelled out more concretely in
Section 4.3). Any more detailed discussion, e.g., along the lines of [76],
is out of the scope of this paper.

and statistical context. When referring to the later intro-
duced, formal definitions of statistical independence follow-
ing Kolmogorov or Von Mises we explicitly state this. Fi-
nally, we assign “Independence” (capital “I”) to one of the
fairness criteria in machine learning which demands for sta-
tistical independence of predictions and sensitive attribute
[5, 83]. Despite the abstract appearance of this work, we con-
sider it as part of the project to make the very abstract no-
tion of “independence” or “statistical independence” at least
a bit more concrete — specifically, we describe independence
in terms of samples, not abstractions such as countably ad-
ditive probability measures. We ask (and try to assist) the
reader to become aware of the implicit assumptions taken
about the concept of “independence”.

2. A STATISTICAL PERSPECTIVE ON
MACHINE LEARNING

Machine Learning ingests data and provides decisions or
inferences. In this sense, at its core, it is statistics.2 Adopting
this perspective, we understand machine learning as “mod-
eling data generative processes”. Statistics, respectively ma-
chine learning, asks for properties of data generating pro-
cesses given a collection of data [109, p. ix], [4, p. 1].

We assume that a data generative process occurs some-
how in the world. We are confronted with a collection of
numbers, the data, produced by the process and acquired
by measurement. A “model” is a mathematical description
of such a data generating process. This description should
allow us to make predictions in an algorithmic fashion. Thus,
we require, inter alia, a mathematical description of data —
“a model for data collection” [18, p. 207]. What is arguably
the standard model of data is stated in [30, p. 11]:

We shall assume in this book that (X1, Y1), . . . , (Xn, Yn),
the data, is a sequence of independent identically dis-
tributed (i.i.d.) random pairs with the same distribu-
tion[. . . ].

Similar definitions can be found in many machine learning
or statistics textbooks (e.g., [18, Def. 5.1.1]). Data (measure-
ments from the world) is conceived of (mathematically) as
a collection of random variables which share the same dis-
tribution and which are (statistically) independent to each
other. Implicit in this definition is that the data indeed has a
stable distribution. The assumed independence can be inter-
preted as presumption of randomness of the data. Each data
point was “drawn independently”3 from all others, with the
2Machine learning could be viewed as classical statistics with a stronger
focus on algorithmic realizations (cf. [91, p. 6] or [58]). While there
are ML approaches that do not seem statistical in the classical sense
(e.g., worst case online sequence prediction), our general description
still holds.
3Observe that as a mathematical theory of data this already leaves a
lot to be desired: you will not find in any text a precise and constructive
explanation of this process of “drawn independently”. To be sure, the
notion of “statistical independence” is well defined (see further below),
as is a collection of random variables. But not the mysterious process
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obvious interpretation that each data point does not give a
hint about the value of any other.

The i.i.d. assumption is two-fold: 1) the assumption of
identical distributions of a sample, and 2) the mutual inde-
pendence of points in the sample. The second assumption
alone captures and pertains to randomness [50, Section 3].
However, since the use of i.i.d. is more common, we refer to
this more specific assumption.

Even though many results in statistics and machine learn-
ing rely on the i.i.d. assumption (e.g., law of large numbers
and central limit theorem in statistics [18], generalization
bounds in statistical learning theory [91] and computation-
ally feasible expressions in probabilistic machine learning
[30]), it has always been subject of fundamental critique.4
Other randomness definitions are rarely applied, but excep-
tions exist [108, 96].

In summary, statistical conclusions often rely on the i.i.d.-
description of data. This description embraces a model of
randomness making randomness a substantial assumption
about the data in statistics and machine learning. Inter-
estingly, statistical independence lies at the foundation of
another, hitherto unrelated, concept: many fairness criteria
in fair machine learning are expressed in terms of statistical
independence.

3. FAIR MACHINE LEARNING RELIES ON
STATISTICAL INDEPENDENCE

With the broad use of machine learning algorithms in
many socially relevant domains, e.g., recidivism risk pre-
diction or algorithmic hiring, machine learning algorithms
turned out to be part of discriminatory practices [22, 80].
These revelations were accompanied by the rise of an entire
research field, called “fair machine learning” (cf. [16, 22, 5]).
We do not attempt to summarize this large literature here.
Instead, we simply take a snapshot of the most widely known
fairness criteria in machine learning [5, p. 45].

3.1 Three Fairness Criteria in Machine
Learning

The three so called observational fairness criteria, which
are expressed in terms of statistical independence, encom-
pass a large part of fair machine learning literature:5

of “drawing from”. The closest we can come to such a description of
mechanism is the indirect abstract version: the data are created (by
the world) in a manner that the (mathematical theorem) of the law of
large numbers holds, and that their empirical distribution converges
to the distribution which was given in the first place.
4Nicely summarized by Glenn Shafer in a comment on [40] “The
i.i.d. case has also been central to statistics ever since Jacob Bernoulli
proved the law of large numbers at the end of the 17th century, but
its inadequacy was always obvious.” [89].
5Obviously, there are other fairness notions in machine learning which
we have not listed above and which are not expressed as statistical
independence, e.g., [33, 53, 111].

Independence demands that the predictions Ŷ are statis-
tically independent of group membership S in socially
salient, morally relevant groups [16, 52, 33].

Separation is formalized as Ŷ ⊥ S|Y , i.e., the prediction
Ŷ is conditionally independent of the sensitive attribute
S given the true label Y [46].

Sufficiency is fulfilled if and only if Y ⊥ S|Ŷ [54].

For the sake of distinguishing between the fairness criteria
“Independence” and statistical independence, we henceforth
mark all fairness criteria by a leading capital letter. Each of
the notions appear in a variety of ways and under different
names [5, p. 45ff]. From the perspective of ethics, the fairness
criteria have been substantiated via loss egalitarianism [11,
111], absence of discrimination [11], affirmative action [9, 83]
or equality of opportunity [46].

Certainly, statistical independence is not equivalent to
fairness in general (a constellation of concepts sharing
a common name, and perhaps little else agreed by all)
[33, 46, 83]. The nature of fairness has been discussed for
decades, e.g., in political philosophy [82], moral philosophy
[61] and actuarial science [1]. The “essentially contested”
nature of fairness suggests that no universal, statistical cri-
terion of fairness exists [39]. How fairness should be defined
is a context-specific decision [84, 47].

Nevertheless, in order to incorporate fairness notions into
algorithmic tools we require mathematical formalisations of
fairness definitions. The three named criteria dominate most
of the practical fair machine learning tools [5, p. 45], pre-
sumably because their simple definitions make it easy to in-
corporate them in learning procedures in a pre-, in- or post-
processing way [5, Chapter 3, p. 20]. Regarding both the
reductionist definition of fairness and the pragmatic justifi-
cation, we emphasize that our argumentation is solely with
respect to the fairness criteria named above.

The three fairness criteria are described as group fair-
ness notions since each of the definitions is intrinsically rel-
ativized with respect to sensitive groups. The definition of
sensitive groups substantially influences the notion of fair-
ness. For instance, via custom categorization one can pro-
vide fairness by group-design (see [67, Section H.3] for a de-
tailed discussion of the question of choice of groups). In ad-
dition, the meaning of groups in a societal context influences
the choice of groups as elaborated in [49], and as explored in
a long line of work in social psychology [17, 97, 48, 66, 19].
We contribute to the debate by drawing a connection be-
tween the choice of groups and the choice of randomness in
§7.1.1.

3.2 Independence in Mathematics and the
World

Behind the formalization of fairness as statistical inde-
pendence, there is an apparently rigid, mathematical defi-
nition of statistical independence. The fairness criteria pre-
sume that we have the machinery of probability theory at



58 R. Derr and R. C. Williamson

our disposal and the relationship of mathematics and the
world is clear and unambiguous. However, as we elaborate
further in the following, there is no single notion of “the”
mathematical theory of probability [36]. Furthermore, it is
not clear what it means to be statistically independent when
talking of measurements in the world. Respectively, it is not
obvious that the standard formulation of statistical indepen-
dence is the right one to use.

