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Abstract
In cancer research, leveraging patient-derived xenografts (PDXs) in pre-clinical experiments is a crucial approach for

assessing innovative therapeutic strategies. Addressing the inherent variability in treatment response among and within
individual PDX lines is essential. However, the current literature lacks a user-friendly statistical power analysis tool capable
of concurrently determining the required number of PDX lines and animals per line per treatment group in this context.
In this paper, we present a simulation-based R package for sample size determination, named ‘PDXpower’, which is
publicly available at The Comprehensive R Archive Network (https://CRAN.R-project.org/package=PDXpower). The
package is designed to estimate the necessary number of both PDX lines and animals per line per treatment group for the
design of a PDX experiment, whether for an uncensored outcome, or a censored time-to-event outcome. Our sample size
considerations rely on two widely used analytical frameworks: the mixed effects ANOVA model for uncensored outcomes
and Cox’s frailty model for censored data outcomes, which effectively account for both inter-PDX variability and intra-
PDX correlation in treatment response. Step-by-step illustrations for utilizing the developed package are provided, catering
to scenarios with or without preliminary data.

keywords and phrases: Frailty model, Mixed effects ANOVA model, Power analysis, Sample size determination,
Xenograft study.

1. INTRODUCTION
Xenograft studies involve the transplantation of cells, tis-

sues, or organs from one species, known as the donor species,
into another species, called the recipient or host species. In
these studies, researchers typically implant human cells, tis-
sues, or tumors into animal models, commonly rodents, to
investigate various aspects of human biology, disease pro-
gression, and therapeutic interventions. In the context of
cancer research, pre-clinical experiments through patient-
derived xenografts (PDXs) provide an important scientific
tool for the evaluation of novel therapeutic strategies. In par-
ticular, PDX studies take into account the high level of re-
sponse variability between subjects through subject-specific
derived replication across treatment groups.

One of the experimental strengths of pre-clinical PDX
studies stems from the investigator’s ability to observe the
results of a quasi-counterfactual treatment assignment pro-
tocol, which sees the same patient-derived tumor potentially
treated under different conditions through replication across
genetically homogeneous animal models. Eckel-Passow et
al. [6] discussed a taxonomy of PDX designs encompass-
ing nested, crossed, and mixed crossed/nested designs, as
∗Corresponding author.

depicted in Figure 2 of their paper. The nested design in-
volves a naïve hierarchy in which different PDX lines are
randomized between treatment groups, before PDX-specific
replication is obtained within group and PDX line. While
seemingly reasonable, this design does not fully address the
possibility of tumor-specific replicates assigned to different
treatment groups, and remains susceptible to high levels of
tumor-specific response heterogeneity. At the opposite end,
a crossed design avoids confounding of randomization and
PDX lines by assessing how each level of a factor impacts the
outcome with all other factors, i.e. testing all treatments on
the same animal grown within each of the PDX lines. As a
theoretical construct, this design creates multiple PDX lines
and administers multiple drugs within the same animal con-
currently, but it often fails to yield meaningful results and
lacks feasibility, thus becoming impractical in most experi-
mental settings. Alternatively, incorporating elements from
both protocols, a mixed crossed/nested design allows ev-
ery PDX line to be evaluated for all treatments (crossed
design), while allowing subsampling of PDX using animals
that cannot be reused across treatment groups (nested de-
sign). Effectively addressing potential confounding between
PDX line and treatment group, the mixed crossed/nested
design has become a common workhorse in PDX research.
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Using retrospective data from IDH-wildtype glioblastoma
preclinical experiments evaluating three treatments across
27 PDX lines, Eckel-Passow et al. [6] demonstrated through
empirical simulations that experimental designs employing
few animals across many PDX lines can yield robust results
and accommodate inter-tumor variability.

