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Abstract
In the last two decades, single-arm trials (SATs) have been effectively used to study anticancer therapies in well-defined

patient populations using durable response rates as an objective and interpretable study endpoints. With a growing trend
of regulatory accelerated approval (AA) requiring randomized controlled trials (RCTs), some confusions have arisen about
the roles of SATs in AA. This review is intended to elucidate necessary and desirable conditions under which an SAT may
be considered appropriate for AA. Specifically, the paper describes (1) two necessary conditions for designing an SAT,
(2) eight desirable conditions that help either optimize the study design and doses or interpret the study results, and (3)
three additional considerations for construction of estimands, adaptive designs, and timely communication with relevant
regulatory agencies. Three examples are presented to demonstrate how SATs can or cannot provide sufficient evidence to
support regulatory decision. Conditions and considerations presented in this review may serve as a set of references for
sponsors considering SATs to support regulatory approval of anticancer drugs.

keywords and phrases: life-threatening, rare cancer, natural history, mechanism of action, dose optimization, substan-
tial evidence.

1. INTRODUCTION
The United States Food and Drug Administration (FDA)

established in 1992 accelerated approval (AA) that later led
to the expedited programs for serious conditions in several
disease areas [1]. In the guidance for expedited programs,
the FDA states that “... single-arm trials may be an im-
portant option in rare diseases with well-understood patho-
physiology and a well-defined disease course” [1]. One of the
most important applications of single-arm trials (SATs) is
the development of novel anticancer therapeutics for AA
or conditional marketing authorizations (CMAs). Studies
show that regulatory approvals based on SATs account for
(1) 49% of FDA’s AAs between 1992 and 2020, most of
which (47% among all AAs) for oncology indications [2], (2)
34% of CMAs by the European Medicines Agency (EMA)
between 2006 and 2016 [3] (20% for anticancer therapies
between 2014 and 2016 [4]), (3) 42% of oncology drug ap-
provals by the National Medical Products Administration
(NMPA) of China between 2018 and 2022 [5], and (4) 21%
of oncology drug approvals in Japan between 2006 and 2019
[6]. Following AAs or CMAs, confirmatory trials are usu-
ally required to verify the intended clinical benefits, and
failure to do so may cause withdrawal of the product. Stud-
ies indicate that there has been an increasing number of
withdrawals of oncology products that were approved based
on SATs, especially in the past decade or so [2, 7, 8, 9].
For example, Agrawal et al. [10] report that among 116
∗Corresponding author: orcid.org/0000-0002-8219-2370.

FDA approved oncology indications based on SATs between
2002 and 2021, 61 (52%) are pending verification of clin-
ical benefits and 10 (9%) have been withdrawn. An anal-
ysis of FDA’s AA database (https://www.fda.gov/drugs/
nda-and-bla-approvals/accelerated-approval-program) in-
dicates a 13% withdrawal rate for FDA’s AAs based on SATs
between January 2017 and April 2023.

Recently the FDA issued a draft guidance on clinical trial
considerations to support AA of oncology products [11], in
which the agency states that “... a randomized controlled
trial is the preferred approach to support an application for
accelerated approval... there can be circumstances wherein
a single-arm trial is appropriate in the development of a
drug for accelerated approval, for example when there are
significant concerns about the feasibility of a randomized
controlled trial.” The EMA issued in 2023 a draft reflection
paper on establishing efficacy based on SATs [12] which de-
scribes primarily the following five aspects: endpoints, target
population, external information, statistical principles, and
potential biases and mitigation. In addition, the NMPA re-
leased a guidance on marketing authorization for anticancer
drugs based on SATs [13] that focuses on the applicability of
SATs—unmet medical needs, mechanism of action, external
control, significant anticancer activities, manageable safety
concerns, and rare cancers.

Given the above background and considering the limita-
tions [14, 15, 16, 17, 18] and clear clinical values [12, 13,
19, 20, 21] of SATs, we intend in this paper to provide a
comprehensive review from a statistical perspective on the
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necessary and desirable conditions under which an SAT may
be appropriate to support an AA or CMA.

The paper is organized as follows. Section 2 describes
necessary considerations for designing an SAT and Section
3 presents desirable conditions for using an SAT to sup-
port regulatory decision. Additional considerations for con-
struction of estimands, adaptive designs, and communica-
tion with regulatory agencies are provided in Section 4.
Three examples are presented in Section 5 and some con-
cluding remarks are given in Section 6

2. NECESSARY CONDITIONS
The FDA guidance on accelerated approval of oncol-

ogy products outlines considerations in the design, con-
duct, and analyses of single-arm trials [11]. This section
further elucidates the necessary conditions (including those
in [11, 12, 13]) and the following section presents desirable
conditions, based on which an SAT can be considered to
support AA.

