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Abstract
Up-and-Down designs (UDDs) are ubiquitous for dose-finding in a wide variety of scientific, engineering, and clinical

fields. They are defined by a few simple rules that generate a random walk around the target percentile. UDDs’ combination
of robust, tractable behavior, straightforward usage, and good dose-finding performance, has won the trust of practitioners
and their consulting analysts across fields and continents. In contrast, in recent decades the statistical dose-finding design
field has turned a cold shoulder towards UDDs, and it is quite possible that many younger dose-finding methods researchers
are not even aware of this design approach.

We present a concise overview of UDDs and their current state-of-the-art methodology, with references for further
inquiry. We also revisit the performance comparison between UDDs and novel, more complicated design approaches such
as the Continual Reassessment Method and the Bayesian Optimal Interval design, which we group under the term “Aim-
for-Target” designs. UDDs fare very well in the comparison, particularly in terms of robustness to sources of variability.

keywords and phrases: Adaptive designs, Dose-finding, Up-and-Down, Staircase method.

1. INTRODUCTION
Up-and-Down designs (UDDs) were developed in the

1940s, independently on two continents and in two differ-
ent fields: sensory studies [65] and explosive testing [10].
They remain the dose-finding method of choice in both fields
[59, 44], and are very popular in many other fields including
anesthesiology [39, 52], dentistry [61], toxicology [54], mate-
rials science and engineering [25, 57], electrical engineering
[71], and more. UDDs are considered a standard or recom-
mended design in these fields by many national [2, 11, 34, 43]
and international [29, 30, 42, 45] organizations.

One surprising domain where UDDs have become rather
unpopular and mostly neglected in recent decades, is the sta-
tistical field of dose-finding methodology. Amid a veritable
explosion of articles presenting, modifying, and discussing
novel dose-finding designs, UDD methodology articles have
dwindled to less than a trickle. This relative silence in the
statistical community is surprising in several ways:

• Statisticians are the ones who had spearheaded UDD
methodological development during the design’s early
decades;

• Those decades, followed by a rather abrupt neglect,
have left behind them many key unresolved challenges,
both theoretical and practical;

• Judging by the sheer number of UDD experiments tak-
ing place across such a wide array of fields, one would
expect that statistical consulting needs alone would

∗Corresponding author.

have spurred many statisticians to continue investigat-
ing and improving UDD methodology. To wit, Oron’s
long affair with UDDs began with a 2003 graduate-
student consulting project.

• Last, but not least: when one compares UDDs’ dose-
finding performance with newer, far more complicated
designs, and does so on a level playing field – UDDs
tend to hold their own [13, 19, 48]. When robustness
is examined, UDDs are generally far more robust than
these newer designs.

The last point alone, a variation on Occam’s Razor,
should convince statisticians to take UDDs seriously again.
Why invest so much in design overhead, when a simpler
more straightforward method does the job at least as well?
One plausible explanation for the collective overlooking of
UDDs is that after several decades outside the statistical
limelight, they have simply receded beyond the horizon of
methods that most active and incoming statisticians are fa-
miliar with. Our aim here is to pique the reader’s interest
regarding UDDs, and to provide concrete information for
getting started, both methodologically and in a consulting
capacity. Following a brief overview of UDDs and recent
methodological developments, we will present fresh simula-
tion data comparing UDD performance with leading newer
designs. The latter will be described and discussed only to
the extent required for such a comparison, as we maintain
the article’s main focus upon UDDs. We end with a general
discussion.
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2. UP-AND-DOWN OVERVIEW
2.1 Basics

Due in part to the scarcity of authoritative material, there
is no single definition that distinguishes UDDs from other
dose-finding designs, some of which are closely related. We
prefer to define UDDs as sharing the following elements [52]:

1. The responses, Y = {Yi, i = 1, . . . n}, are binary or
dichotomized.1 We will refer to the two options ver-
bally as “positive” and “negative”, even though they
are coded numerically as 1 and 0.

2. The treatments X = {Xi, i = 1, . . . n} (often generi-
cally known as “doses”) are selected from a discrete set
of increasing values X = d1 < d2 < · · · < dM , which we
will call dose levels. We assume here that X is finite,
without loss of generality.2

3. The probability of positive response is monotone over
X ; without loss of generality we assume monotone in-
creasing. The probability is usually denoted via the
dose-response function F (x), where x is the continu-
ous treatment-magnitude variable. The dose levels X
are simply specific discrete values of x. It is common
and often useful to think of F (x) as a cumulative dis-
tribution function (CDF) of response thresholds, but it
is not required.

4. Treatments are allocated sequentially and (for each new
subject or cohort) only allow for increasing by one dose
level, decreasing by one dose level, or no change from
the current level. Hence, the design’s name “up-and-
down,” or (in sensory studies and materials testing) the
“Staircase Method” [63].

5. Dose-transition rules are based on the treatments
and responses of the most recent observations – up to
k of them (with k ≥ 1 constant), and possibly also
on a few additional fixed design parameters. The rules
involve no estimation.

6. UDDs have no intrinsic stopping rules, although such
rules can be constructed optionally.

Using this terminology, a dose-finding experiment’s typi-
cal goal is estimating the target percentile (also known as
the “target dose” or simply “the target”) F−1(Γ),Γ ∈ (0, 1).