The purpose of this paper is to introduce a new statis-
tical R package, named PDXpower, designed for power
analysis and determination of the required number of PDX
lines and animals per line per treatment group in a PDX ex-
periment structured under the mixed crossed/nested design
framework. Notably, statistical power and sample size con-
siderations for testing a treatment effect depend on various
factors, including experiment design, statistical model, effect
size, and prior information derived from either preliminary
data or previous studies. As detailed in Section 2, for un-
censored survival time, we employ the mixed effects ANOVA
model [16] using PDX as a random effect, which accounts for
both intra- and inter-PDX variability, naturally applicable
to the mixed crossed/nested design. While several statis-
tical power analysis methods and software packages exist
for mixed effects ANOVA models across different analytical
platforms, including R [14, 8, 7, 4, 12, 8, 11, 10, 9], SAS [17],
and PASS [13], determining the required number of PDX
lines and animals per line per treatment group concurrently
often necessitates additional coding effort, potentially com-
plex or time-consuming for those less familiar with coding.
Our developed R package, PDXpower, addresses this gap,
automating the process of determining both parameters si-
multaneously for the mixed effects ANOVA model. In addi-
tional to power analysis based on the mixed effects ANOVA
model for uncensored data, our package also includes a mod-
ule for power calculation with right-censored time-to-event
data using Cox’s frailty model [5, 15]. Particularly, this mod-
ule is tailored for Type 1 censoring of a survival outcome
with a fixed administrative censoring time for all animals,
which is typical for pre-clinical animal studies. Similar to
the mixed effects ANOVA model, the existing power anal-
ysis tools for Cox’s frailty models are currently limited to
determining the required number of PDX lines with a pre-
specified number of animals per line per treatment group
[2, 3]. To the best of our knowledge, our R package is the
first accessible statistical tool to simultaneously determine
both the required number of PDX lines and the number of
animals per line per treatment group.

The rest of the paper is organized as follows. In Section 2,
we specify the mixed effects ANOVA model for testing treat-
ment effects with uncensored data, and Cox’s frailty model
for right-censored data. We also evaluate the Type 1 error
rate and rejection power of the statistical test across vary-
ing number of PDX lines and animals per line per treatment
group though simulations. In Section 3, we provide a tutorial
on utilizing our developed package PDXpower to conduct
power analysis for different scenarios, with or without pre-
liminary data. Additional remarks are provided in Section 4.

2. SAMPLE SIZE DETERMINATION
2.1 Notation and Statistical Formalization of

the Mixed Crossed/Nested Design
For ease of exposition and without loss of generality,

we consider comparing outcomes between the control and
treatment group, i.e., group A and group B. In the mixed
crossed/nested design, for each of n PDX patients/cell lines,
we have 2 ×m implanted animals: m animals are random-
ized to treatment A and the other m animals are random-
ized to treatment B. Let i ∈ {1, 2, . . . , n} represent the in-
dex of the PDX lines, j ∈ {1, 2, . . . , 2m} denote the index
of the animals within each PDX line, and Dij be a treat-
ment indicator, where Dij = 1 if animal j within PDX line
i is in group B, and 0 otherwise. We denote by Yij the
outcome of interest, such as the time to death since the
beginning of treatment, for animals j within PDX line i,
i = 1, . . . , n and j = 1, . . . , 2m. The observed data will con-
sist of {(Yij , Dij) : i = 1, . . . , n; j = 1, . . . , 2m}.

2.2 Statistical Models for Mixed
Crossed/Nested Design

We consider two popular analytical frameworks applica-
ble to the mixed crossed/nested design discussed earlier: a
mixed effects ANOVA model for uncensored data and Cox’s
frailty model for right-censored data.

1. Mixed effects ANOVA model: For i = 1, . . . , n; j =
1, . . . , 2m,

log Yij = β0 +Dijβ + αi + εij , (2.1)

where β0 is the intercept, β is the treatment effect,
αi ∼iid N(0, τ2) represents an unobserved PDX-specific
random effect, and εij ∼iid N(0, σ2) is a random resid-
ual error specific to animals within all PDX lines.

2. Cox’s frailty model: For i = 1, . . . , n; j = 1, . . . , 2m,

λij(t) = λ0(t|λ, ν) exp{Dijβ + αi}, (2.2)

where λij(t) is the hazard function of mouse j within
PDX i, λ0(t|λ, ν) is a baseline hazard function, follow-
ing a 2-parameter Weibull distribution Weibull(λ, ν),
with scale and shape parameters λ and ν, respectively,
β represents the treatment effect, and αi ∼iid N(0, τ2)
is an unobserved PDX-specific random effect (frailty).
As in Model 1, given αi, Yij are assumed to be mutually
independent.