2.1 Life-Threatening or Serious Conditions
With No Efficacious Treatments

The majority of cancer types are life-threatening, espe-
cially those in terminal stages. Cancer patients who are re-
lapsed or refractory after multiple prior-line therapies are
generally in unmet medical needs with few treatment op-
tions and poor clinical outcomes [22]. For example: (1) pa-
tients with relapsed or refractory diffuse large B-cell lym-
phoma who failed at least two multi-agent systemic an-
ticancer treatment regimens generally have poor progno-
sis with limited treatments available [23], (2) the major-
ity of patients with extensive-stage small-cell lung cancer
(SCLC) often have disease progression within 6 months even
after front-line treatments [24], and (3) patients with lo-
cally advanced or metastatic urothelial cancer have lim-
ited treatment options because many of them are ineligi-
ble for cisplatin-based chemotherapy (a standard of care or
SOC) due to substantial toxicity [25]. All of these scenarios
share the same or similar features of unmet medical needs—
The cancers are life-threatening or serious conditions with
limited or no treatment options, often resulting in unsatis-
factory survival or poor quality of life for cancer patients.
Therefore, it would be unethical to assign the patients to
the control group in an RCT where there is no efficacious
control treatment available.

2.2 Rare Cancers
Rare cancers present unique challenges in drug develop-

ment, which may include (1) difficulty to enroll insufficient
number of patients in clinical trials due to small patient pop-
ulation size, (2) limited understanding of rare cancer patho-
physiology and natural history, and (3) difficulty in design-
ing and conducting RCTs due to lack of efficacious therapies

available as a control. These challenges, together with oth-
ers such as severity and early onset (often at childhood), are
barriers to conduct an RCT; instead, an SAT with either an
implicit or explicit external control, at the population level
(e.g., a fixed threshold value for a response rate) or at indi-
vidual patient level (e.g., propensity score matching), may
be more appropriate to investigate the anticancer effect of
a new drug [26, 27].

3. DESIRABLE CONDITIONS
3.1 Well-Understood Natural History of the

Rare Cancer
Understanding the natural history of a rare cancer is

important to help (1) identify the right target population
through defining appropriate eligibility criteria (including
genotypes and phenotypes), (2) detect changes in the pat-
tern of disease course and assess clinical outcomes, (3) de-
velop biomarkers for diagnosis and prognosis of the disease
and for choosing appropriate endpoints [28]. For example,
knowing the natural history of a rare cancer can help dif-
ferentiate whether the disease progression or improvement
of conditions is due to the treatment under investigation
or the natural course of the cancer. For many cancers, it
is known that major tumor regression may not occur with-
out effective treatment; therefore, objective response rates
are often used to reflect the direct drug effect as substan-
tial evidence supporting AA, which can be very valuable for
trials in refractory and/or relapsed cancers [29]. Note that
rare cancers often comprise a multitude of cancer subtypes
affecting heterogeneous patient population, leading to even
more difficult-to-fully-understand the etiology and natural
history of many rare cancers [30]. Therefore, it is important
to conduct a natural history study before planning an SAT
to characterize demographic, genetic/genomic, environmen-
tal, and other factors (e.g., with treatment of standard of
care) that may correlate with the development and outcomes
of the cancer.

3.2 Well-Understood Mechanism of Action of
the Drug

Most modern anticancer treatments are targeted thera-
pies that target proteins that control the growth, division,
and/or spread of cancer cells. For example, a targeted ther-
apy may (1) help the immune system destroy cancer cells,
(2) stop cancer cells from growing by interrupting signals
causing them to grow and divide, (3) stop signals that help
form blood vessels, (4) deliver cell-killing substance to can-
cer cells, and (5) cause cancer cell death (apoptosis) [31].
Understanding the mechanism of action (MOA) of a drug
is essential for identifying surrogate markers (endpoints) of
treatment effects, determining adequacy of dosage, selecting
cancer patient (sub)population based on existence (or ab-
sence) of the target/receptor, and/or suggesting strategies
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for combination therapies. For example, (1) an anti-PD-1
(programmed cell death 1) ligand (PD-L1) drug blocking
immune checkpoint pathway is effective against several can-
cer types, which helps identify subsets of patients who are
likely responsive to an anti-PDL1 therapy [32], (2) an anti-
CD19 combined with anti-CD20 CAR-modified T cells for
B-cell is effective in treating patients with hematological ma-
lignancies with both CD19 and CD20 antigens expressed on
their B cells [33], and (3) an anti-drug conjugate, typically
composed of monoclonal antibody, reaches the therapeutic
target and then releases the cytotoxic payloads in the vicin-
ity of the targets [34].