Elements 1–3 in the list above are common to dose-
finding designs in many fields, and define the dose-finding
task’s characteristic constraints. Element 4 has become a
widely (though not universally) accepted guideline across
most dose-finding designs. The remaining two elements turn
a dose-finding design on a grid, into a UDD. With UDDs, X
is a random walk over X . It is also a regular random walk,
meaning that the distribution of X over X converges to a
stationary distribution π.
1Some ordinal forms of Y may also be possible; see Discussion.
2Preferably, dose levels are uniformly spaced in an algebraic or geo-
metric sequence, but this is not required.

UDD dose-transition probabilities depend only upon
F (x) and the design’s specific rules. If the ‘up’ transition
probability decreases with increasing F (x) and vice versa
for the ‘down’ probability, then the UDD generates a ran-
dom walk with a central tendency [14, 27], and π is sharply
peaked around F−1(Γ) – or more precisely, around the
UDD balance point x∗ ≡ F−1(p∗) [50]. The balance point
can be determined from the specific UDD chosen by solving
the equation

Pr (up | F (x) = p∗) = Pr (down | F (x) = p∗) . (2.1)

Specifically, the dual monotonicity conditions on the
dose-transition probabilities guarantee that π’s mode is at
one of the two dose levels straddling x∗. The conditions
are known as the Durham-Flournoy conditions after the re-
searchers who first spelled them out [14, 12, 50]. Without
meeting these conditions, a design might still be considered
a UDD – that is perhaps a matter of semantics – but it is
unlikely to work well as a dose-finding UDD.

The balance-point equation (2.1) holds for all UDD vari-
ants described in Section 2.2; one only needs to plug the
correct transition probabilities into the formula. In general,
design parameters should be chosen so that p∗ ≈ Γ.

The convergence of X towards stationary behavior hap-
pens at a very rapid, geometric rate, meaning that within
a few dozen observations and usually sooner, a contiguous
“slice” of X will be essentially equivalent to a sample out of
π [9].

Before we continue, a few words about robustness, a term
mentioned frequently in this article. Dose-finding is a small-
to-moderate sample affair; in most fields n is rarely over 50,
and in many fields it is usually ≤ 25 [28]. Each of these ob-
servations is binary, so the experiment provides a few dozen
bits of information at best. Thus, the overall signal-to-noise
ratio cannot be very high, particularly when observations
are obtained from live subjects rather than, say, industrially-
produced units. Even under idealized simulated conditions
in which all response thresholds are drawn from a single
well-defined F (x) and there are no experimental mishaps,
challenging situations are common. For example, the target
F−1(Γ) might be situated relatively far from the starting
dose x1, or, very commonly, different parts of the experi-
ments might encounter “streaks” of relatively high or low
response thresholds compared with the population average,
so that experimental behavior seems erratic and the target
percentile might not be clearly discernible from the data.

In this context, a design or estimator being robust means
that its dose-allocation behavior and dose-finding perfor-
mance show little degradation under such more challenging
situations. Conversely, some design approaches are intrinsi-
cally oriented towards capitalizing upon well-behaved con-
ditions, but falter under moderate deviations from such con-
ditions. In the terminology we use here, this indicates lack
of robustness.
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2.2 Popular Types of UDDs
The original UDD has the simplest of rules: escalate when

Yi = 0 and vice versa. Therefore, Pr (up) = 1 − F (x) and
Pr (down) = F (x). Whether by plugging this into (2.1) or
simply by symmetry, evidently p∗ = 0.5. To date this is
the most commonly and widely used UDD. Below we list
three popular straightforward extensions that enable tar-
geting other percentiles, while remaining only once removed
from the original UDD and meeting all six criteria listed in
the UDD definition above, as well as the Durham-Flournoy
conditions.

A simple extension that can target any percentile is
known as Biased-Coin UDD [12]. For Γ < 0.5, following
Yi = 0 one draws a random number to determine whether
to escalate or repeat the same dose. In contrast, Yi = 1 man-
dates a de-escalation. Setting the random (“biased coin”) es-
calation probability to Γ/(1−Γ) ensures that p∗ = Γ exactly.
For Γ > 0.5 the roles of Yi are reversed, and the biased-coin
probability is inverted. The bcoin utility function in the R
package upndown provides the required coin probability to
achieve a given Γ. The utility also returns a verbal descrip-
tion of transition rules, to clarify how the result is to be
used:
> bcoin(0.3)
After positive response, move DOWN.
After negative response, ‘toss a COIN’:

- with probability of approximately 0.43 move UP
- Otherwise REPEAT same dose.

Another simple UDD extension replaces the random draw
with a requirement for a run of k contiguous negative (posi-
tive) responses at the same dose level before escalation (de-
escalation), to target Γ ≤ 0.5 (Γ ≥ 0.5). This UDD is ex-
tremely popular in sensory studies, to which it was intro-
duced in the 1960s by its developer G.B. Wetherill [67, 68].
It has been known by various names; we prefer the rather
straightforward name “k-in-a-row UDD” [32]. Dose alloca-
tion behavior can be described either as a k-th order random
walk, or as a random walk with internal states [22, 50]. For
Γ > 0.5 (typical of sensory studies), the balance point is
p∗ = 0.51/k, with mirror-image balance points for Γ < 0.5
(adequate for toxicity studies). Thus, for toxicity studies the
k = 2, 3, 4 balance points are very close to the 30th, 20th and
15th percentiles, respectively. The k2targ utility function in
upndown provides the balance point for given k. The reverse
utility ktargOptions provides plausible values of k given Γ,
together with a verbal description of the rules analogous to
the bcoin output shown above.