Intuitively, τ2 quantifies the variance in log survival be-
tween animals implanted with xenografts from the same pa-
tient. Similarly, σ2 in (2.1), quantifies the variance in av-
erage log-survival between groups animals implanted with
xenografts from different patients.

Under each of the above models, a Wald-type test can
then be conducted for the null hypothesis H0 : β = 0 to
assess the treatment effects at a pre-specified significance
level.
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2.3 Simulations
We present some simulations to evaluate and illustrate

the performance of the Wald test under the mixed effects
ANOVA model for uncensored data and Cox’s frailty model
for right-censored data for varying number of PDX lines n
and animals per line per treatment group m.

2.3.1 Simulation 1: Mixed Effects ANOVA Model for Uncen-
sored Data

We considered two treatment effect scenarios: (a) β = 0,
and (b) β = −0.8, defined as the anticipated difference in
mean log(survival time) between the treatment and control
groups. For each treatment effect scenario and combination
of PDX lines n = (3, 4, 5, 6, 7, 8, 9, 10) and animals per line
per treatment group m = (3, 4, 5, 6, 7, 8), we generated 2000
Monte Carlo samples according to the mixed crossed/nested
design described in Section 2.1 and the following mixed ef-
fects ANOVA model:

log Yij = 5 +Dijβ + αi + εij , (2.3)
αi ∼ N(0, 0.2),

εij ∼ N(0, 0.5),

where 0.2 is the variance of αi, meaning that 29% of vari-
ability of log Yij comes from αi. The estimated rejection
power, defined as the proportion of instances where the null
hypothesis H0 : β = 0 is rejected at α = 5% significance
level using the mixed effects ANOVA model (2.1), is sum-
marized in Figure 1 for each treatment effect scenario and
combination of PDX lines n and animals per line per treat-
ment group m. We note that in our simulations, the inter-
cept value of 5 implies an arbitrary baseline median survival
of approximately 148 time units. Alternative values can be
used for ease of interpretation and bare little to no effect on
power considerations.

From Figure 1a (left panel), it is evident that the Monte
Carlo estimates of the type I error rates closely align with
the nominal level α = 0.05 across all combinations of n
and m. Additionally, Figure 1b (right panel) illustrates that
increasing the number of PDX lines or animals per line en-
hances the statistical power to detect the treatment effect,
as expected.

2.3.2 Simulation 2: Cox’s Frailty Model for Censored Data

Similar to Simulation 1, we also considered two treat-
ment effect scenarios: (a) β = 0, and (b) β = 0.8, which is
defined analogously as in Section 2.3.1. A value of β = 0.8
corresponds to a HR ≈ 2.23, which is a large effect size
often assumed in the design of animal studies. For each
treatment effect scenario and combination of PDX lines
n = (3, 4, 5, 6, 7, 8, 9, 10) and animals per line per treatment
group m = (3, 4, 5, 6, 7, 8), we generated 2000 right-censored
Monte Carlo samples according to the mixed crossed/nested

Figure 1: Estimated rejection power of a level α = 0.05
Wald test for β = 0 using the mixed effects ANOVA
model (2.1) based on 2,000 Monte Carlo samples gener-
ated from model (2.3) for various combinations of PDX lines
n = (3, 4, 5, 6, 7, 8, 9, 10) and animals per line per treatment
group m = (3, 4, 5, 6, 7, 8) under two scenarios: (a) β = 0
(left panel), and (b) β = −0.8 (right panel).

design described in Section 2.1 and the following Cox’s
frailty model:

Yij ∼ 0.3 exp(Dijβ + αi), (2.4)
αi ∼ N(0, 0.2),

where Yij follows an exponential distribution with the base-
line hazard rate λ0(t|λ, ν) of 0.3 and is subject to right-
censoring at a pre-determined time point C = 8, defined as
the study duration (end of follow-up), and the intra-PDX
correlation is attributed to αi with the variance of 0.2. The
pre-determined time point C = 8 is chosen so that the level
of censoring is around 10% (7% under β = 0.8 and 12% un-
der β = 0 in our simulation settings). Typically, an animal
study’s duration is chosen long enough to minimize the level
of censoring.