In recent years, several tumor-agnostic indications have
received AA [35]. For example, the FDA granted in May
2017 AA to pembrolizumab in adults and children affected
by unresectable or metastatic solid tumors with deficient
mismatch repair (dMMR) and/or high microsatellite insta-
bility (MSI-H), pretreated and without any valid alternative
treatment option, where both dMMR and MSI-H are pre-
dictive biomarkers of response to PD1 blockade. Recently
the European Society for Medical Oncology (ESMO) issued
a new framework to assess tumor-agnostic potential of an-
ticancer therapies, in which ESMO proposes the following
pragmatic conceptual basis with three categories for assess-
ing the therapeutic effect of investigational therapies: (1)
tumor-agnostic when targeting a driver molecular aberra-
tion predominantly defines the therapeutic effect, irrespec-
tive of tumor-specific biology (TSB), (2) tumor-modulated
when the therapeutic effect on a targeted driver molecular
aberration is modulated by the TSB (e.g., PARP inhibitors
in tumors harboring BRCA1/2 mutation/homologous re-
combination deficiency), and (3) tumor-restricted when the
therapeutic effect on a targeted driver molecular aberration
is only present in a TSB context (e.g. PI3K inhibitors in
PIK3CA-mutated breast cancer) [35]. This classification of
anticancer therapies is useful in elucidating the therapeutic
effect and associated MOA of molecularly guided treatment
options (MGTOs). Of note, the effect of a targeted therapy
can be influenced by multiple biomarkers, i.e., a patient’s re-
sponse to a targeted treatment may depend on the combined
expression levels or status of several different biomarkers
within the tumor, which can lead to more complex patient
stratification and treatment decision-making.

3.3 Adequate Dose Optimization
Traditional first-in-human dose-escalation studies deter-

mine the maximum tolerable dose (MTD), or a dose close to
the MTD, which is often recommended for subsequent clini-
cal studies without further dose optimization. This approach
may well be suited to cytotoxic agents such as chemothera-
pies, but may not be appropriate for targeted therapies (e.g.,
kinase inhibitors, monoclonal antibodies, and anti-drug con-
jugates) that interact with a molecular pathway and that
demonstrate different dose-response relationship. The MTD
approach is based only on a short period of observations with

a limited number of subjects and ignores target interactions
and off-target toxicities [16, 36]. With targeted therapies,
increasing doses beyond certain level may not improve anti-
cancer activities, and serious and intolerable adverse effects
may occur after a multi-cycle, persistent treatment, leading
to dose interruption and reduced compliance [15].

The goal of dose optimization is to identify a dose or
a dose range that produces the maximum possible effi-
cacy while maintaining acceptable toxicity. This is usually
achieved by randomized dose optimization trials (DOTs)
that focus on the relationship of drug exposure with antitu-
mor activities including both efficacy and toxicity. However,
the traditional stagewise approach for dose finding and op-
timization may potentially exclude the true optimal dose(s)
in stage 1 and usually requires relatively large sample sizes
[37], which may not be feasible for rare cancers. To address
these limitations, some alternative strategies such as the fol-
lowings may be considered in dose optimization for targeted
drugs treating rare cancers:

• Efficacy-integrated approach: The phase I dose finding
study can make the use of both toxicity and efficacy to
explore the exposure-response relationship and to guide
dose escalation decisions through benefit-risk trade-
off [38], in which dose optimization may be achieved
through the use of toxicity endpoints and short-term
efficacy endpoints, e.g., pharmacometric endpoints or
target receptor occupancy, to guide nearly real-time
dose decisions and then the use of long-term clinical
efficacy endpoints at the end of the trial for identifying
optimal biological dose(s) [37, 39, 40, 41].

• Seamless phase I-II designs: Examples of this type of
designs may include BARD (backfill and adaptive ran-
domization for dose optimization) that may reduce the
sample size [42], DROID (a dose-ranging approach to
optimizing dose) that bridges the dose-ranging frame-
work with oncology dose-finding designs to estimate
the optimal dose(s) [43], PEDOOP (pharmacometrics-
enabled dose optimization) that incorporates patient-
level pharmacokinetics and latent pharmacodynam-
ics information for dose optimization [39], and intra-
patient dose escalation to reduce the number of patients
being exposed [44]. These designs have the potential
to reduce the sample size and improve the accuracy of
identifying the true optimal dose(s).

• Basket-nested designs: For cancers with the same or
similar target, one may consider expansions of multiple
doses in multiple tumor types (basket-nested design)
after dose escalation and using Bayesian methods to
borrow evidence from other tumors for dose optimiza-
tion [41, 45, 46, 47].

In addition to the above strategies and the general recom-
mendations in regulatory guidance [13, 36], some other con-
siderations in such DOTs may include heterogeneity of pa-
tient population (tumor type, disease stage, comorbidities,
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etc.), the selection of the most appropriate endpoints that
can accurately capture antitumor activities (e.g., anticancer
response or progress-free survival), therapeutic properties of
the drug (e.g., small or large molecules, agonist or antago-
nist), and whether there are approved indications for the
drugs [48, 49, 50].