For both k-in-a-row and Biased-Coin UDDs, the non-
median balance point is achieved by rendering one tran-
sition direction “slow”, while the opposite direction retains
the original UDD’s “fast” transitions. Beginning an experi-
ment from the “slow” end (e.g., starting from the lowest dose
in toxicity studies) might incur a substantial delay and re-
duced performance if the true target is not close. A common

modification, introduced already in the 1960s [67], is to start
the experiment with original-UDD rules, until at least one
observation of each type is encountered. In toxicity studies,
this would mean escalating after every observation until the
first toxicity, then reverting to the intended k-in-a-row or
Biased-Coin rules. Barring extreme exceptions, this modifi-
cation is highly recommended.

Lastly, the Group UDD (GUD) evaluates cohorts of fixed
size s > 1 simultaneously, escalating with l or fewer posi-
tive responses and de-escalating with u or more [64, 23]. All
members of the same cohort receive the same dose. Some-
what similarly to k-in-a-row, GUDs can be described ei-
ther as an s-th order random walk, or as first-order with
a twist; in this case, moving from binary Y to size-s Bi-
nomial. Balance points can be determined from symmetry
when l + u = s (in which case p∗ = 0.5), by solving (2.1)
analytically for some other specific GUD sub-families, and
otherwise by solving (2.1) numerically from Binomial dis-
tribution probabilities. Similarly to the k-in-a-row utilities,
The g2targ utility function in upndown provides the balance
point for given (s, l, u). The reverse utility gtargOptions
provides plausible (s, l, u) trios for a given Γ. See the follow-
ing example:
> gtargOptions(0.3, maxsize = 5, tolerance = 0.05)
For each design, if positive responses <= Lower, move up

if positive responses >= Upper, move down
otherwise repeat same dose

(relevant only when Upper - Lower > 1).

Cohort Lower Upper BalancePoint
1 2 0 1 0.2928932
2 3 0 2 0.3472963
3 4 0 2 0.2663668
4 5 0 3 0.3019788
5 5 1 2 0.3138095

GUDs may have inspired the ‘3+3’ escalation design [6],
which is notorious in the phase I cancer trial design lit-
erature for its enduring popularity despite volumes of evi-
dence for its poor dose-finding performance. The transition
rules after ‘3+3’s first visit to a new dose-level resemble a
GUD(3,0,2), listed in the second row of the gtargOptions
output above. However, ‘3+3’ stops the experiment before
any dose level sees more than 6 observations, and completely
disallows re-escalation to a previously visited dose. This
prevents any possibility for a target-centered random walk,
and therefore denies ‘3+3’ the attendant UDD performance-
beneficial properties. To emphasize: despite occasional mis-
identification in literature, ‘3+3’ is not a UDD.

When these UDD variants are compared for estimation
of the same target percentile, k-in-a-row converges some-
what faster to its stationary behavior [50]. This translates
into an estimation-efficiency advantage, which has however
become more nuanced with improvements to UDD estima-
tion methods that have enhanced all variants’ performance
[49, 17]. k-in-a-row’s advantage depends on it having a bal-
ance point close enough to the experiment’s designated tar-
get (say, within ∼ 5 percentage points).
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Figure 1: Illustration of UDD dose-allocation distribution
and allocation convergence. Details are described in the text.

Figure 1 illustrates a UDD allocation distribution and
provides insight into the somewhat elusive topic of UDD al-
location convergence. The vertical bars show the expected
accumulated dose-allocation distribution after n = 30, un-
der k-in-a-row with k = 2 and the first F (x) curve in the
500-curve ensemble used in the next section’s simulations.
Given knowledge of F (x) (shown in the background as a
faint green band) and the starting point (here assumed to
be d1), the distribution can be calculated analytically and
was derived via the upndown utility cumulvec. The station-
ary or asymptotic random-walk distribution π (connected
black dots; calculated via pivec) is independent of the start-
ing point. The bars’ heights are not too far removed from it,
but one can see the low starting point’s effect. The expected
marginal distribution of additional doses halfway through
the experiment at n = 15 (connected red dots; calculated
via currentvec) is hardly distinguishable from π. Around
n = 25, the distribution of additional doses becomes visually
indistinguishable from π at this scale. This demonstrates the
meaning of dose-allocation convergence. Note that F (x) is
on the same scale as the allocation probabilities: it crosses
29.3% (the balance point) and 30% (the experiment’s offi-
cial target rate) shortly after d4, where indeed the peaks of
all depicted distributions are located.

Other UDD variants beyond the four described here have
been published, some of them extending the possibilities via
additional biased coins [e.g., 8, 12, 18, 24]. Generally speak-
ing, designs with biased coins applied to both the ‘up’ and
‘down’ transitions do not provide additional practical bene-

fit to justify the added complication, and have rarely if ever
been implemented in practice. One UDD variant that does
enjoy popularity in sensory studies, uses different step sizes
for the up and down transitions [20]. This innovation “vio-
lates” either criterion element 4 (if the ratio between step
sizes is rational) or 2 (otherwise), and hence narrowly speak-
ing might not be considered a UDD as it does not generate
a random walk on X . However, it does generate a target-
centered Markov chain (either discrete or continuous-state)
that shares many properties with “proper” UDDs.

The R package upndown has additional utilities, such
as estimation functions and even a fast-running en-
semble simulation framework. We recommend using the
package’s development version, available via GitHub at
"assaforon/upndown".