The estimated rejection power of the Wald-type test for
testing β = 0 at a significance level of α = 5% based on
Cox’s frailty model (2.2) is depicted in Figure 2 for two treat-
ment effect scenarios and various combinations of n and m.
It is observed that the Monte Carlo estimates of the type I
error rates closely match the nominal level α = 0.05 across
all combinations of n and m (Figure 2a), and increasing the
number of PDX lines or animals per line per treatment group
enhances the statistical power to detect the treatment effect
(Figure 2b). It is worth noting that the sign of the estimated
β in model (2.1) is always the opposite to the counterpart
in model (2.2) when fitting both models in an animal study.
In some cases, they can be the opposite number of each
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Figure 2: Estimated rejection power of a level α = 0.05 Wald
test for β = 0 using Cox’s frailty model (2.2) based on 2000
Monte Carlo samples generated from model (2.4) for various
combinations of PDX lines n = (3, 4, 5, 6, 7, 8, 9, 10) and ani-
mals per line per treatment group m = (3, 4, 5, 6, 7, 8) under
two scenarios: (a) β = 0 (left panel), and (b) β = 0.8 (right
panel).

other when εij follows an extreme value of distribution and
λ0(t|λ, ν) follows an exponential distribution.

Additionally, we have conducted intensive simulations on
multiple scenarios with varying true treatment effect β =
(0.2, 0.5) for the Weibull event outcome or the log-normal
outcome. The results and their implications are provided in
the Supplementary Material.

2.4 Statistical Power Calculation and Sample
Size Determination via Simulation

We now outline a simulation-based strategy to obtain
Monte Carlo estimate of the statistical power for assess-
ing a treatment effect using the mixed crossed/nested de-
sign in PDX animal experiments. This strategy is based on
the mixed effects ANOVA model (2.1) for uncensored data
and Cox’s frailty model (2.2) for right-censored data, as dis-
cussed in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 Simulation-based Power Calculation for the Mixed
Crossed/Nested Design with Uncensored Data

To perform simulation-based power calculation for the
mixed crossed/nested design with uncensored data using
the mixed effects ANOVA model, the following information
must be determined a priori:

i. The hypotheses: H0 : β = 0 vs Ha : β = β1, where
β1 = anticipated difference in mean log(survival time)
between the treatment and control groups.

ii. Statistical significance level α. It is a commonly used
threshold to control the Type 1 error rate, the probabil-

ity of concluding the results are statistically significant
when, in reality, they were arrived at purely by chance.

iii. Sample sizes n and m. n is the number of PDX lines
and m is the number of animals per PDX line per treat
group.

iv. Error variance σ2 in the mixed effects ANOVA model
(2.1). This parameter quantifies the unexplained varia-
tion across PDX lines and animals.

v. Inter-PDX variability τ2. It quantifies the inter-PDX
variation across PDX lines.

vi. The number of Monte Carlo replicates sim.
With the above priori information, we employ the fol-

lowing simulation strategy for power calculation and subse-
quently determine the number of PDX lines n and number of
animals m per PDX line per group within the mixed effects
ANOVA model framework for uncensored data.

1. Define a range of feasible values for n and a range of fea-
sible values for m. Subsequently, for every combination
of n and m, follow the subsequent steps.

2. Generate a Monte Carlo sample {(Yij , Dij), i =
1, . . . , n; j = 1, . . . , 2m} according to the mixed
crossed/nested design described in Section 2.1 and the
mixed effects ANOVA model (2.1) with priori informa-
tion i-vi.

3. Fit the mixed effects ANOVA model (2.1) on the sim-
ulated data and test H0 : β = 0 at significance level α.

4. Repeat steps 2 and 3 over sim Monte Carlo samples.
Calculate the estimated power as the proportion of in-
stances where the null hypothesis H0 : β = 0 is rejected.

5. Given a desired power, say 80%, determine the mini-
mal required number of PDX lines and number of an-
imals per line per treatment group by examining the
estimated power across all combinations of n and m.