3.4 Substantial Treatment Effects
SATs often use surrogate endpoints (SEs), such as ob-

jective response (OR), complete response (CR), and du-
ration of response (DOR), to gauge anticancer activities
of drugs. For example, most oncology SATs use OR rate
(ORR) and/or CR rate (CRR) as primary measures and
DOR as a key secondary measure of anticancer effects. For
SATs seeking AA, the trial should generate an ORR (and/or
CRR) that is clinically meaningful and statistically signifi-
cantly higher than the rate that the same patient popula-
tion would experience without taking the drug or with some
SOC [11]. In addition, the DOR among responders should
be long enough to ensure that the observed responses are
due to treatment, not to the natural history of the cancer
or bias of patient selection. Studies have showed that mod-
est improvement on SEs may not last long enough and/or
translate into clinically meaningful survival benefit of can-
cer patients [17, 51, 52, 53]. Of note, substantial treatment
effects can be concluded by comparing the effects from the
SAT with those from a pre-specified external control (e.g.,
a historical or contemporaneous control [54]) at the individ-
ual patient level or with a fixed value for an ORR and/or
DOR).

There are other intermediate efficacy endpoints such as
disease-free survival, time-to-progression, probability of re-
sponse maintenance, progression-free survival (PFS), and
relapse-free survival for solid tumors. These endpoints are
usually measured as secondary endpoints, each of which re-
flects some specific aspects of treatment effect and should
also be considered together with the primary and/or key
secondary endpoints in an SAT [55]. Note that complete
remission or complete remission with (partial) hematologic
recovery (of peripheral blood counts) (CRh), major molec-
ular response, cryogenic response, and/or minimal residual
disease are often used for regulatory decisions in developing
drugs treating hematologic malignancies [56].

In general, assessment of substantial evidence should take
into account the followings: (1) the magnitude of estimated
effects in terms of selected (primary and key secondary)
endpoints, (2) the target patient population (e.g., patients
with terminal diseases or prior two or more lines of thera-
pies), (3) external information about natural history, exter-
nal controls, SOC, and unmet medical needs, (4) statistical
considerations with respect to sample size, hypothesis test-
ing, multiplicity, missing data, and sensitivity analysis, and
(5) rigorous supplementary and sensitivity analyses to fully
explore all possible biases (e.g., patient selection bias, end-
point assessment bias, attrition bias, immortal time bias)

and their impact on the study conclusion. Whether an SAT
can generate substantial evidence of treatment effects de-
pends on the clinical context and should be discussed with
relevant regulatory agencies prior to initiation of the SAT
[11, 12, 13].

3.5 Translation of SEs Into Clinical Benefits
Clinical benefits are commonly measured by prolongation

of survival (e.g., overall survival (OS) or PFS) or improve-
ment in quality of life of cancer patients. The relationship
between SEs and survival has not been formally established
in many cancer types treated with anticancer agents and
may depend on many factors such as the stage of the can-
cer, number of prior-line therapies, magnitude of treatment
effect as measured by SEs, and safety profile of the drug and
its MOA. Merino et al. [18] point out that ORR may not
translate into overall survival benefit because (1) a modest
magnitude of ORR may be transient or due to the natural
history of the disease or patient selection bias and/or (2) a
large ORR often accompany with a higher (suboptimal) dose
that aims at producing a higher ORR but may be associ-
ated with intolerable toxicity (that causes early withdrawal
with a shorter follow-up time or even significant treatment-
related deaths) [57]. On the other hand, the relationship be-
tween early tumor-based SEs and OS can be bidirectional,
some trials have showed OS benefit without substantial im-
provement in ORR [58, 59], which may be caused by the
unique MOA for target therapies [18].

While the correlation between SEs and clinical benefits
depends on the clinical context, the drug under investiga-
tion, the endpoint selected, and other design aspects (e.g.,
patient selection), some additional considerations in assess-
ing translation of SEs into clinical benefits may include:
(1) the magnitude of treatment effects as measured by the
surrogates–the larger the observed effect, the higher the like-
lihood (in general) for the SEs to be translated into OS, (2)
an established strong correlation of CR with OS in some
cases [60], (3) consistency in the components of composite
SEs (e.g., ORR and DOR), (4) understanding relationship
among the SEs, biological plausibility, disease progression,
and OS, and (5) consultation with regulatory agencies to
ensure alignment on the use of SEs and their relevance to
clinical benefit.

3.6 Favorable Benefit-Risk Profile
The benefit-risk assessment (BRA) is quite complex in

clinical trials, requiring considerations on multiple aspects,
e.g., analysis condition, alternate treatment options, bene-
fits, risks, and risk management [61]. It is even more chal-
lenging in SATs because of no comparison arm and difficul-
ties to assess clinical benefits (due to shorter follow-up time)
and to balance the observed antitumor effect with toxicity.
However, the following considerations may be helpful in the
BRA of an SAT:
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• Benefits. SEs are commonly used in BRA of SATs
[19, 21], in which some tools such as the magnitude of
clinical benefit scale [62] can be helpful. Although the
strength of correlation among SEs, intermediate end-
points, and clinical endpoints depends on the clinical
context [63], in general, (1) a durable response rate is
usually associated with a better likelihood of having
clinical benefits, (2) CR may be a better option than
OR in predicting OS, and (3) intermediate endpoints
(e.g., PFS) may be better predictors of OS than OR.