The current definitions of fairness in machine learning
fail and even hurt in practice, because debates on fairness
notions take for granted a commonly agreed meaning of
statistical independence. This common ground fatally does
not exist given just the standard probability theory. Hence,
given a specified scenario, e.g., hiring algorithm for public
service in Kenya, fair machine learning research should en-
able founded debates on the meaning and purposefulness
of deploying a specific notion of fairness, in particular those
which require independence statements because their are al-
gorithmically attractive. If the debate in Kenya would rely
on everybody’s – who are involved in the deployment pro-
cess – intuitive understanding of statistical independence, it
would result in a fatal misalignment of reasonings.

We perceive this work as part of the project to emphasize
the substantive character formal notions of fairness should
have. In other words, fairness is a societal and ethical con-
cept that does not allow for the separation of machine learn-
ing as technical tool on one side and the idea of fairness in
society on the other side. Debates on fairness have to con-
sider machine learning in society.

Hence, if we desire statistical independence to capture a
fairness notion applicable to the world, we ought to under-
stand what the mathematical formulae signify in the world.
Thus, in addition to the debate about the fairness criteria, a
debate on the interpretation of statistical concepts in ethical
context is required.

In this work, we contribute to the understanding by scru-
tinizing the standard definition of statistical independence.
Motivated by the occurrence of statistical independence as
fundamental ingredient in randomness as well as fairness
in machine learning, we first detail the standard account
due to Kolmogorov. What is statistical independence? How
does statistical independence relate to an independence in
the world?

4. STATISTICAL INDEPENDENCE
REVISITED

To make any sense of phenomena in our world, we need to
ignore large parts of it in order to avoid being overwhelmed.
Hence, we usually assume or presume the phenomena of in-
terest depends only on a few factors and to be independent
of everything else [72]. Thus the concept of independence is
inherent in a variety of subjects ranging from causal reason-
ing [93], to logic [42], accounting [24], public law [69] and
many more. Independence, as we understand it, grasps the

concept of incapability of an entity to be expressed, derived
or deduced by something else [92].

4.1 From Independence to Statistical
Independence

Of special interest to us is the concept of independence in
probability theories and statistics [60][36, Section IIF, IIIG
and VH]. Independence in a probabilistic context should
somehow capture the unrelatedness between the occurrence
of events, as has been understood for centuries:

Two Events are independent, when they have no connex-
ion [sic] one with the other, and that the happening of
one neither forwards nor obstructs the happening of the
other. [28, Introduction, p. 6].

Modern probability theory loosely follows this intuition as
we see in the following.

4.2 Statistical Independence As We Know It
Lacks Semantics

Since the axiomatization of probability theory developed
by [55] (translated in [56]), it displaced many other ap-
proaches. Mathematically, Kolmogorov’s measure-theoretic
axiomatization dominates all other mathematical formal-
izations to probability and related concepts.6 In particular,
his definition of statistical independence developed a well-
accepted, ubiquitous notion. In a simple form it is given by:7

Definition 1 (Simplified Statistical Independence following
Kolmogorov). Two events A,B are statistically independent
iff

P (A ∩B) = P (A)P (B).

Independence plays a central role in Kolmogorov’s prob-
ability theory: “measure theory ends and probability begins
with the definition of independence” [32, p. 37] (quoted in
[98]). However, Kolmogorov’s definition of independence is
subtle and requires closer investigation.

We employ a small toy example in order to convey the
semantic emptiness of Kolmogorov’s definition: consider the
experiment of throwing a die. The events under observation
are A = {1, 2}, seeing one or two pips, respectively B =
{2, 3}, seeing two or three pips. If the die were fair, so each
face has equal probability 1

6 to show up, the events A and
B would turn out to not be independent. In contrast, if
the die were loaded in a very special way p2 = p3 = 1

2 ,
p1 = p4 = p5 = p6 = 0, where pi refers to the probability
of seeing i pips, the events A and B would be independent
following Kolmogorov’s definition.

Thus, statistical independence, even though defined over
events, manifests in the correspondence of how probabilities
are mapped to events and why. The definition focuses on
events. But, the crucial ingredient is the probability. Thus,
6Exceptions exist, e.g., in quantum theory [44] or in statistics [108].
7For a rigorous definition see Appendix 5.
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there is no unique interpretation of statistical independence.
A more detailed interpretation and meaning heavily depends
on the interpretation of probability in the first place.

Given this observation, we may ask for a notion of in-
dependence in the world, which is somehow captured by
Kolmogorov’s definition. Kolmogorov himself underlined the
avowedly mathematical, axiomatic nature of probability. His
theory is in principle detached from any meaning of prob-
abilistic concepts such as statistical independence in the
world [56, p. 1]. He even questioned the validity of his axioms
as reasonable descriptions of the world [56, p. 17].

However, one can possibly construct a notion of indepen-
dence in world which is captured by Kolmogorov’s defini-
tion. If one assumes one’s calculations about one’s beliefs on
the happening of events are governed by the mathematical
rules laid out by Kolmogorov, then Kolmogorov’s definition
of statistical independence captures one’s (in-the-world) un-
derstanding of an independence of beliefs on the happening
of events. This sketch of a purely subjectivist account to sta-
tistical independence neglects a justification for the choice of
mathematical formulation and skips over any reference to an
objective world. In conclusion, Kolmogorov’s independence
might capture a worldly concept. But, this independence in
the world is not uniquely attached to Kolmogorov’s defini-
tion.

There is a third major irritation arising from Kol-
mogorov’s definition. As observed already above, Kol-
mogorov treats events as the entities of independence.
Though, against the background of De Moivre [28]’s in-
tuition on statistical independence, we wonder about this
focus. Statistical independence, as De Moivre [28] already
emphasized, refers to altering “the happening of the event,”
but not the event itself. It is not the independence between
the shown numbers of the die (whatever this means), but the
independence of the processes how the number showed up
(loading the die, throwing the die, etc.) which are captured
by statistical independence.

This critique is not new. Von Mises already criticized the
measure theoretical definition by Kolmogorov in his book
[107, pp. 36–39]. In summary, he argued that there is no
interpretation of statistical independence of “single events.”
The unrelatedness, which the probabilistic notion of statis-
tical independence is trying to capture, locates in the pro-
cess of reoccuring events, but not single events themselves.
More recently, Von Collani [104] argued in a similar way. It
is probability which brings the definition of statistical in-
dependence to life and it is the question what probability
means and why we use it which links the mathematical def-
inition to a concept in the real world.

In machine learning and statistics it is often presumed
that the mathematical definition of independence captures
a worldly concept. As we argued in this section, this link
is far from being well-defined. However, if we consider ma-
chine learning as worldly data modeling, then the natural
question arises: what do we model when we leverage Kol-
mogorov’s statistical independence? What do we mean by

independence of events? In order to circumvent these ques-
tions, we propose to look into another mathematical theory
of probability. This theory was led by the idea of modeling
statistical phenomena in the world.

4.3 Statistical Independence and a Probability
Theory with Inherent Semantics

Around 15 years before Kolmogorov’s Grundbegriffe der
Wahrscheinlichkeitsrechnung [55] (translated as [56]), Von
Mises proposed an earlier axiomatization of probability the-
ory [105]. His less known theory approached the problem
of a mathematical theory of probability through the lens
of physics. Von Mises aimed for a “mathematical theory of
repetitive events.”

This aim included the emphasis on the link between real-
world and mathematical idealization. In particular, he of-
fers interpretability and verifiability of his theory [107, p. 1
and 14].8 For interpretation he defined probabilities in a
frequency-based way (see Definition 2). This inherently re-
flects the repetitive nature of the phenomena under descrip-
tion. By verifiability he referred to the ability to approxi-
mately verify the probabilistic statements made about the
world [107, p. 45].