2.4.2 Simulation-based Power Calculation for the Mixed
Crossed/Nested Design with Right-censored Data

To conduct simulation-based power calculation for the
mixed crossed/nested design with right-censored data using
Cox’s frailty model (2.2), the following priori information
are required.

i. The hypotheses: H0 : β = 0 vs Ha : β = β1, where eβ1

represents the hazard ratio between the treatment and
control groups.

ii. Statistical significance level α.
iii. Sample sizes n and m. n is the number of PDX lines

and m is the number of animals per PDX line per treat
group.

iv. Inter-PDX variability τ2. It is the variance of PDX-
specific random effect αi ∼ N(0, τ2), which quantifies
the inter-PDX variation across PDX lines.

v. Baseline hazard in Cox’s frailty model (2.2). Most ex-
isting power analysis tools for survival data assume the
exponential or Weibull distribution as a working model
for the baseline hazard, which is also adopted in our
simulation-based power calculation.
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vi. Duration of follow-up. In pre-clinical studies, it is typi-
cal to initiate treatment for all animals simultaneously
and follow them until the conclusion of the study, re-
sulting in type I censoring of the time-to-event outcome
at the end of the follow-up period.

vii. The number of Monte Carlo replicates sim.

With the above priori information, the following simula-
tion strategy will be used for power calculation and subse-
quently determine the number of PDX lines n and number
of animals m per PDX line within Cox’s frailty model frame-
work for right-censored data.

1. Define a range of feasible values for n and a range of
feasible values for m. Subsequently, for every pairing of
n and m, follow the subsequent steps.

2. Generate a Monte Carlo sample {(Yij , Dij), i =
1, . . . , n; j = 1, . . . , 2m} according to the mixed
crossed/nested design described in Section 2.1 and
Cox’s frailty model (2.2) with the above priori in-
formation i–vii. Then, form a right-censored sample
{(Ỹij , δi, Dij) ≡ (min{Yij , C}, I(Yij ≤ C), Dij) : i =
1, . . . , n; j = 1, . . . , 2m}.

3. Fit Cox’s frailty model (2.2) on the simulated data and
test H0 : β = 0 at significance level α.

4. Repeat steps 2 and 3 over sim Monte Carlo samples.
Calculate the estimated power as the proportion of in-
stances where the null hypothesis H0 : β = 0 is rejected.

5. Given a desired power, say 80%, determine the mini-
mal required number of PDX lines and number of an-
imals per line per treatment group by examining the
estimated power across all combinations of n and m.

3. A HANDS-ON TUTORIAL OF
PDXPOWER

We have created an R package, PDXpower, to imple-
ment the simulation-based power analysis strategy outlined
in the previous section. This package functions as a user-
friendly analytical tool for determining the required number
of PDX lines and animals per line per treatment group under
the mixed crossed/nested design for preclinical PDX exper-
iments. Below, we offer practical guidelines and illustrative
examples, demonstrating the utilization of PDXpower for
designing preclinical PDX experiments for both uncensored
and censored data.

3.1 Power Analysis for the Mixed
Crossed/Nested Design with Uncensored
Data

3.1.1 Power Analysis Based on Preliminary Data

In certain pre-clinical studies, researchers may possess
preliminary data from initial or related experimental explo-
rations before embarking on a larger study. Priori informa-
tion, as discussed in Section 2.4.1, can be derived from the

preliminary data, aiding simulation-based power analysis to
determine the required number of PDX lines and animals
per line per treatment group.

First, install and load the package in a local RStudio
environment by running the following code:

install.packages("PDXpower")
require(PDXpower)

For illustration purpose, we have generated an uncen-
sored preliminary dataset named animals1 through simula-
tion, which is stored in our package. The animals1 dataset
comprises 18 animals and includes three columns: ID (PDX
line ID number), Y (survival time of each animal), and Tx
(treatment indicator with 1 for treatment and 0 for control).
A screenshot of this dataset, generated as an output of the
following R code, is displayed below.

## load the dataset from the package
data(animals1)
animals1

ID Y Tx
1 1 0.8059523 0
2 1 0.6847214 0
3 1 1.4467016 0
4 1 1.4520716 1
5 1 1.6975660 1
6 1 0.8451278 1
7 2 0.8291675 0
8 2 1.1890589 0
9 2 1.6846127 0
10 2 3.0847914 1
11 2 2.4491112 1
12 2 5.0783589 1
13 3 1.0568824 0
14 3 0.7999763 0
15 3 1.6059887 0
16 3 0.9706344 1
17 3 11.7938743 1
18 3 1.4031069 1

Next, a call to the function PowANOVADat first fits the mixed
effects ANOVA model (2.1) on animals1. Subsequently, us-
ing the resulting parameter estimates as prior information,
it conducts simulations to obtain Monte Carlo estimates of
the power function across various sample size combinations.