• Risks. Assessment of risk/harms in SATs should focus
on (1) observed AEs and their clinical importance, (e.g.,
severity, frequency of occurrence, tolerability), (2) level
of certainty for causality, and (3) manageability of the
risks [61, 64]. Note that risk assessment is particularly
challenging in SATs because (1) symptoms of the dis-
ease are often prominent and in many cases indistin-
guishable from drug-induced AEs and (2) true inci-
dences of drug-induced AEs are inestimable due to the
absence of a control group.

The BRA can be performed quantitatively using a struc-
tured and well-defined process [61, 65]. Note that the BRA
for SATs should take into account the clinical context (e.g.,
the consequence if patients do not receive the treatment un-
der investigation) and often the benefit-risk profiles of ex-
ternal controls (if any).

3.7 Totality of Evidence
Regulatory approvals of medical products are based on

the totality of evidence on the product effectiveness. In ad-
dition to the evidence discussed in Sections 3.4–3.6, the fol-
lowing aspects may be considered to supplement the totality
of evidence on product effectiveness [66]:

• Evidence from preclinical studies. Evidence of efficacy
and toxicity from in vitro and in vivo studies using the
same endpoints that may translate to a similar clinical
outcome [67].

• Evidence from pharmacokinetic and pharmacodynamic
(PK/PD) studies. PK/PD data are required in almost
all regulatory submissions to help understand the dose-
response relationship, MOA of the drug, and disease
pathophysiology [68].

• Evidence from other indications. For indication expan-
sion of approved drugs, it is important to integrate
all data at all stages from other (approved and unap-
proved) indications, especially those with related indi-
cations or MOA, which may provide further evidence
on the plausibility of treatment benefits and safety in-
formation [69].

• Evidence from studies of pharmacologically similar
products. Evidence from approved products in the same
pharmacological class may include the MOA, treatment
effects on the same endpoints, and consistency of treat-
ment effects across class members [70].

• Real-world data (RWD) and real-world evidence
(RWE). External data, either at indication/study level
or at individual patient level, are often used to deter-
mine the effectiveness of the drug, e.g., registry studies
for natural history of a rare tumor and response rate
for a terminal cancer treated with SoC. In many cases,
RWD are used to select patients for external compari-
son group, for which there is extensive literature on con-
sideration in the design, conduct, analysis, and result
interpretation of externally controlled trials [71, 72].

• Evidence from expanded access. In some cases, patients
with serious or immediately life-threatening rare can-
cers that lack effective treatments may be offered the
investigational product via an expanded access program
(EAP). Evidence derived from such an EAP can pro-
vide effectiveness and safety information in support of
regulatory decision [73, 74].

3.8 Planning/Initiation of Confirmatory Trials
For anticancer drugs granted AA, post-approval confir-

matory trials are required to verify and describe anticipated
clinical benefit [11]. Therefore, timely planning and/or ini-
tiation of a confirmatory trial is essential to support subse-
quent full approval within a reasonable time. Such a con-
firmatory trial (often an RCT) is intended to address the
uncertainty about the relationship between SEs and clini-
cal benefits (often measured by survival). Details about the
design and initiation of the confirmatory RCT should be dis-
cussed as early as possible with relevant regulatory agencies
[11, 12, 13].

4. OTHER CONSIDERATIONS
Besides the conditions described in the previous two sec-

tions, additional considerations may help well shape up an
SAT from the trial design and communication perspectives.

4.1 Well-Defined Estimands
Upon meeting the criteria described in Section 2 and

3.1–3.3, then an SAT can be designed to demonstrate treat-
ment effects of the drug by clearly defining the study objec-
tive(s) and corresponding estimands, with the latter often
being described through precise definitions of estimand at-
tributes [12, 75]. Using OR as an example, the five attributes
can be described as follows:

• Population: Patients with the cancer type of interest,
possibly biomarker-defined

• Treatment: The new drug under investigation (and/or
rescue therapies or SOC, if any)

• Endpoints: Responses (complete or partial response) by
independent review committee (IRC), DOR

• Intercurrent events (ICEs): Discontinuation of the drug
under investigation due to (1) intolerability, (2) start
of another anticancer therapy (e.g., next-line therapy
because of disease progression (DP) by investigator’s
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assessment while no DP by IRC), (3) unknown status
(e.g., loss to follow-up), (4) terminal events (e.g., death)

• Population-level summary: Proportion of responses

Most of the ICE handling strategies can be used in SATs
[76]. For those seeking AA, the while-on-treatment strategy
is often relevant as it concerns responses to the treatment
before the occurrence of an ICE. However, the hypotheti-
cal strategy may also be applied if, e.g., a next-line therapy
is used in patients who discontinue the originally assigned
therapy for reasons other than toxicity and disease progres-
sion. Of note, for SATs with external controls, special atten-
tion should be given to precise definitions of target popula-
tion (to minimize patient selection bias), treatment strate-
gies (including rescue therapies), and different patterns of
ICE occurrence between patients in the SAT and those in
the external control [71, 77]. In general, the average treat-
ment effect among the treated (ATT) estimand in an SAT
is of interest to regulators.