In summary, Von Mises’ theory, in our conception of ma-
chine learning, starts the “modeling of data generating pro-
cesses” on an even more fundamental level then it is cur-
rently done via the use of Kolmogorov’s axiomatization. His
aim for a mathematical description of data-generating pro-
cesses (the sequence of repetitive events) aligns to our per-
spective on machine learning as laid out earlier (cf. Sec-
tion 2). With Von Mises we obtain access to meaningful
foundations for statistical concepts in machine learning. In
particular, we redefine and reinterpret statistical indepen-
dence in a Von Misesean way. This suggests new perspectives
on the problem of fair machine learning and the concepts of
fairness and randomness themselves.

For the further discussion, we summarize the major in-
gredients of Von Mises’ theory. Fortunately, it turns out that
Von Mises’ notion of statistical independence, central to our
discussion, is mathematically analogous to the well-known
Kolmogorovian definition. Thus, one’s intuition on statisti-
cal independence is refined but its mathematical applicabil-
ity remains.

4.4 Von Mises’ Theory of Probability and
Randomness in a Nutshell

Von Mises’ axiomatization of probability theory is based
on random sequences of events and the interpretation of
8Von Mises’ discussion pre-dates most of the modern work done in the
philosophy of science. Popper [76], for instance, was inspired by Von
Mises’ conception of randomness and probability. While Von Mises’
definition of verifiability and interpretability is arguably somewhat ill-
conceived, nevertheless, he works, in contrast to Kolmogorov’s theory
which is of purely syntactical nature, on a semantical project, where
the connection of the real world and the mathematical formulation is
of vital importance.
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probability as the limiting frequency that an event occurs
in such a sequence [105]. These random sequences, called col-
lectives, are the main ingredients of his theory. For the sake
of simplicity, we stick to binary collectives. Thus, collectives
are 0-1-sequences with certain randomness properties which
define probabilities for the labels 0 and 1. Nevertheless, it
is possible to define collectives respectively probabilities on
richer label sets. Collectives can be extended up to a con-
tinuum [107, II.B].

For notational economy, we note that a sequence taking
values in {0, 1}, (si)i∈N can be identified with a function
s : N → {0, 1}.
Definition 2 (Collective [107, p. 12]). Let S be a set of
sequences s : N → {0, 1} with s(j) = 1 for infinitely many
j ∈ N. In mathematical terms, collectives with respect to
S are sequences x : N → {0, 1} for which the following two
conditions hold.

1. The limit of relative frequencies of 1s,

lim
n→∞

|{i ∈ N : x(i) = 1, 1 ≤ i ≤ n}|
n

exists.9 If it exists, then the limit of relative frequencies
of 0s exists, too. We define p1, respectively p0 = 1− p1,
to be its value.

2. For all s ∈ S,

lim
n→∞

|{i ∈ N : x(i) = 1 and s(i) = 1, 1 ≤ i ≤ n}|
|{j ∈ N : s(j) = 1, 1 ≤ j ≤ n}|

= lim
n→∞

|{i ∈ N : x(i) = 1, 1 ≤ i ≤ n}|
n

= p1.

We call p0 the probability of label 0. Conversely, p1 is the
probability of label 1.10 The existence of the limit (Condi-
tion 1) is a non-vacuous condition. One can easily construct
sequences whose frequencies do not converge [37].

The sequences s ∈ S are called selection rules. A selec-
tion rule selects the jth element of x whenever s(j) = 1.11
Informally, a collective (w.r.t S) is a sequence which has in-
variant frequency limits with respect to all selection rules
in S. We call any selection rule which does not change the
frequency limit of a collective admissible. This invariance
property of collectives is often called “law of excluded gam-
bling strategy” [107]. When thinking of a sequence of coin
9The mathematically inclined reader might notice the requirement for
an order structure to obtain a definition of limit here. We use x as
sequences with the standard order structure on the natural numbers.
However, x can be generalized to be a net on more arbitrary base sets
[51].
10Von Mises called p0 chance as long as x is a sequence. When x is a
collective, he called it probability.
11 We sweep under the carpet a substantial difference in Von Mises’
definition of selection rules and our definition. Von Mises allowed the
selection rules to “see” the first n elements of the collective when de-
ciding whether to choose the n+1th element [107, p. 9]. Our definition
is more restrictive. We require the selected position to be determined
before “seeing” the entire sequence. We focus on the ex ante nature of
Von Mises randomness but neglect his recursive formalism.

tosses, a gambler is not able to gain an advantage by just
considering specific selected coin tosses. The probability of
seeing “heads” or “tails” remains unchanged.

Von Mises introduced the “law of excluded gambling
strategy” with the goal to define randomness of a collec-
tive [107, p. 8]. A collective is called random with respect
to S. Consequently, Von Mises integrated randomness and
probability into one theory. In fact, admissibility of selection
rules is equivalent to statistical independence in the sense
of Von Mises. But it is defined with respect to collectives
instead of selection rules.

Definition 3 (Von Mises’ Definition of Statistical Indepen-
dence of Collectives [107, p. 30, Def. 2]). A collective x with
respect to Sx is called statistically independent to the col-
lective y with respect to Sy iff the following limits exist and

lim
n→∞

|{i ∈ N : x(i) = 1 and y(i) = 1, 1 ≤ i ≤ n}|
|{j ∈ N : y(j) = 1, 1 ≤ j ≤ n}|

= lim
n→∞

|{i ∈ N : x(i) = 1, 1 ≤ i ≤ n}|
n

= p1,

where 0
0 := 0. When two collectives are independent of each

other we write

x ⊥ y.

In comparison to admissibility, the collective y adopts
the role of a selection rule. It is in fact an admissible selec-
tion rule with the difference that a potentially finite num-
ber of elements in x are selected (cf. [41, p. 120f]). Con-
versely, Von Mises’ randomness is statistical independence
with respect to sequences with infinitely many ones and po-
tentially no frequency limit. (For a general comparison be-
tween Kolmogorov’s and Von Mises’ theory of probability
see Appendix A and Table 2.)

4.5 Kolmogorov’s Independence versus Von
Mises’ Independence

What is the relationship between Kolmogorov’s and Von
Mises’ definition of statistical independence? On a concep-
tual level, the critique posed earlier, which questioned the
meaning of statistical independence between events follow-
ing Kolmogorov, gets resolved.

Von Mises adopted a strong frequential perspective on
probabilities which clarifies the mapping from real world
to mathematical definition. He idealized repetitive obser-
vations by infinite sequences and defined probabilities as
limiting frequencies.12 Von Mises’ independence states that
there is no difference in counting the frequency of occur-
rences of an event in the entirety of the sequences or in a
12Without the idealization, again the mathematical description would
miss a link to a worldly phenomenon. The idealization in terms of in-
finite sequences is substantial. In fact, the legitimacy of this idealiza-
tion is the subject of another debate [45]. Nevertheless, the idealization
taken in Von Mises’ framework is explicitly and transparently stated.
Kolmogorov’s axioms do not possess such a statement.
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subselected sequence. His independence forbids any statis-
tical interference between processes described as sequences.
No statistical patterns can be derived from one sequence by
leveraging the other. Von Mises’ definition formalizes the
concept of statistical independence between processes of re-
occuring events.

In contrast to Kolmogorov, Von Mises’ definition does
not evoke the conceptual obscurity. His focus on idealized
sequences of repetitive events restricts his definition of sta-
tistical independence to specific applications with the gain
of clarity in the goal of the mathematical description. Von
Mises’ definition of independence makes statistical indepen-
dence more concrete then Kolmogorov’s definition does.

On a more formal level, Kolmogorov defined statistical
independence via the factorization of measure (cf. Defini-
tion 5), whereas Von Mises defined statistical independence
via conditionalization of measures. The invariance of the fre-
quency limit of a collective with regard to the subselection
via another collective can be interpreted as the invariance
of a probability of an event with regard to the conditioning
on another event, i.e., “selecting with respect to” is “condi-
tioning on” (cf. Theorem 1 and Theorem 2).