### Power analysis by assuming the time to event
### is log-normal distributed
PowTab <- PowANOVADat(data = animals1,
formula = log(Y) ~ Tx,
random = ~ 1|ID,
n = 3:10, m = 2:8, sim = 500)

The inputs for the function PowANOVADat include data,
formula, the random effect specification random, the num-
ber of PDX lines n, the number of animals m, and the number
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of Monte Carlo replicates sim. Here, we assume that within-
PDX correlation is controlled by the within-subject random
effect αi, i.e., random intercept, so we specify random = ∼
1|ID. The output, saved in PowTab, is shown below.

Parameter estimates based on the pilot data:
Treatment effect (beta): 0.7299
Variance of random effect (tau2): 0.0332
Random error variance (sigma2): 0.386

Monte Carlo power estimate, calculated as the
proportion of instances where the null hypothesis
H_0: beta = 0 is rejected (n = number of PDX
lines, m = number of animals per arm per PDX line,
N = total number of animals for a given
combination of n and m):

n m N Power (%)
1 3 2 12 49.6
2 3 3 18 67.0
3 3 4 24 77.4
4 3 5 30 87.2
5 3 6 36 94.2
6 3 7 42 96.0
7 3 8 48 98.2
8 4 2 16 64.6
9 4 3 24 79.6
10 4 4 32 88.0
11 4 5 40 96.0
12 4 6 48 98.2
13 4 7 56 99.4
14 4 8 64 99.8
15 5 2 20 72.6
16 5 3 30 86.8
17 5 4 40 94.8
18 5 5 50 98.6
19 5 6 60 99.2
20 5 7 70 99.8
21 5 8 80 100.0
22 6 2 24 80.4
23 6 3 36 92.8
24 6 4 48 97.4
25 6 5 60 99.8
26 6 6 72 100.0
27 6 7 84 100.0
28 6 8 96 100.0
29 7 2 28 85.6
30 7 3 42 96.2
31 7 4 56 99.4
32 7 5 70 100.0
33 7 6 84 100.0
34 7 7 98 100.0
35 7 8 112 100.0
36 8 2 32 89.0
37 8 3 48 98.4
38 8 4 64 100.0
39 8 5 80 100.0

Figure 3: Power curve of the illustrating example for the
mixed effects ANOVA model with preliminary data.

40 8 6 96 100.0
41 8 7 112 100.0
42 8 8 128 100.0
43 9 2 36 92.2
44 9 3 54 98.8
45 9 4 72 99.8
46 9 5 90 100.0
47 9 6 108 100.0
48 9 7 126 100.0
49 9 8 144 100.0
50 10 2 40 95.8
51 10 3 60 99.4
52 10 4 80 99.8
53 10 5 100 100.0
54 10 6 120 100.0
55 10 7 140 100.0
56 10 8 160 100.0

One can also visualize the results from the above table,
as shown in Figure 3, by calling the function plotpower in
our package PDXpower.

### Visualize the above table
plotpower(PowTab[[4]], ylim = c(0.4, 1))

where ylim specifies the range of the y-axis in the plot.
It is observed from Figure 3 that to achieve approximately

80% power at a 5% significance level, the minimal sample
size of PDX lines and animals per arm per line per treat-
ment group can be any of the following (n,m) combinations:
{(3, 4), (4, 3), (6, 2)}. An investigator can then decide which
combination to choose based on the feasibility of the study.
For example, if it is feasible to employ 6 PDX lines, one
may prefer to choose the (6, 2) combination to ensure the
maximum possible information on PDX line heterogeneity,
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Table 1. Parameter value elicitation for Log-Normal distributed data for given number of PDX lines n and animals per cell
line m.

Parameter Interpretation Values
ANOVA
ctl.med.surv Median survival in the control arm Any positive number
tx.med.surv Median survival in the treatment arm Any positive number
σ2 Error variance Any positive number (set σ2 = 1 as default)
icc Intra-PDX correlation coefficient 0 < icc < 1 (set icc = 0.1 as default)

resulting in a total of 24 animals (6 PDX lines * 2 treatments
* 2 animals per line per treatment group).