2.3 Estimation
2.3.1 Regression Estimators

The estimator we recommend for UDD is Centered Iso-
tonic Regression (CIR) [49]. Using regression for dose-
finding begins by calculating the observed dose-specific re-
sponse rates, R = (R1, . . . , RM ):

Rm ≡ Tm

Nm
, m = 1, . . .M, (2.2)

where Nm is the sample size at dm and Tm is the number of
responses (e.g., toxicities) observed among them. The rates
R (shown as ‘x’ marks in Figure 2) are used to estimate the
dose-response curve F (x), ultimately “reading” F−1(Γ) off
of the regression curve. See for example in Figure 2, how
CIR’s 90th percentile estimate (purple dot) is the value of
x where the CIR curve (blue) crosses y = 90%.

Isotonic regression methods are a good match for UDDs,
as both are non-parametric and both tend to demonstrate
robustness to experimental mishaps and to variations in
the dose-response relationship. We prefer CIR specifically,
because it offers a considerable performance improvement
over straightforward interpolation of ordinary isotonic re-
gression, an estimator introduced to UDD by Stylianou and
Flournoy [60]. CIR produces more realistic dose-response
curves by avoiding the characteristic flat stretches produced
by ordinary isotonic regression. Figure 2 illustrates CIR and
isotonic regression, with data from an anesthesiology exper-
iment that targeted the 90th percentile using biased-coin
UDD [21].

CIR also includes an accompanying confidence interval
with adequate coverage, beginning with an interval for F (x)
based on an analytical formula for ordered binary data by
Morris [40], then using a localized delta-method-like inver-
sion to obtain an interval for F−1(Γ) [49]. It should be
noted that isotonic regression has historically lacked an
adequate small-sample interval. Therefore, CIR available
via the R package cir, offers solutions relevant for dose-
response and dose-finding applications far beyond UDD
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Figure 2: Example of isotonic regression and CIR using
data from an anesthesiology UDD experiment with n = 45
that targeted the 90th percentile [21]. Isotonic regression
as adapted by Stilyanou and Flournoy (black dashes) inter-
polates between the observed response rates R (‘x’ marks;
size proportional to nm), replacing regions of decrease with
flat stretches. CIR (solid blue) collapses the flat stretches to
single points, ensuring strict monotonicity. CIR also incor-
porates the bias-mitigation formula (2.3). The CIR target
estimate and 90% confidence interval are shown in purple.
The figure was generated via the upndown package utility
drplot.

alone. Our confidence-interval method is compatible with
both CIR and ordinary isotonic regression. The convenience
function udest in upndown offers a CIR target estimate pre-
configured for UDD datasets.

One might wonder why we do not recommend paramet-
ric regression, e.g., Logistic or Probit. Such methods can be
found in some UDD experimental reports, but we generally
advise against them because of poorly-characterized perfor-
mance under model mis-specification, and the considerable
chance for non-existent estimates [58, 19]. If the latter prob-
lem is circumvented via use of Bayesian priors, performance
might depend too strongly upon them.

A note of caution regarding regression estimators: in
dose-finding it is customary to assume that the observed
rates R are equivalent to Binomial random variables, and
therefore constitute unbiased estimates of F on X . The as-
sumption is wrong, not only for UDDs but for all adaptive
dose-finding designs, because of the dependence between
numerator and denominator in (2.2) [26]. We recently de-
scribed the typical form this bias takes in dose-finding. In

the target’s vicinity the bias is nearly zero, and therefore
it has little affect upon designs’ dose-finding performance.
Away from target, the bias “flares out” in both directions,
making observed rates seem more extreme than the underly-
ing values of F and therefore producing exaggerated slopes
[17]. The bias tends to be stronger for non-UDD designs
such as the Continual Reassessment Method (CRM) [46],
because the dependence there is stronger.

Inspired by Firth [15] and informed by the shape of the
bias, we developed a simple ad-hoc bias mitigation formula
that shrinks R towards Γ:

˜Rm =
Tm + Γ

Nm + 1
=

NmRm + Γ

Nm + 1
. (2.3)

When Γ = 0.5, this formula is identical to the commonly
used correction for calculating the empirical logit in the pres-
ence of zero cell counts [69, 1]. The bias mitigation is an op-
tion in cir, and implemented as default in upndown::udest.
It tends to improve CIR interval coverage for the target-dose
estimate, via making the slope of F less exaggerated. The
CIR curve in Figure 2 incorporates the bias-mitigation for-
mula.

Due to the bias, we generally advise against off-target
estimates with adaptive dose-finding designs, e.g., estimat-
ing the 95th percentile using data from a median-targeting
UDD. Note that many safety dose-exclusion rules imple-
mented in other dose-finding designs rely upon such off-
target estimates.

2.3.2 Dose-Averaging Estimators

Historically, dose-averaging estimators appeared before
regression estimators, and are still very popular, particu-
larly in non-medical fields. These are averages of a subset of
the sequence of allocated doses, X. The rapid convergence of
X to stationary behavior and π’s relative symmetry provide
the basic rationale for dose-averaging estimators. A deeper
justification is that nearly all the experiment’s information
is encoded in X via the dose-transition rules. One can even
add a “phantom” Xn+1 to the average, because when the
experiment ends the next treatment allocation can be pre-
determined without need to observe Yn+1 [5]. Both the orig-
inal Dixon-Mood UDD estimator, and the estimator devel-
oped by Wetherill and Leavitt upon UDDs’ introduction to
sensory studies, are dose-averaging estimators [10, 68]. The
latter is likely still the single most popular UDD estimation
approach when all fields are considered. It averages only the
subset of doses at points where X’s trajectory changes di-
rection from ‘up’ to ‘down’ or vice versa.