Mathematically, it turns out that Kolmogorov’s defini-
tion and Von Mises’ definition are both special cases (mod-
ulo the measure zero problem in conditioning) of a more
general form of measure-theoretic statistical independence.
A selection rule with converging frequency limit is admis-
sible (respectively, statistically independent), to a collec-
tive if and only if the two are statistically independent of
each other in the sense of Kolmogorov, when generalized to
finitely additive probability spaces (see Appendix A for a
formal statement of this claim). Thus, we can replace the
known definition of statistical independence by Kolmogorov
with the definition by Von Mises. Thereby, we give a specific
meaning to statistical independence.

We have been motivated to dissect the notion of statisti-
cal independence for its central role in fair machine learning.
Von Mises’ definition drew us closer to a more transpar-
ent mathematical formalization of statistical independence
for fairness notions in machine learning. However, our dis-
cussion of Von Mises’ theory skipped over a substantial
part of his work so far. Von Mises included a definition
of randomness in his theory of probability. Much in con-
trast to Kolmogorov: There is no definition of “randomness”
in Kolmogorov’s Grundbegriffe der Wahrscheinlichkeitsrech-
nung [55] (translated as [56]). Even more interestingly, Von
Mises’ definition of randomness is stated in terms of statisti-
cal independence. The reader might notice that in Section 2
we already stumbled upon a heavily used notion of random-
ness in machine learning, which is expressed as statistical
independence (i.i.d.). How do i.i.d. and Von Mises’ random-
ness relate to each other? How does the close connection
between statistical independence and randomness comple-
ment our picture of the three fairness criteria from machine
learning?

5. RANDOMNESS AS STATISTICAL
INDEPENDENCE

The nature and definition of randomness seems as “ran-
dom” as the term itself [35, 73, 68, 103, 8]. Usually, a very
broad distinction between two approaches to randomness is
made: process randomness versus outcome randomness [35].
In this work, we focus on outcome randomness and more
specifically the role of randomness in statistics and machine
learning.

Randomness is a modeling assumption in statistics (cf.
Section 2). Upon looking into statistics and machine learn-
ing textbooks one often finds the assumption of independent
and identically distributed (i.i.d.) data points as the expres-
sion of randomness [18, p. 207], [30, p. 4].

We adopt Von Mises’ differing account of randomness.
The expression of randomness relative to the problem at
hand, particularly in settings with data models such as
statistics, turns out to be substantial.

5.1 Orthogonal Perspectives on Randomness
as Independence in Machine Learning and
Statistics

Von Mises defined a random sequence as a sequence which
is statistically independent to a (pre-specified) set of selec-
tion rules respectively other sequences. In contrast, an i.i.d.-
sequence consists of elements each statistically independent
to all others.

Both definitions are stated in terms of statistical indepen-
dence. But, the relationship of independence and random-
ness in terms of i.i.d. and in Von Mises’ theory differ substan-
tially. Von Mises’ randomness is stated relative with respect
to a set of selection rules. Furthermore, it is stated between
sequences, respectively collectives. Whereas, in an i.i.d. se-
quence randomness is expressed between random variables.
The randomness definitions are in an abstract sense “or-
thogonal.” We consider a concrete example for better un-
derstanding.

Horizontal Randomness. Let Ω = N be a penguin
colony. Let s, f be two attributes of a penguin, namely
sex and whether a penguin has the penguin flu or not.
Mathematically: s : Ω → {0, 1}, f : Ω → {0, 1}. So, pen-
guins are individuals n ∈ Ω which we do not know in-
dividually, but we know some attributes of them. Sup-
pose we are given a sequence f(1), f(2), f(3), . . . of flu
values with existing frequency limit. This allows us to
state randomness of f with respect to the correspond-
ing sequence of sex values s, containing infinitely many
ones and having a frequency limit, by: the sequence of
sex values s is admissible on f . Respectively, s and f
are statistically independent of each other. In the con-
text of colony Ω a penguin having flu is random with
respect to the sex of the penguin.
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Table 1. Typification of horizontal and vertical randomness (“RV” = “random variable”).
Horizontal Randomness Vertical Randomness

Data points are modelled as: Evaluations of RVs RVs
Mathematical definition of randomness of: Sequences Sequences of RVs
Explicit relativization: Yes No

Vertical Randomness. This is different to the i.i.d.-
setting in which each penguin i ∈ N obtains its own
random variable Fi : Ω → {0, 1} on some probability
space (Ω,F , P ). Here, Fi encodes whether penguin i
has the penguin flu or not. The sequence F1, F2, F3, . . .
somehow represents the colony. The included random
variables share their distribution and are statistically
independent to each other. The attribute flu is not ran-
dom with respect to the attribute sex here, but the pen-
guins are random with respect to each other. The ran-
dom variables are (often implicitly) defined on a stan-
dard probability space on Ω. The set Ω here does not
model the colony. It shrivels to an abstract source of
randomness and probability.

The choice of perspective, horizontal or vertical, on ran-
domness expressed as statistical independence is a question
of the data model. The two types of randomness definitions
are distinct in a number of ways. For a summary see Table 1.
Most importantly, horizontal randomness is inherently ex-
pressed with respect to some mathematical object. Vertical
randomness lacks this explicit relativization. This typifica-
tion of horizontal and vertical, mathematical definitions of
randomness is actually more broadly applicable.

To the set of vertical randomness notions one can add:
exchangeability [27], α-mixing, β-mixing [94] and possibly
many more. The set of horizontal randomness notions is
spanned up by an entire branch of computer science and
mathematics: algorithmic randomness.

Algorithmic randomness poses the question whether a se-
quence is random or not. This question arose in [105] within
the attempt to axiomatize probability theory [10, p. 3]. In
algorithmic randomness further definitions of random se-
quences have been proposed. For the sake of simplicity the
considered sequences consist only of zeros and ones.

Four intuitions for random sequences crystallized [77,
p. 280ff]: typicality, incompressibility, unpredictability and
independence (see Appendix C). For our purposes, the key
point to note is that a random sequence is typical, in-
compressible, unpredictable or independent with respect to
“something” (they are all relativised in some way). Each of
these intuitions has been expressed in various mathematical
terms. In particular, formalizations of the same intuitions
are not necessarily equivalent, and formalizations of differ-
ent intuitions sometimes coincide or are logically related (see
Appendix D).13 We mainly stick to the intuition of indepen-
13For an overview of algorithmic randomness see [99, 68, 103, 31].

dence in this paper. A random sequence is independent of
“some” other sequences [105, 23].

5.2 Relative Randomness Instead of Absolute,
Universal Randomness

The definition of randomness for sequences is inherently
relative. Even though, the notion is relative with respect to
“something,” most of the effort has been spent on finding
the set of statistically independent sequences defining ran-
domness [23, 68].14

Naively, one could attempt to define a random sequence
as: a sequence is random if and only if it is independent with
respect to all sequences. However, this approach is doomed
to fail. There is no sequence fulfilling this condition except
for trivial ones such as endless repetitions of zeros or ones
(see Kamke’s critique of von Mises’ notion of randomness
[100]).

So instead, research focused on computability expressed
in various ways (because it was felt by those investigating
these matters that computability was somehow given, or
more primitive, and thus a natural way to resolve the rela-
tivity of the notion of randomness). Intuitively, randomness
is considered the antithesis of computability [77, p. 288]:
something which is computable is not random. Something
which is random is not computable. If we then informally
update the definition above we obtain: a sequence is random
if and only if it is independent with respect to all computable
sequences [23].15 Analogous to the definition of computabil-
ity [77, p. 165], this is taken as an argument for the existence
of the definition of randomness [77, p. 287].