4.2 Adaptive Designs
Alternative to the follow-up confirmatory RCT discussed

in 3.8, one may consider some innovative study designs that
take into account both tumor responses and patient survival
in different stages of a single study, e.g., a seamless adaptive
design that models the response-survival relationship using
pre-specified statistical methods [78] and a two-stage transi-
tion design, in which the first stage is an SAT and the second
stage is an RCT [79]. Adaptive designs can also be consid-
ered for confirmatory basket trials for multiple cancer types
based on molecular alterations or biomarkers. Adaptive bas-
ket trials, often comprising multiple single-arms with each
corresponding to a single tumor (sub)type, are particularly
useful for rare cancers and have led regulatory approval for
uncommon molecular alterations; see Beckman et al. [80],
Woodcock and LaVange [81], Yu et al. [82], and Subbiah et
al. [83] for examples of regulatory approvals based on adap-
tive basket trials.

4.3 Communication With Regulatory Agencies
It is highly recommended that sponsors communicate

with relevant regulatory agencies on the suitability of an
SAT to support AA before initiation of the study [84, 85].
In the communication, the sponsors may consider at least
the following aspects: (1) evidence from prior studies (in-
cluding trial design, study population, treatment regimen,
sample size, and endpoints); (2) safety and tolerability in-
formation (including dose limiting toxicity), AEs (especially
SAEs), major organ toxicity, and dose-exposure-response
characteristics; (3) clinical pharmacological data (including
single- and multi-doses PK/PD data); (4) efficacy evidence
(including target indication), all efficacy-related endpoints
under the recommended dose for the target indication; (5)
biomarker validation results if biomarker is used to define
the target population; (6) background information about

the target indication (including comprehensive review, inci-
dence/prevalence, and current treatment options and associ-
ated effectiveness); (7) description of potential unmet med-
ical needs of the investigational product for the target indi-
cation; (8) rationale for an SAT design (including complete
protocol with eligibility criteria, primary and secondary ef-
ficacy endpoints, treatment regimen, sample size, statistical
hypothesis) and planning for the confirmatory RCT; and
(9) relevant information about the use of independent re-
view committee and its charter.

5. EXAMPLES
This section presents three cases with each representing

(1) from AA to full approval, (2) AA failure, and (3) first AA
and then withdrawal indications based on later confirmatory
trials.
5.1 Blinatumomab for Relapsed/Refractory

B-Cell Acute Lymphoblastic Leukemia
Prognosis for patients with Philadelphia chromosome–

negative (Ph-neg) relapsed or refractory B-precursor acute
lymphoblastic leukaemia (R/R ALL) who have failed mul-
tiple lines of therapies is usually unfavorable with me-
dian overall survival (mOS) of 3–6 months [86]. The B-
lineage surface antigen CD19 is homogeneously and stably
expressed in over 95% of B-precursor ALL blasts, making
it a likely target for immunotherapy [87]. Blinatumomab
is a bispecific CD19-directed CD3 T-cell engager antibody
that simultaneously binds CD3-positive cytotoxic T cells
and CD19-positive B cells, leading to T-cell-mediated serial
killing of malignant B cells [88].

A phase II SAT (NCT01466179) enrolled 189 patients
with Ph-neg R/R ALL. The primary efficacy endpoint was
complete remission (CR) + CRh by two cycles of treatment.
The study was designed to enroll at least 140 eligible pa-
tients to demonstrate that the rate of CR+CRh > 30% with
96% power at a one-sided significant level 0.025 if the true
rate of CR+CRh is 45%. Blinatumomab was given to eligi-
ble patients by continuous intravenous infusion over 4 weeks
of a 6-week cycle (9 ug/day for the first week and 28 ug/day
thereafter for up to five cycles). The starting dose was based
on the safety results of two prior studies and the step-dose
regimen was found to be tolerable and active. At the time
of primary efficacy analysis, all enrolled patients completed
at least two cycles or discontinued early [89, 90]. The anal-
ysis of primary endpoint showed that, using the treatment
policy (intention-to-treat) strategy, the rate of CR + CRh
was 43% with the lower bound of the 95% confidence in-
terval [CI] being 35%. A weighted analysis of 694 historical
control patients from 13 study groups and clinical centers
showed an average CR of 24% with 95% CI being 20%–27%
[91], confirming the target lower limit of 30% CR + CRh for
the accrued population.

The FDA granted in July 2017 a full approval of blinatu-
momab based a randomized, active controlled, open-label,
phase III study investigating the efficacy of blinatumomab
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versus SOC chemotherapy in 405 adult patients with Ph-
neg R/R B-cell precursor ALL. Results of the study showed
a statistically significant improvement in OS for patients
treated with blinatumomab (OS 7.7 months) compared to
those treated with SOC (OS 4.0 months) (hazard ratio 0.71;
95% CI: 0.55, 0.93, p-value = 0.012). The approval also in-
cluded results from a phase II study supporting the treat-
ment of patients with Ph-positive R/R B-cell precursor ALL
[92]. See https://www.drugs.com/history/blincyto.html for
the approval history of blinatumomab.