The simplicity of averaging and the relatively low vari-
ance of using an average for estimation in general are appeal-
ing, but we have found that dose-averaging approaches tend
to lack robustness. A plethora of biases counter-balances the
low-variance advantage; some are very difficult or impossi-
ble to mitigate [52]. For example, a starting-point bias may
be observed if the target is far from the starting dose, and a
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boundary bias takes place when the target is near the edge
of X .

In addition, none of the dose-averaging confidence in-
tervals in current use offers sufficient and robust coverage,
mostly because all require a standard-error estimate, and
those are hard to obtain reliably when the data are so dis-
crete. Our upndown package offers a bootstrap-based inter-
val that comes close to passable coverage for some dose-
averaging estimators, but generally still falls short by at
least ∼ 5%.

3. UP-AND-DOWN – AND OTHER
APPROACHES

3.1 Background
Because dose-finding is a generic challenge that resur-

faces in many contexts, a variety of approaches have been
developed to address it. For comparison with UDD, we fo-
cus on the most prominent family of approaches in recent
literature, one that utilizes repeated estimation. The use of
estimation to guide the next treatment’s placement can be
traced back at least to the 1950s, nearly as old as UDDs
[56, 41, 35]. More recently, in the context of dose-finding on
a discrete grid X , most estimation-based approaches have
coalesced around the following outline:

• After each observation, estimate F (x) – either the en-
tire curve or the value at the current dose-level;

• Place the next treatment at the dose-level deemed “clos-
est to target”, according to these estimates and the de-
sign’s specific optimization criterion.

The optimization criterion could be, e.g., the dose-level
with the smallest |F̂ − Γ|, or – in the case of so-called “in-
terval designs”, simply that the current dose-level’s estimate
of F is within some tolerance interval around Γ. When the
former criterion is used, the target estimation method at the
experiment’s end is usually identical to the dose-allocation
method during the experiment.

The first dose-finding design we are aware of to follow this
outline explicitly, was a parametric Bayesian design for sen-
sory studies published in 1983 under the acronym QUEST
[66]. While QUEST has gained considerable traction in its
own field, it was a 1990 publication of another parametric
Bayesian design that has caught mainstream statistics’ at-
tention: the aforementioned CRM [46].3 Catering to phase I
cancer trials, which is the dose-finding application receiving
the most method-development resources nowadays, CRM
was soon followed in that field by methods bearing acronyms
such as EWOC [3], or more recently interval designs such as
CCD [31], mTPI [33], and BOIN [38]. This is a very partial
list.
3Wu also presented such an approach independently in 1985, but it
seems that the reach of his work has remained confined mostly to
methodological discussions of stochastic approximation and related de-
signs [70].

Such designs have often been named “long-memory” be-
cause they incorporate information going back to (x1, y1),
but there are other approaches with long memory that do
not follow the outline as described above. Here we suggest
the provisional name Aim-for-Target designs, which seems
more specific and descriptive. Plausibly, one can also de-
scribe them as greedy algorithms [7, Ch. 15]. Our impression
is that Aim-for-Target designs have taken up nearly all the
oxygen in the statistical dose-finding-literature room, with
attempts to dethrone or modify ‘3+3’ in the phase I realm
accounting for most of the balance. The practical needs of
other fields that use dose-finding have been largely ignored
in this recent body of methodological literature. UDDs are
mentioned in passing, if at all, and often in a misguided
manner.

Oron and Hoff demonstrated a decade ago that Aim-for-
Target designs suffer from a disturbing, structural lack of
robustness which, even more disturbingly, has gone almost
completely under the radar of all this novel methodological
activity [48]. In a nutshell, Aim-for-Target designs tend to
lock onto a perceived optimum early in the trial. In case this
“early bet” misses the true optimum, these designs take very
long to self-correct, because their self-correction mechanism
operates at a root-n rate, with new information accumulat-
ing rather slowly since it consists of dependent binary data.

In Oron and Hoff’s work, UDDs were shown to attain
similar dose-finding performance overall, and to have far
better robustness, than Aim-for-Target. Since the evidence
presented there has not become common knowledge, and
since some time has passed with new designs and new de-
velopments, we have thought it appropriate to revisit the
comparison with new, broader simulations.

3.2 Comparative Performance Simulations
3.2.1 Methods

We present here results for designs targeting the 30th
percentile, a common phase I cancer target, and the 90th
percentile, popular in anesthesiology. We refer to the Y = 1
outcome in the former case as dose-limiting toxicity (DLT),
and in the latter as efficacy, even though both are simulated
via very similar computer code. More simulations details are
provided below.

We generated parametric random F curves using a 3-parameter
Weibull (shape, scale, lateral shift). In order to enable separate
looks into the effect of curve properties (slope, shape, etc.) and
of the relationship between starting dose and target location, for
each target a single ensemble of B = 500 was generated, with each
curve having different Weibull parameter values but with all curves
crossing target near the middle of X . Extremely steep or extremely
shallow curves were excluded as being less “interesting” for the
dose-finding task.