In our work, we argue towards a relativized conception of
randomness in line with work by [77], [50] and [107].16 A rel-
ative definition of randomness is a definition of randomness
which is relative with respect to the problem under consid-
eration.17 In contrast, an absolute and universal definition
14The analogous observation holds for all four intuitions (see Ap-
pendix C and [68]).
15To be precise, a random sequence following Church [23] is indepen-
dent to all partially computable selection rules following Von Mises (see
Footnote 11).
16Humphreys [50] presented randomness as relativized to a probabilis-
tic hypothesis or reference class. Porter [77, p. 169] even postulated the
“No-Thesis”-Thesis: Any notion of randomness neither defines a well-
defined collection of random sequences nor captures all mathematical
conceptions of randomness; confer the logic of “essentially contested”
concepts [39], which, presumably, are unavoidably contested for the
same reason.
17In machine learning, a problem under consideration is, for instance,
animal classification via neural networks.
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of randomness would preserve its validity in all problems. It
presupposes the existence of the randomness.

Relative randomness with respect to the problem which
we want to describe aligns to Von Mises’ theory of proba-
bility and randomness. Von Mises emphasized the ex ante
choice of randomness [106, p. 89] relative to the problem
at hand [107, p. 12]. First, one formalizes randomness with
respect to the underlying problem, then one can consider
a sequence to be random or not. Otherwise, if we are
given a sequence, it is easy to construct a set of selection
rules, such that the sequence is random with respect to this
set.18 This, however, undermines the concept of randomness,
which should capture the pre-existing typicality, incompress-
ibility, unpredictability or independence of a sequence (cf.
[108, p. 321]). Von Mises’ randomness intrinsically possesses
a modeling character, similar to our needs in machine learn-
ing and statistics.

Given its role as modeling assumption in statistics, ran-
domness lacks substantial justification to be expressed in
any absolute and universal manner in this context. Neither
are there reasons why computability19 is the only mathe-
matical, expressive way to encode one of the four intuitions
of randomness. The i.i.d. assumption, an absolute and uni-
versal definition of randomness, does not fit this purpose.
To appropriately model data we require adjustable notions
of randomness. Otherwise, we restrict our modeling choice
without reason or gain.20

Equipped with the interpretation of statistical indepen-
dence as randomness we now return to our motivation for
investigating statistical independence. ML-friendly fairness
criteria are built upon statistical independence. In contrast
to Kolmogorov, Von Mises’ statistical independence trans-
parently refers to a concept of independence in the real
world. To clarify the meaning of fairness expressed as sta-
tistical independence, we directly apply Von Mises’ inde-
pendence to the fairness criteria listed in Section 3 in the
following.

6. VON MISES’ FAIRNESS
With Von Mises’ definition of statistical independence we

have a notion at our disposal which is conceptually focused
on a more “scientific” perspective (i.e., making claims about
the world) of statistical concepts. Since it is mathematically
related to Kolmogorov’s standard account of statistical in-
dependence, Kolmogorov’s definition can, at many places,
be easily replaced by Von Mises’ definition.
18This idea is transferable to other intuitions of randomness, for in-
stance [102].
19Computability is often taken (at least by computer scientists) as
a purely mathematical notion, detached from the world. An alternate
view, close in spirit to Von Mises, is that computation is part of physics,
and thus needs to be viewed in a scientific, and not merely mathemat-
ical manner [29].
20This is not entirely true, as specific computability notions of random-
ness and the i.i.d.-assumption deliver convergence results for random
sequences, which can be used to guarantee low estimation error in the
long run.

Let us denote the three presented fairness criteria in a
Von Mises’ way (cf. Section 4.5).
Definition 4 (Fairness as Statistical Independence). A col-
lective x : N → {0, 1} (with respect to a family of selec-
tion rules S) is fair with respect to a set of sensitive groups
G = {sj : N → {0, 1}|j ∈ J} if

x ⊥ sj ∀j ∈ J

The 0-1-sequences sj determine for each individual i
whether it is part of the group or not (according to whether
sj(i) = 1 or sj(i) = 0). We call these groups “sensitive,” as
these are the groups which are of moral and ethical concern.
In philosophical literature these groups are often called “so-
cially salient groups” [2, 64].21 We see that the connection
between Von Misean independence and fairness arises from
the observation that the set of sensitive groups G is a family
of selection rules, so that if G ⊆ S, then indeed the collective
x will be fair for G.

Following Von Mises’ interpretation of independence, the
given definition reads as follows: we assume we are in the
idealized setting of infinitely many individuals with values
xi, e.g., binary predictions. The predictions are fair if and
only if there is no difference in counting the frequency of
1-predictions in the entirety or in the sensitive group. (For
an illustration see Appendix 6.) A proper conceptualization
of fairness requires such immediate semantics, but a purely
mathematical theory of probability cannot offer these (see
Section 4.2).

Each of the three fairness criteria is captured in Defi-
nition 4; the choice of fairness criterion manifests in the
collective under consideration:
Independence The collective x : N → {0, 1} consists of

predictions; i.e., {0, 1} is the set of predictions.
Separation The collective x : N → {0, 1} is obtained via

the subselection of predictions based on the sequence
of true labels corresponding to the predictions.22

Sufficiency The true labels are subselected by predictions.
To enable intuitive access to the Von Mises’ notions of fair-
ness we provide a toy example in Appendix B. The three
fairness criteria Independence, Separation and Sufficiency
encompass a large part of fair machine learning [5, p. 45].
Von Mises’ statistical independence gives a consistent inter-
pretation to all of them. In fact, Von Mises’ independence
opens the door to further investigations. To this end, we
recapitulate the strong linkage between statistical indepen-
dence and randomness in Von Mises’ theory.

7. THE ETHICAL IMPLICATIONS OF
MODELING ASSUMPTIONS

Machine learning methods try to model data in complex
ways. Derived statements, such as predictions, then poten-
tially get applied in society. In these cases one is obliged to
21Intersections of sensitive groups are not necessarily independent.
22“Selecting with respect to” is “conditioning on.”
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ask which ought-state the machine learning model should
reflect [75, 83]. To enable a justified choice, statistical con-
cepts in machine learning require relations to the real world.
Furthermore, modeling even requires understanding of the
entanglement of societal and statistical concepts.

We proposed one specific meaningful definition of statisti-
cal independence which can be directly applied to the three
observational fairness criteria from fair machine learning. In
addition, this Von Mises’ independence is key to a relativized
notion of randomness. Pulling these threads together, we are
now able to establish the following link: Randomness is fair-
ness. Fairness is randomness.

7.1 Randomness is Fairness. Fairness is
Randomness

The concepts fairness and randomness frequently appear
jointly: [14] argues that a random allocation of goods is fair
under certain conditions. Literature on sortition argues for
just representation of society by random selection of people
[74, 95].23 Bennett [7, p. 633] even states that randomness
encompasses fairness.

With Von Mises’ axiom 2 and Definition 4 we can now
tighten the conceptual relationship of fairness and random-
ness. The proposition directly follows from the definition of
randomness respectively fairness in the sense of Von Mises.

Proposition 1 (Randomness is fairness. Fairness is ran-
domness.). Let x be a collective with respect to ∅ (the empty
set). It is fair with respect to a set of sensitive groups (0-1-
sequences) {sj}j∈J , if and only if it is random with respect
to {sj}j∈J .

The given proposition establishes a helpful link. It gives
insights into both of the concepts. In particular, it substan-
tiates the relativized conception of randomness in machine
learning as it presents randomness as an ethical choice.

7.1.1 Randomness as Ethical Choice

Randomness in machine learning is a modeling assump-
tion (Section 2). Fairness is an ethical choice.24 In light of
Proposition 1 randomness gets an ethical choice and fairness
a modeling assumption. We now further detail this perspec-
tive.

We assume that we are given a fixed set of selection rules,
which defines “the” randomness. As far-fetched as this may
sound, if we, for example, accept the so called Martin-Löf
randomness as absolute and universal definition, then we ex-
actly do this and fix the set of selection rules to the partial
computable ones (see Appendix D.1). A sequence which is
random with respect to this specified set of selection rules is
fair with respect to the groups defined by the selection rules.
Rephrased in terms of Martin-Löf randomness: a Martin-Löf
23Representativity here can be interpreted as typicality, thus one of
the four intuitions for randomness.
24More specifically, the choice of operationalized fairness, one of the
fairness criteria, and the choice of groups.

random sequence is fair with respect to all partial com-
putable groups. Only non-partial-computable groups (re-
spectively sequences) can be discriminated against in this
setting. If we interpret statistical independence as fairness
(Section 3), then fairness is as absolute and universal as ran-
domness here. Where did the “essentially contested” nature
of fairness [39] leave the picture?