5.2 Retifanlimab for Locally Advanced or
Metastatic Squamous Carcinoma of the
Anal Canal

Squamous cell carcinoma of the anal canal (SCCAC) is a
rare cancer with an annual incidence rate ranging from 0.5
to 2.0 per 100,000 population worldwide [93]. For relapsed
and/or metastatic SCCAC, there is no approved systemic
treatment and chemotherapy is the standard of care with
an average 5-year survival rate of only 30% [94], suggesting
an unmet medical need.

Studies show that PD-1 and/or PD-L1 are expressed in
over 50% SCCAC patients [95]. Therefore, immunotherapy
with anti-PD-1 and anti-PD-L1 antibodies could be a poten-
tial effective therapy for SCCAC. Retifanlimab is a human-
ized, hinge-stabilized, immunoglobulin G4 kappa (IgG4k)
monoclonal antibody that binds to and inhibits PD-1 and
its downstream signal pathway, restoring immune function
through the activation of T-cell and cell-mediated immune
responses against tumor cells. Based on this MOA, a phase
II SAT (POD1UM-202, NCT03597295) was designed to in-
vestigate the anticancer activities of retifanlimab among pa-
tients with locally advanced or metastatic SCCAC who have
progressed after chemotherapy. Eligible patients received a
500-mg dose of retifanlimab every 4 weeks as an intravenous
infusion (day 1 of each 28-day cycle) for up to 26 cycles.
The primary efficacy endpoint was objective responses (ei-
ther CR or PR) as evaluated by independent central review
(ICR) and the secondary efficacy endpoints were DOR, dis-
ease control rate, PFS and OS. A sample size of 81 patients
was planned to provide a 95% lower confidence limit of 13%
with 80% probability if the true ORR was 24% [96].

The study enrolled 94 SCCAC patients. At the data cut-
off with a median follow-up of 7.1 months (range 0.9–19.4
months), 13 (1 CR + 12 PRs) patients had responses,
76 had discontinued treatment due to disease progression
(n = 58), AEs (n = 6), death (n = 6), physician decision
(n = 2), and lost to follow-up and withdrawal by patient
(each n = 1) and 18 patients were continuing the study
treatment. The estimate of the primary efficacy endpoint
using treatment policy strategy was 13.8% (95% CI:
7.6%–22.5%) based on confirmed tumor responses by ICR.
The estimated median DOR in responders was 9.5 months
(95% CI: 5.6 months to inestimable). After reviewing the

data, the FDA summarized the results in a pre-BLA (Bi-
ological License Application) meeting as follows: (1) ORR
was modest and less than the pre-defined target of 25%, (2)
DOR data was limited as only 7 of the 13 responders had
DOR > 6 months, (3) if the BLA is submitted with results
only from POD1UM-202, the agency might elect to discuss
at an ODAC (Oncologic Drugs Advisory Committee)
meeting, (4) the BLA would be a stronger application if it
were supported by randomized controlled trials (POD1UM-
303/InterAACT 2, NCT04472429, expected to be reported
in 2025). On June 24, 2021, the FDA ODAC recommended
with a 13-4 votes against AA of retifanlimab. Although the
sponsor inferred the delay in disease progression, the agency
insisted that SATs cannot produce such data because of lack
of control group [17]. Of note, with SATs, one can only look
at immediate antitumor activities such as responses and
cannot make any inferences regarding stable disease which
may reflect the natural history of the patients. Endpoints
such as disease stabilization or time to event (progression
or survival) can only be demonstrated in RCTs.

5.3 PI3K Inhibitor for Hematologic
Malignancies

Phosphoinositide 3-kinases (PI3Ks) are a class of enzymes
regulating multiple cellular processes including cell growth,
proliferation, differentiation, survival and intracellular traf-
ficking. Activation of the PI3K signaling pathway is often de-
tected in hematologic malignancies and dysregulated PI3K
signaling promotes the survival and proliferation of malig-
nant lymphocytes, which provides the rationale for thera-
peutic targeting of PI3K isoforms in hematologic cancers
[97].

Given the above background and the unmet medical
needs in some rare types of (relapsed and refractory) hema-
tologic malignancies [98], the FDA granted the first AA in
July 2014 of idelalisib to treat patients with relapsed follic-
ular lymphoma (FL), small lymphocytic lymphoma (SLL),
and chronic lymphocytic leukemia (CLL). Since then, the
agency approved three additional PI3K inhibitors for hema-
tologic cancer indications. The development history and rel-
evant information for each of the approved PI3K inhibitors
are summarized as follows [99].