Then, the simulation setting was varied by shifting the entire
ensemble right or left, or by changing the starting dose. This ap-
proach follows in the footsteps of earlier randomized-F simulations
[51, 48]. In its specific details it is quite similar, but somewhat more
sophisticated, than the curve ensembles shown in the supplement
of reference [52].
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For the 30th percentile we used M = 8 dose levels and n = 30
observations, and 4 different settings using the same 500-curve en-
semble. In 3 settings the starting dose was d1 as is common in toxic-
ity studies, and the target location was in the middle [x∗ ∈ (d4, d5)],
low [x∗ ∈ (d2, d3)] or high [x∗ ∈ (d6, d7)]. The fourth setting had
the target in (d4, d5) and started at d4. The 90th percentile sim-
ulations were fairly similar, except for using M = 12 dose levels
and n = 50, and with 3 of the 4 settings varying the starting point
(high, middle, low) rather than the target location. We kept one
particularly “hard” setting, the one starting at d1 and having a
high target. The 30th percentile simulation had one set of compar-
isons with single-patient dose allocation decisions, and one set with
cohorts of 3, a cohort size used very commonly in phase I cancer
trials. The 90th percentile simulation only had a single-patient set.

For the 30th percentile cohort-allocation simulations, we used
GUD(3,0,2) (p∗ ≈ 0.35): escalate after zero-toxicity cohorts, repeat
the same dose with one toxicity, and de-escalate otherwise. For the
single-patient allocation simulations, we used the k-in-a-row UDD
with k = 2 and k = 6 for the 30th (below-median rules, p∗ ≈ 0.29)
and 90th (above-median rules, p∗ ≈ 0.89) percentiles, respectively.
For k-in-a-row we used the quick start-up modification described
in Section 2.2. For UDD estimation, CIR was used including the
bias-mitigation formula (2.3).

As to Aim-for-Target designs, we used three CRM variants for
each target, all generated via the getprior function in the dfcrm
package. This function provides a “skeleton” of F values on X , de-
termined by the user’s choice of an “indifference interval” around
target, and by the prior-predictive mode location of the target dose
[36, 37]. For the 30th percentile we used an “indifference interval”
half-width of 0.05, except for one variant with 0.1 half-width. For
the 90th percentile, we found by trial-and-error that these intervals
needed to be half as wide. Prior distributions of the estimated pa-
rameter were kept at defaults. The narrower-interval variants varied
by prior-predictive mode location (high vs. low), while the wider-
interval variant had its prior mode near the middle of X . CRM dose
transitions were limited to a single dose-level upwards or down-
wards.

We also used two interval designs: the Cumulative Cohort design
(CCD) [31] and the Bayesian Optimal Interval design (BOIN) [38].
For the 30th percentile, CCD was used with an interval width of
±0.1 as recommended by the authors, and BOIN used the transition
and dose-exclusion look-up table generated via the get.boundary
function in the BOIN package, using the function’s defaults. For
the 90th percentile, CCD’s interval width was halved, and BOIN
software did not permit calculation of the design rules. For estima-
tion with both interval designs, CIR was used including the bias-
mitigation formula.

All simulated experiments were run using the dfsim simulation
utility in upndown, currently (fall 2024) available only in the pack-
age’s development version, but eventually to become available in
the CRAN version as well. Post-processing and visualization were
done using auxiliary code in R version 4.3.3. The entire simulation’s
scripts can be found on Github under the assaforon/UpndownBook
repository, in the folders P2_Estimation and P3_Practical.

3.2.2 Results: Main Metrics

We follow the phase I field’s conventions, and rather than
evaluate point estimates of F−1(Γ) using continuous met-
rics, we identify the dose-level in X with the smallest |F̂−Γ|,
often known as the Maximum Tolerated Dose (MTD) esti-
mate. Phase I simulation studies usually examine what pro-
portion of the ensemble’s runs had the correct MTD esti-
mate (i.e., the MTD estimate was indeed the dose-level with
smallest |F − Γ|), or whether this estimate falls on a dose
whose F value is within an “acceptable window” around
Γ. Here we adopted the latter criterion; for the 30th per-

centile we used an “acceptable window” of F ∈ [0.2, 0.4].
We made sure that every F (x) curve in the ensemble has
at least one dose-level within the “acceptable window”, but
no more than three. The Supplementary Material includes
analogous summary plots (Figures S1, S2), with the nar-
rower criterion of correct-MTD identification for the 30th
percentile simulations.

The proportion of single-patient 30th percentile simula-
tion runs whose MTD estimate fell within the window, is
plotted on the y-axis of Figure 3. The x-axis shows the
ensemble-average DLT rate during the experiment. Since
30% is the target rate (marked as a dashed vertical line),
rates below, or not far above 30%, should be acceptable.
Thus, the desirable region of the plot is high and to the left,
or at least not too far to the right. For each design we show
the mean (dot) and range (lines extending from it) across
the 4 starting-point and target-location settings described
in Section 3.2.1. Designs more robust to changes in settings
will have shorter lines extending from the mean.

On the combination of Figure 3’s three metrics – dose-
finding performance, toxicity and robustness – the k-in-a-
row UDD (dark red) is among the best, and arguably even
the single best overall. The CRM variant with wider “in-
difference interval” (steel blue) does well on performance.
However, its considerable spread suggests less robustness,
and there is more to this story as we shall see soon. Aim-
for-Target designs that show similar robustness to k-in-a-
row are generally lower on performance. CRM with a high
prior-predictive MTD has the highest overall DLT rate, as
expected. The newest design, BOIN (orange), had disap-
pointingly low performance, and yet does not achieve lower
overall DLT rate than UDD.

Figure 3: Main performance plot from the 30th percentile
target simulations with single-patient dose allocations. Ad-
ditional details are in the text.
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Figure 4: Main performance plot from the 30th percentile
target simulations with cohorts of size 3. Additional details
are in the text.