The set of admissible selection rules specifies the choice of
sensitive groups, which indeed is a fraught and contestable
choice [67, Section H.3]. Thus each selection rule gets eth-
ically loaded. Furthermore, the choice of collective, which
we consider as random, fixes the fairness criterion. In sum-
mary, the determination of randomness is analogous to the
determination of fairness.

However one defines randomness, it is an ethical choice.
For symmetry reasons one can equivalently state in machine
learning: fairness is a modeling assumption. The randomness
assumption has an ethical, moral and potentially legal im-
plication. We need non-mathematical, contextual arguments
to each problem at hand which justify the adjustable and
explicit randomness assumptions.

Given that randomness is an ethical choice, an absolute,
universal conception of randomness counteracts any ethi-
cal debate in machine learning. Discussions about sexism,
racism and other kinds of discrimination and injustice per-
sist over time without ever arrogating the discovery of “the”
fairness [39]. But if “the” randomness as statistical indepen-
dence would exist, then “the” fairness as statistical inde-
pendence would be an accessible notion. For illustration, we
reconsider Martin-Löf randomness. A Martin-Löf random
sequence is independent, respectively fair, to the set of all
partial computable selection rules. But, it is completely un-
clear what the ethical meaning of partial computable groups
is. And, it remains unsolved whether the groups given by
gender are partial computable, when we desire to be fair
with respect to them. We conceive Proposition 1 as further
counterargument to an absolute, universal definition of ran-
domness. Randomness is, like fairness, better interpreted as
a relative notion.

Further concluding, the equivalence of randomness and
fairness highlights the deficiency of fairness notions in ma-
chine learning. The equivalence only holds due to the very
reductionist perspective on fairness in fair machine learn-
ing. Despite their regular co-occurrence [14, 74], [7, p. 633],
fairness and randomness are more multi-facetted and non-
overlapping concepts as illustrated in Proposition 1.

7.1.2 Fairy Tales of Fairness: “Perfectly Fair” Data

With the relationship between fairness and randomness
in mind, we now turn towards random data as primitive.
Discussions in fair machine learning sometimes seemingly
presume the existence of “perfectly fair” data (e.g., as high-
lighted in [83, p. 134]), as if fair machine learning merely
tackles the cases where “perfectly fair” data is not avail-
able.
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We interpret “perfectly fair” data as a collective with
respect to all possible selection rules. The data does not de-
pend on any (sensitive) group at all. In other words, “per-
fectly fair” data is “totally random” data. As we saw in
Section 5.2 this is self-contradicting except of the trivial
constant case. “Perfectly fair” data does not exist or is sta-
tistically useless.

7.2 Demanding Fairness Is Randomization:
Fair Predictors Are Randomizers

In practice, it is often unreasonable to assume random
or fair data as in Proposition 1. Instead one demands for
fairness respectively randomness of predictions. In these set-
tings, fair machine learning techniques are deployed to ex-
hibit ex post fulfillment of fairness criteria.

We assume for the following discussion that the collec-
tive x consists of predictions, as in the fairness criteria In-
dependence or Separation. Fair machine learning techniques
enforce statistical independence of predictions and sensitive
attributes. Rephrased, fair machine learning techniques ac-
tually introduce randomness post-hoc into the predictions.
Thus, fair machine learning techniques can potentially be
interpreted as randomization techniques.

7.2.1 Fairness-Accuracy Trade-Off — Another Perspective
We noticed that fair predictions are random predictions

with respect to the sensitive attribute. In contrast, ac-
curate predictions exploit all dependencies between given
attributes and predictive goal, including the sensitive at-
tributes. Thus, in fair machine learning morally wrongful
discriminative potential of sensitive attributes is thrown
away by purpose. On these grounds, it is not surprising
that an increase in fairness respectively randomness (usu-
ally) goes hand in hand with a decrease in accuracy [110].
Randomization of predictions leads to the so called fairness-
accuracy trade-off.

Concluding, via Von Mises’ axiomatization we estab-
lished: Randomness is fairness. Fairness is randomness. Ex-
ploiting this new perspective, we unlock another perspective
on fair predictors as randomizers, demonstrate the nonex-
istence of “perfectly fair” data and treat randomness as an
ethical choice, which can be neither universal nor total. In
particular, the “essentially contested” nature of fairness is
tied to the “essentially relative” nature of randomness.

8. CONCLUSION
Fair machine learning attained an increasing interest in

the last years. However, its conceptual maturity lags behind.
In particular, the interplay between data, its mathematical
representation and their relation to fairness is encompassed
by a veil of nescience. In this paper, we contribute towards a
better understanding of randomness and fairness in machine
learning.

We started from the most commonly used definition of
statistical independence and questioned its representation

due to a lack of semantics. Generally, we observe that in
machine learning, as in statistics, probability and its re-
lated concepts should be interpreted as modeling assump-
tions about the world (of data). Von Mises aimed for ex-
actly this “scientific” perspective on probability theory. We
lean on his statistical independence, which clarifies the re-
lation to the real world, and his definition of randomness,
which is relative and orthogonal to the i.i.d. assumption,
but similarly expressed as statistical independence. Then
by the three fairness criteria in machine learning we obtain
a further interpretation of independence, which we finally
exploit to argue for a relative conception of randomness,
randomness as an ethical choice in machine learning and
fair predictors as randomizers.

8.1 Future Work: Approximate Randomness
and Fairness, Randomness as Fairness via
Calibration

Despite future conclusions in-between the topics fairness
and randomness in other research subjects as machine learn-
ing, we claim that a significant dimension is missing in the
present discussion. Practitioners usually deal with approx-
imate versions of randomness, statistical independence or
fairness. Yet, approximation spans another dimension of
choice beset with pitfalls [79, 63]. Several questions rang-
ing from the choice of approximation to the interference of
concepts arise. Future work should detail the implications
of this choice.

Second, we conjecture that “Randomness is Fairness.
Fairness is randomness.” can be substantiated via the in-
tuition of unpredictability. Starting from [90] definition of
unpredictability randomness, which is closely related to the
calibration idea presented in [25], we can bridge to fairness as
calibration as given in [22]. A recent work by Cynthia Dwork
and collaborators in fact show a formal link between pseudo-
randomness and fairness as calibration [34]. This work, how-
ever, still misses a more thorough discussion of the concepts
of individual versus group fairness in machine learning [12].
As a subproblem, which is contained therein, the categoriza-
tion into (sensitive) groups in fair machine learning deserves
its own work.

Third, regarding a more thorough definition of statistical
independence within the fairness criteria, we are convinced
that a subjectivist interpretation of probability might reveal
yet another perspective on the problem. We assume that
the interplay between different interpretations of probability
and ethical concepts such as fairness still leaves room for
many important investigations.

Fourth, there are certainly more frameworks to give an
interpretation and concretization to current notions in (fair)
machine learning (cf. [41, 36]).

Last but not least, we already referred to sortition litera-
ture and random allocation. The somewhat different relation
between fairness and randomness in this literature leads us
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to speculate that further fruitful discussions between the
two concepts may develop.

In the jungle of statistical concepts such as probability,
uncertainty, randomness, independence etc. further relations
to social and ethical concepts wait to be brought to light.
And machine learning research should care:

The arguments that justify inference from a sample to a
population should explicitly refer to the variety of non-
mathematical considerations involved. [6, p. 11]

APPENDIX A. GENERALIZED VON
MISESEAN PROBABILITY

THEORY
In this appendix we outline a theory of probability sub-

suming that of Kolmogorov and Von Mises.