Idelalisib. The FDA granted AA in July 2014 to ide-
lalisib, a PI3Kδ inhibitor, in relapsed FL and SLL after
≥ 2 systemic therapies based on an SAT (Study 101-09,
NCT01282424) with an ORR of 54% (95% CI 42%–66%)
in FL and 58% (95% CI 37%–77%) in SLL. At the same
time, the agency also approved idelalisib in combination
with rituximab in relapsed CLL based on an RCT (Study
GS-US-312-0116, NCT01539512) with a PFS HR 0.18 (95%
CI 0.10–0.31). Three subsequent RCTs in CLL or indolent
non-Hodgkin lymphoma (iNHL) were halted in 2016 due to
increased deaths and serious toxicities, from which a pooled
analysis showed a death rate 7.4% in idelalisib arms versus
3.5% in control arms (OS HR 2.29 with 95% CI: 1.26–4.18).
In January 2022, the sponsor voluntarily withdrew FL and

https://www.drugs.com/history/blincyto.html
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SLL, citing poor enrollment in postmarketing requirement
(PMR) studies after initial AA [100].

Duvelisib. Duvelisib, a PI3Kδ and PI3Kγ inhibitor, was
granted AA in R/R FL after ≥ 2 systemic therapies based
on an SAT (NCT02204982) with an ORR 42% (95% CI
31%–54%) and regular approval in R/R CLL and SLL
after ≥ 2 therapies based on a phase III DUO RCT
(NCT02004522) comparing duvelisib versus ofatumumab
with PFS HR 0.52 (95% CI 0.39–0.69). The final 5-year
data of DUO concluded an HR of 1.09 (95% CI 0.69–1.51)
in OS, a key secondary endpoint, favoring the control arm.
Of note, the DUO study also enrolled patients with one prior
line therapy and death rates were higher with duvelisib than
with ofatumumab in both patient groups who received 1
prior therapy (50% versus 44%) and 2 or more prior ther-
apies ((55.8% vs 48.5%). The sponsor voluntarily withdrew
R/R FL in December 2021 with the considerations of treat-
ment landscape change after duvelisib gaining AA 4 years
ago and timing of a confirmatory study.

Copanlisib. The FDA granted AA in September 2017
to copanlisib, a PI3Kα and PI3Kδ inhibitor, in relapsed
FL based on an SAT (CHRONOS-1, NCT01660451) with
ORR 59% (95% CI 49%–68%). A subsequent PMR RCT
(CHRONOS-3, (NCT02367040) comparing copanlisib+rit-
uximab versus placebo+rituximab resulted in a PFS HR
0.52 (95% CI 0.39–0.69) and a OS HR 0.87 (95% CI
0.57–1.35) in iNHL and 0.95 (95% CI 0.52–1.74) in FL.
In addition, the RCT also found a higher death rate due
to SAEs in the copanlisib arm. Consequently, the sponsor
voluntarily withdrew in December 2021 the NDA based on
CHRONOS-3.

Umbralisib. The FDA granted AA in February 2021 to
umbralisib, a dual inhibitor of PI3Kδ and casein kinase-
1ε (CK1ε), in R/R FL after ≥ 3 systemic therapies and
R/R marginal zone lymphoma (MZL) after ≥ 1 anti-
CD20-based therapy based on an SAT (NCT02793583)
with an ORR 43% (95% CI 34%–52%) in FL and 49%
(95% CI 37%–62%) in MZL. Data from a phase III RCT
(NCT02612311) comparing umbralisib+ublituximab versus
obinutuzumab+chlorambucil in previously treated and R/R
CLL showed an HR of 0.55 (95% CI 0.41–0.72) in PFS and
of 1.10 (95% CI 0.75–1.59) in OS (interim). Patients receiv-
ing the novel combination experienced more SAEs, leading
to a higher incidence of deaths in umbralisib arm, which
prompted the FDA to place multiple clinical trials involv-
ing ublituximab and umbralisib on hold. In April 2022, the
sponsor voluntarily withdraw umbralisib for the indications
FL and MZL.

In summary, the main concerns in the above presented
PI3K inhibitors as a class of drugs are (1) potential detri-
ments in OS for PI3K inhibitor arm due to increased toxic-
ity, (2) limited dose finding and/or dosing optimization, (3)
insufficient exploration of exposure-response relationship in
both efficacy and safety, (4) no or limited dose finding con-
ducted for use in combination, and (5) high rates of treat-
ment modifications due to toxicity.

6. CONCLUDING REMARKS
There is a growing tendency in oncology drug develop-

ment and approval pathway moving from SATs towards
RCTs. Nevertheless, there are occasions where SATs are ap-
propriate to support regulatory decision. This paper is in-
tended to describe (1) the necessary conditions under which
an SAT may be more appropriate, (2) desirable consider-
ations that can make the design of the SAT more optimal
or its results more interpretable, (3) further considerations
for evidence of product effectiveness, and (4) planning/ini-
tiation of a confirmatory RCT within reasonable time after
AA. In general, an SAT meeting as many of these condi-
tions as possible may have a higher likelihood of getting
AA. However, it is strongly recommended that the sponsor
discusses with relevant regulatory agencies before initiation
of an SAT for the purpose of regulatory decision.
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