Figure 4 shows summaries under identical settings ex-
cept for the use of 3-patient cohorts, a common practice in
phase I trials. We have retained the same plot boundaries
as Figure 3, so the first thing to note is a substantial loss of
dose-finding performance compared with the single-patient
simulations. Much of the loss is due to the most challenging
setting, under which experiments start at d1 and the target
is in (d6, d7); for 4 of the 6 designs, the performance under
this setting now falls below the plot’s lower limit of 60%. The
Supplementary Material includes a version of Figure 4 where
the full performance range is visible. Some designs lose alti-
tude across the board: “CRM Wide” in particular loses 3%
average performance even when the most challenging setting
is excluded. More can be said about the loss of performance
when a cohort structure is imposed, and whether it justifies
the actual benefits – but perhaps this is a topic for another
article.

Turning to our main business of UDD vs. Aim-for-Target
comparison: the UDD variant is Figure 4’s clear number 1 in
dose-finding performance. Conversely, it is also responsible
for the single highest-toxicity ensemble – 32.7% under the
setting that starts at d4 – but this is the only setting in which
it exceeds 30% despite having a balance point of p∗ ≈ 0.347,
and on average its toxicity rate is < 25%, substantially lower
than “CRM High” and similar to “CRM Low’.

For simplicity, we retained the same metrics for the 90th
percentile simulations – i.e., establishing a “Best Dose” (note
it is not a “maximum tolerated dose” in this context) and
defining a “desirable window” between the 82.5 and 97.5 per-
centiles. The rationale for this window is that failure rates
nearing 20%, (i.e., double the target rate) would be deemed

Figure 5: Main performance plot from the 90th percentile
target simulations. Additional details are in the text.

too high, and conversely near-perfect efficacy rates might
suggest that we are choosing doses that are excessive for
the vast majority of patients. Thus, the set-up for Figure 5
is very similar to Figure 3, but now the best region in the
plot is high and to the right, although still perhaps not too
far to the right.4

Once again, UDD does very well, and once again, the
wide-interval CRM (which here means a half-width of 0.05
vs. 0.025 for the other two variants) shows the worst robust-
ness to changes in setting. BOIN is not shown because the
design’s official package refuses to calculate design rules for
Γ > 0.6.

3.2.3 Results: Number-Treated-in-Window Metric

In Aim-for-Target editorials and simulation articles, it
is commonplace to discuss and examine the metric of how
many patients during the experiment were treated at the
true MTD, or within the “acceptable window” around it.
We call this metric n∗ for brevity. It does not strike us as
originating from practitioners; there’s a good chance that if
practitioners were the ones coming up with such a metric,
statisticians would have told them it is no less than circu-
lar reasoning, because if the true MTD is known then the
experiment is not needed, and since it is not known the
expectation that most patients be treated at it during a
small-sample, binary-Y experiment, is unrealistic.

On a possibly related topic, a hallmark of Aim-for-Target
design behavior is the tendency to “settle in” relatively
4We reiterate that the anesthesiology field usually prefers continuous
target-dose estimates rather than this discrete “Best Dose” approach,
although the latter is encountered occasionally. However, even if we
presented continuous estimates and metrics, the results would be sim-
ilar overall.
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quickly on the same dose-level for long stretches. This be-
havior is very widely mis-interpreted as “convergence”, even
leading to widespread adoption of early-stopping rules de-
signed around it. Oron and Hoff [48] argued that since Aim-
for-Target convergence is tied to the convergence of F esti-
mates, and these take place at a root-n rate, “late-stage con-
vergence” (loosely speaking, when behavior doesn’t change
anymore because the estimates have in fact gotten very close
to their asymptotic value) is not observable at the rather
small phase I sample sizes, barring the occasional lucky indi-
vidual sample. Instead, the settling behavior is a side-effect
of design rules, because the same model is refitted at each
step with nearly the same data. Oron and Hoff also provided
simulation evidence that aggressive early settling-in is unre-
lated, or even inversely related, to estimation performance,
and therefore stopping rules based on this behavior might
be detrimental. Regardless, for our narrow purposes here, we
note that this settling-in behavior tends to drive n∗ up for
Aim-for-Target designs under favorable conditions, surely
compared to UDDs and their random walk.

We examine n∗, but instead of ensemble averages we look
at the entire ensemble distribution, as Oron and Hoff did in
2013. Figure 6 shows the ensemble distributions of n∗ for the
single-patient 30th percentile simulations, across 3 settings

Figure 6: Distributions of the run-specific number of patients
treated at acceptable dose-levels, from the 30th percentile
single-patient simulations.

and 5 designs. Each pane represents a 500-run ensemble,
with individual runs (single virtual “experiments”) differing
both by their F (x) curve and by their set of random response
thresholds (“patients”). In contrast, the columns differ only
by the location of F−1(Γ).

While the UDD histograms (bottom row) show a clear
peak with tails, most Aim-For-Target histograms are not too
far removed from a uniform distribution. This means that
whether the trial will be spent almost entirely within the
acceptable window, almost entirely outside of it, or some-
where between those extremes – is anyone’s guess. The CRM
with a wider “indifference interval” (second row from bot-
tom) is particularly volatile – and in the least favorable set-
ting (rightmost column), the most common single value of
n∗ for this design is zero. Overall, Aim-for-Target ensemble-
average n∗ values are ∼ 10−25% higher than k-in-a-row, but
their ensemble standard deviations of n∗ are ∼ 2x higher.