A.1 Kolmogorov’s Notion of Independence
Kolmogorov axiomatized probability theory in his book

[56] in a measure theoretical way. He defined a probabil-
ity space (Ω,F , P ) as a measure space with base set Ω, σ-
algebra F and normalized measure P . Events are elements
of F , i.e., subsets of Ω, which obtain a probability via P .
Statistical independence is defined as a specific assignment
of probability to an intersection event.

Definition 5 (Kolmogorov’s Definition of Statistical Inde-
pendence of Events [56, p. 9, Def. 1]). Let (Ω,F , P ) be a
probability space. Two events A,B ∈ F are called statisti-
cally independent iff

P (A ∩B) = P (A)P (B).

As we highlighted above, Kolmogorov’s axiomatization
is, despite its success, not the only mathematical theory
of probability. Specifically, one can weaken the structure
of the probability space and still work with concepts such
as statistical independence, expectation, conditioning (e.g.,
[43, 21, 70]).

A.2 Finitely Additive Probability Space
We introduce a weaker measure structure, which we call

finitely additive probability space. Interestingly, this weaker
structure includes the axiomatization of Kolmogorov and
Von Mises as special cases. We define a finitely additive
probability space modified from [81, Def. 2.1.1 (7)]) as

Definition 6 (Finitely Additive Probability Space). The
tuple (N,A, ν) is called a finitely additive probability space
for a base set N , a set of measurable sets A ⊂ P(N) contain-
ing the empty set ∅ ∈ A and a finitely additive probability
measure ν : A → [0, 1] satisfying the following conditions:

(1) ν(∅) = 0,
(2) if A1, A2, A1 ∪ A2 ∈ A and A1 ∩ A2 = ∅ then ν(A1 ∪

A2) = ν(A1) + ν(A2).

Observe that this definition does not impose any struc-
tural restrictions on the set of subsets A.

Kolmogorov’s probability space is certainly a specific
finitely additive probability space in our sense, as every set
σ-algebra contains the empty set and every countably addi-
tive probability is finitely additive.

Analogously, Von Mises implicitly uses a finitely addi-
tive probability space. This space is given by (N,AvM, νvM),
where N are the natural numbers and AvM, νvM are defined
in the following.

First, we consider the finitely additive base measure

νvM(A) := lim
n→∞

|A ∩ Nn|
n

,

where A ⊂ N and Nn = {1, . . . , n}. νvM is called the “natural
density” in the number theory literature [71, p. 256]. From
this definition is not clear whether the given limit exists.
Thus, we define the set of measurable sets by

AvM := {A : νvM(A) exists},

which is called the “density logic” in [78]. It is a pre-Dynkin-
system [88].

We generalize Kolmogorov’s definition of statistical inde-
pendence of events to finitely additive probability spaces.

Definition 7 (Statistical Independence of Events on a
Finitely Additive Probability Space). Let (N,A, ν) be a
finitely additive probability space. Two measurable sets
A,B ∈ A are independent iff

1. A ∩B ∈ A
2. ν(A ∩B) = ν(A)ν(B)

Observe that the first condition is naturally fulfilled in
Kolmogorov’s σ-algebra. In the case of Von Mises’ density
logic, this constraint is strict. A pre-Dynkin-system is not
closed under arbitrary intersections.

A.3 Von Mises’ Admissibility and
Kolmogorov’s Independence Are
Analogues

We now reconsider the definition of collectives and selec-
tion rules. Both are 0, 1-sequences on the natural numbers,
with the restriction that selection rules contain infinitely
many 1’s and their frequency limit does not have to exist.
Both sequences can be interpreted as indicator functions on
the natural numbers. So for x : N → {0, 1} and s : N → {0, 1}
we write X = x−1(1) and S = s−1(1) for the corresponding
subsets of the natural numbers.

We want to show that Von Mises’ admissibility condi-
tion is equivalent to the given definition of statistical inde-
pendence on finitely additive probability spaces. Actually,
the equivalence only holds for the slightly restricted case in
which the selection rule itself possesses converging frequen-
cies.
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Theorem 1 (Admissibility in Von Mises setting implies
Statistical Independence on Finitely Additive Probability
Spaces). Let x be a collective with respect to s. Suppose fur-
thermore that s has a converging frequency limit. Then X
and S, the indexed sets corresponding to the collective (re-
spectively selection rule) on the finitely additive probability
space (N,AvM, νvM) are statistically independent.

Proof. We know that

lim
n→∞

|{i : x(i) = 1 and s(i) = 1, 1 ≤ i ≤ n}|
|{j : s(j) = 1, 1 ≤ j ≤ n}|

= lim
n→∞

|{i : x(i) = 1, 1 ≤ i ≤ n}|
n

which we can rewrite as

lim
n→∞

|X ∩ S ∩ Nn|
|S ∩ Nn|

= lim
n→∞

|X ∩ Nn|
n

.

This gives

νvM(X ∩ S) = lim
n→∞

|X ∩ S ∩ Nn|
n

= lim
n→∞

|X ∩ S ∩ Nn|
|S ∩ Nn|

|S ∩ Nn|
n

= lim
n→∞

|X ∩ S ∩ Nn|
|S ∩ Nn|

lim
n→∞

|S ∩ Nn|
n

= lim
n→∞

|X ∩ Nn|
n

lim
n→∞

|S ∩ Nn|
n

= νvM(X)νvM(S),

by help of a standard result for the multiplication of se-
quence limits [62, Theorem 3.1.7].

Theorem 2. Let X and S be two statistically inde-
pendent events on the finitely additive probability space
(N,AvM, νvM) with νvM(S) > 0, then the corresponding col-
lective x, indicator function of X, has the admissible selec-
tion rule s, indicator function of S.

Proof. It is given that

lim
n→∞

|X ∩ S ∩ Nn|
n

= νvM(X ∩ S)

= νvM(X)νvM(S) = lim
n→∞

|X ∩ Nn|
n

lim
n→∞

|S ∩ Nn|
n

.

Furthermore νvM(S) > 0 implies that the correspond-
ing selection rules selects infinitely many elements and
limn→∞

n
|S∩Nn| =

1
νvM(S) .

This implies

lim
n→∞

|X ∩ S ∩ Nn|
|S ∩ Nn|

= lim
n→∞

|X ∩ S ∩ Nn|
n

n

|S ∩ Nn|

= lim
n→∞

|X ∩ S ∩ Nn|
n

lim
n→∞

n

|S ∩ Nn|

= lim
n→∞

|X ∩ Nn|
n

lim
n→∞

|S ∩ Nn|
n

lim
n→∞

n

|S ∩ Nn|

= lim
n→∞

|X ∩ Nn|
n

.

We note some caveats regarding the preceding discussion.

1. We require the frequency limit for s to exist in The-
orem 1. So the sequence S is not an entirely general
selection rule.

2. The condition νvM(S) > 0 in Theorem 2 ensures that we
do not condition on measure zero events. Furthermore,
it guarantees at this point, that the indicator function
of S is a selection rule containing infinitely many ones.
Besides that, its frequency limit exists.

3. Even though given here only for the binary case. The
argumentation can be extended to continuum labeled
collectives [107, II.B].

4. In our discussion, we focus on admissibility instead of
statistical independence in the sense of Von Mises, since
our argument finally focuses on the randomness inter-
pretation of statistical independence. Admissibility and
Von Mises’ statistical independence are, despite the ob-
jects on which they are defined, equivalent.

5. Statistical independence in Von Mises’ setting and Kol-
mogorov’s setting are not equivalent. They are spe-
cial cases of a more general form of statistical inde-
pendence. So they are mathematically analogous under
mild conditions. But we emphasize the conceptual dif-
ference. Von Mises refused to define statistical indepen-
dence between mere events [107, p. 35]. Instead he de-
manded statistical independence to be defined between
collectives underlining that independence is a concept
about aggregates, the collectives, not single occurring
events.

APPENDIX B. VON MISES’ NOTIONS OF
FAIRNESS IN PRACTICE

In practice we never observe infinite sequences, which are
the building blocks of Von Mises’ theory. Nevertheless, infi-
nite sequences can be seen as idealizations of finite, observ-
able sequences. We make the following crucial and debatable
assumption here: Given a sequence of sufficient length, the
frequencies observed in this sequences are arbitrarily close
to the limit of the frequency in the continuation of this se-
quence.

This assumption is critical for at least three parts:

1. We assume convergence (cf. [37]).
2. In finite data we can only observe fractional frequencies,

but not irrational ones (converging frequencies do fill
the entire [0,1]).

3. The frequency limit of any infinite sequence is not gov-
erned by any frequency observed on a finite sequence.
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Figure 1: Generating Distribution and Predictor of the Toy
Example.

Figure 2: Groups in the Toy Example.

For further simplification, we constrain ourselves to 0, 1-
outcomes and 0, 1-decisions. In the following, we call 1 as
outcome or decision “positive”, comparable to a setting
where the 1-label corresponds to “getting a loan” and 0 to
“not getting a loan”.

We consider the following simple toy example: let X = R,
Y = {0, 1}. The data points of the 0 label are distributed ac-
cording to a Gaussian distribution with mean −1 and stan-
dard deviation 1. The data points of the positive labels are
distributed according to a Gaussian distribution with mean
1 and standard deviation 0.5. We consider the simple lo-
gistic probabilistic predictor p(x) = ecx+a

1+ecx+a with c = 2
and a = −0.2 and x ∈ X. We consider two groups: group
A consists of all data points with values between −1 and
−2, group B consists of all data points with values between
smaller than −1.5 or greater than 1.5. In this case, the in-
put and sensitive groups are highly correlated. Figure 1 and
Figure 2 illustrate the example.

Since the predictor is probabilistic we have to introduce
a threshold q ∈ [0, 1] which derives a 0, 1-decision from
the prediction. The following plots show how the frequency
of positive outcomes respectively positive decisions depend-
ing on the notion of fairness changes for different decision-
thresholds.

Independence We compute the frequency of positive de-
cisions for each group and the entirety. Independence
requires these frequencies to be equal. See Figure 3.

Separation We compute the frequency of positive deci-
sions given that the outcomes were positive for each
group and the entirety. Separation requires these fre-
quencies to be equal. See Figure 4.

Sufficiency We compute the frequency of positive out-
comes given that the decision were positive for each

Figure 3: Frequency of Positive Decisions per Group depend-
ing on the Decision-Threshold.

Figure 4: Frequency of Positive Decisions given Positive
Outcomes per Group depending on the Decision-Threshold.

Figure 5: Frequency of Positive Outcomes given Positive De-
cisions per Group depending on the Decision-Threshold.

group and the entirety. Sufficiency requires these fre-
quencies to be equal. See Figure 5.
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What do we learn from this toy example:

1. Our suggested notions have an empirical counterpart.
Even though, the assumption taken above is critical.
Much in contrast to most literature in fair machine
learning, however, we (can) specify the idealization as-
sumption explicitly. The regular setup hides many of
the concerns behind a curtain of acceptance.

2. We observe that there is nothing special about our defi-
nitions of fairness. The frequential approach is intuitive
and simplifies communication of technical results about
machine learning fairness in societal debates.

3. We did not allude to specific algorithms which guaran-
tee accurate predictions under fairness constraints. All
such existing algorithms can be deployed in order to
provide fair predictions following our definitions. Our
notions are reinterpretations, not entirely new setups.

4. There is still a further, important, debate missing in
this work. As pointed out in the conclusion of the paper,
further conceptual clarification has to account for ap-
proximations of fairness notions to further enable prin-
cipled argumentation in fairness debates.

APPENDIX C. FOUR INTUITIONS OF
RANDOMNESS

Typicality A sequence is called random if it shares “some”
characteristics of any possible sequence. Martin-Löf and
Schnorr formalized this idea via statistical tests [65, 87].

Incompressibility The information contained in a random
sequences is (approximately) as large as the sequence
itself. The sequences cannot be compressed by “some”
procedure [57, 20, 86, 59].

Unpredictability In a random sequence one can know all
foregoing elements without being able to predict by
“some” procedure the next element [102, 68, 90, 38, 26].

Independence A random sequence is independent of
“some” other sequences [105, 23].

APPENDIX D. RELATIONS BETWEEN
RANDOMNESS
DEFINITIONS

We briefly outline some of the known relationships be-
tween various notions of randomness.

On one hand, there are mathematical expressions captur-
ing the same randomness intuitions meanwhile being math-
ematically distinct to each other.

For instance, the definition of a typical sequence follow-
ing Martin-Löf [65] implies Schnorr’s definition of typical-
ity [85, 87] but not vice versa [99, p. 143]. Cooman and De
Bock’s imprecise unpredictability randomness [26] is strictly
more expressive than Vovk and Shafer’s unpredictability
randomness [90, Section 1.1], [26, Theorem 37].

On the other hand, there are mathematical expressions
capturing differing randomness intuitions meanwhile being
necessary, sufficient or even equivalent to each other. For in-
stance, the Levin-Schnorr theorem, simultaneously proven
by Levin [59] and Schnorr [86, 87], established an equiva-
lence of typicality following Martin-Löf [65] and incompress-
ibility following Levin [59] and Schnorr [86] based on the
idea of [57] (e.g., see in [103, Theorem 5.3] and references
therein). Cooman and de Bock expressed Schnorr [85, 87]
and Martin-Löf randomness [65] in terms of an unpre-
dictability approach [26]. Muchnik showed in [68] that all in-
compressible sequences, again following Levin and Schnorr’s
prefix-complexity approach [86, 59] are unpredictable in his
sense.

In Ville’s thesis [102] he attempted to generalize the idea
of “excluding a gambling strategy” (see Section 4.4) via a
game-theoretic approach. He showed [102, p. 76] that for
any set of admissible selection rules S he could construct a
gambling strategy, more exactly a capital process associated
to a gambling strategy, which captures the same random-
ness definition. The opposite direction is, however, impos-
sible [102, p. 39]. But Ambos-Spies et al. [3] introduced a
weaker form of [102]’s randomness as unpredictability which
is equivalent to Church’s randomness [23] as independence
[31, Section 12.3]. Finally, van Lambalgen observed an ab-
stract interpretation of “random with respect to something”
as “independent to” in [101].

D.1 A Prototypical, Absolute and Universal
Notion of Randomness

One often referred absolute and universal definition
of randomness is Martin-Löf’s typicality approach [15].
Martin-Löf’s randomness as typicality has been equivalently
formalized in terms of incompressibility and unpredictability
(see Section D). Furthermore, a sequence, which is Martin-
Löf random [65], is statistically independent to all partial
computable selection rules [23], [96, Theorem 11]. Contrar-
ily, not every collective with respect to all partial com-
putable selection rules is a Martin-Löf random sequence [13,
p. 193]. So Martin-Löf’s definition is linked to all four intu-
itions.

APPENDIX E. KOLMOGOROV’S VERSUS
VON MISES’ PROBABILITY

THEORIES IN A TABLE
See Table 2.

APPENDIX F. PENGUIN COLONY
EXAMPLE FOR FAIR

COLLECTIVE
See Figure 6.
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Table 2. Summary of main difference between Kolmogorov’s and Von Mises’ probability theories.
Kolmogorov Von Mises

fundamental structure probability space (Ω,F , P ) collectives (xi)i∈N, implicitly (N,AvM, νvM)
base set (almost arbitrary) set Ω N

set of events σ-algebra F Dynkin-system AvM

probability finite positive measure limit of frequency sequence
probability measure countably additive finitely additive νvM
randomness no explicit mathematical definition explicit mathematical definition
statistical independence factorization of joint distribution frequency limit doesn’t change under subselection
data model each data point a random variable Xi on (Ω,F , P ) each data point an element in a collective (xi)i∈N

Figure 6: Example for a subselection and fair collective.
nb denotes the number of black penguins among the first
n-penguins. Blackness of penguins is distributed fairly with
respect to sex if pb = pb|F .
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