Figure 7 shows analogous distributions from the cohort
simulations, counting allocated cohorts of size 3 instead
of single patients since all patients in each cohort receive
the same dose. Some differences between UDD and Aim-
for-Target appear less dramatic here, both because of the
strong constraint imposed by the use of cohorts, and be-
cause GUD(3,0,2) allows for the same dose to be repeated

Figure 7: Distributions of the run-specific number of cohorts
treated at acceptable dose-levels, from the 30th percentile
cohort simulations.
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over more consecutive observations than the single-patient
UDD. Indeed, average n∗ values for GUD(3,0,2) are similar
to those of the other designs. It does still have the lowest
standard deviation of n∗ in each setting – although not by
a factor of 2 as in the single-patient simulations. As seen
in other simulation results, “CRM Wide” once again is the
least robust, this time showing marked sensitivity both be-
tween settings and between individual runs. Under the least
favorable setting, > 25% of this design’s runs never made it
into the “acceptable window” during the experiment.

4. DISCUSSION
UDDs are widely used with a long track record of reliabil-

ity. They are high-performing, flexible and modifiable. We
recommend strongly to pertinent application fields where
UDDs are currently not part of mainstream discussion, to
consider them again. For phase I and similar clinical toxicity
trials in particular, UDDs have the dual advantage of being
simpler and more tractable than ‘3+3’, which might ap-
peal to practitioners and regulators, yet performing at least
as well as the best novel “Aim-for-Target” designs, which
should appeal to everyone.

In that context, UDD’s random walk is often faulted be-
cause it allows a dose experiencing multiple prior toxicities
to be visited again, more readily than most estimation-based
designs. This valid concern is not limited to UDDs, and a
simple, generic solution is known and is applicable to UDDs
as well: incorporate a dose-exclusion rule based on current
information. Such rules have been proposed for UDDs at
least once [47]. We note that regardless of design, many of
these rules ignore the bias in R and hence tend to be too
aggressive. Also regardless of design, there is some loss of
performance in exchange for reducing the risk of visiting
high doses. We plan to examine new ideas for UDD-specific
dose-exclusion rules, which in contrast to the above will be
cognizant of the bias, and might end up improving the de-
sign’s dose-finding performance.

There are many opportunities for further extensions and
improvements to UDDs. For example, in anesthesiology
a key adverse-response endpoint is change in blood pres-
sure. Given the volatility of blood pressure readings it
seems more sensible to discretize this continuous measure
as ordered-ternary Y (decrease, inconsequential change, in-
crease) rather than to dichotomize it. Fortunately, a UDD
extension to accommodate ordered-ternary Y will proba-
bly be simple and straightforward, like the UDD extensions
mentioned in Section 2.2. A more sophisticated potential
extension using the full range of ordinal toxicity-grade data
was explored briefly 20 years ago in the context of phase I
designs, and can also be followed upon [55]. Another poten-
tial extension is related to GUD(3,0,2) which fared well in
Section 3.2’s cohort-based comparative simulation. As men-
tioned earlier its balance point is p∗ ≈ 0.347, a tad high

if the target is ≤ 0.3. One could propose a modification
whereby in case 1 toxicity out of 3 is observed, a biased coin
is tossed to determine whether to repeat the dose or de-
escalate. Such a variant could target, e.g., the 30th or the
25th percentile, depending upon coin probability. Baldi An-
tognini et al. examined GUD with biased coins some time
ago, but their exploration was generic rather than focus-
ing on concrete experimental applications and their specific
properties [4]. Last but not least, in sensory studies it is
common to run a UDD experiment on a single participant,
who repeatedly reports whether they notice a stimulus as its
intensity varies up and down. This introduces additional de-
pendence to the observations, as well as “drifts” in response
due to fatigue, etc. While the sensory-studies field has been
cognizant of these issues, we feel that their impact upon
UDD properties and the potential implications for design
and estimation have not been studied thoroughly.

Given the paucity of person-hours devoted to UDD
methodology in recent decades, even better opportunities
surely await the intrepid researcher. A sense of how the
methodology has progressed due to the efforts of the few,
can be attained by comparing the 2007 Anesthesiology UDD
tutorial by Pace and Stylianou [53], the chapter written by
us for a 2015 experimental-design handbook [16], and the
2022 Anesthesiology tutorial written by us in collaboration
with a senior anesthesiologist [52]. We are thrilled to be in
the final stages of completing the first-ever book solely ded-
icated to UDDs, which contains further developments. We
would love to see younger researchers taking up the chal-
lenges presented there.

We end on a philosophical note. While it is likely that
UDDs had sprung out of common-sense and intuition rather
than deep theoretical introspection, they seem to have hit
a sweet spot with respect to the handling of uncertainty
in a highly constrained, low-information problem. UDDs
do not attempt to control the dose-allocation process too
tightly; instead, their rules leverage uncertainty to gener-
ate random walks with reasonable behavior and good data-
collection properties. By contrast, ‘3+3’ and similar esca-
lation designs place very tight constraints on the number
of DLTs in the trial. They generally succeed in stopping
experiments quickly with few DLTs, but the price is very
poor estimation performance, defeating the phase I trial’s
entire purpose. At the opposite end, Aim-for-Target designs
introduce considerable complexity in the attempt to tame
uncertainty via repeated estimation, which in practice plays
out as declaring a “best dose” early on based on minimal ev-
idence, and sticking with it until proven otherwise. In case
this early bet was wrong, correcting it might require longer
than the entire experiment’s duration. Therefore, as some
have suggested in a more general context, it may be possi-
ble that letting go just a little bit rather than try to control
randomness forcibly, is the winning approach all things con-
sidered [62].
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