3.1.2 Power Analysis Without Preliminary Data

When preliminary data on the treatment under investi-
gation are not available, one may conduct power analysis
using relevant information from previous or related studies
to estimate the necessary priori information, sometimes in-
corporating additional model assumptions. Table 1 provides
a summary of the required information for power calcula-
tions using the mixed effects ANOVA model for the mixed
crossed/nested PDX experimental design in the absence of
preliminary data.

If one assumes the time-to-event outcome follows a log-
normal distribution, then a power analysis will be performed
using the mixed effects ANOVA model. The underlying
model assumptions require specifying a median survival time
in the control and treatment groups, an error variance (σ2,
set 1 as default) for the log-survival distribution, and the
intra-PDX correlation coefficient (icc, set 0.10 as default),
quantifying the proportion of PDX heterogeneity over the
total variation, i.e., τ2/(τ2 + σ2). For example, assuming a
median survival of 2.4 time units (days, months, etc.) in the
control group, 7.2 time units in the treatment group, and an
intra-PDX correlation coefficient icc=0.10, a call to the func-
tion PowANOVA generates log-normal Monte Carlo samples
(see equation (2.3)) and conducts Monte Carlo simulation-
based power calculation over sample size combinations, as
shown below:
### Power analysis by specifying the median survival
### of control and treatment group and assuming
### the time-to-event is log-normal distributed
PowTab <- PowANOVA(ctl.med.surv = 2.4,
tx.med.surv = 7.2, icc = 0.1, sigma2 = 1, sim = 500,
n = 3:10, m = 2:8)

The output, saved in PowTab, is shown below.
Treatment effect (beta): -1.098612
Variance of random effect (tau2): 0.1111111
Intra-PDX correlation coefficient (icc): 0.1
Random error variance (sigma2): 1

Monte Carlo power estimate, calculated as the
proportion of instances where the null hypothesis
H_0: beta = 0 is rejected (n = number of PDX lines,
m = number of animals per arm per PDX line,

N = total number of animals for a given combination
of n and m):

n m N Power (%)
1 3 2 12 43.0
2 3 3 18 61.0
3 3 4 24 78.0
4 3 5 30 82.8
5 3 6 36 89.8
6 3 7 42 93.2
7 3 8 48 97.2
8 4 2 16 54.8
9 4 3 24 74.6
10 4 4 32 88.8
11 4 5 40 93.2
12 4 6 48 96.4
13 4 7 56 98.6
14 4 8 64 98.8
15 5 2 20 67.0
16 5 3 30 83.2
17 5 4 40 93.2
18 5 5 50 96.6
19 5 6 60 98.4
20 5 7 70 99.8
21 5 8 80 99.6
22 6 2 24 74.0
23 6 3 36 92.0
24 6 4 48 97.6
25 6 5 60 99.2
26 6 6 72 99.0
27 6 7 84 100.0
28 6 8 96 99.8
29 7 2 28 81.8
30 7 3 42 94.4
31 7 4 56 98.6
32 7 5 70 99.4
33 7 6 84 99.8
34 7 7 98 99.8
35 7 8 112 100.0
36 8 2 32 87.2
37 8 3 48 96.8
38 8 4 64 99.4
39 8 5 80 99.6
40 8 6 96 99.8
41 8 7 112 100.0
42 8 8 128 100.0
43 9 2 36 89.2
44 9 3 54 98.0
45 9 4 72 99.6
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Figure 4: Power curve of the illustrating example for the
mixed effects ANOVA model when there is no preliminary
data available.

46 9 5 90 100.0
47 9 6 108 100.0
48 9 7 126 100.0
49 9 8 144 100.0
50 10 2 40 92.8
51 10 3 60 99.4
52 10 4 80 99.6
53 10 5 100 100.0
54 10 6 120 100.0
55 10 7 140 100.0
56 10 8 160 100.0

One can also visualize the results from the above table,
as shown in Figure 4, by calling the function plotpower in
our package PDXpower.

### Visualize the above table
plotpower(PowTab, ylim = c(0.4, 1))

Likewise in Section 3.1.1, the above table displays the
power for each combination of n and m, calculated as the
proportion of rejecting the null hypothesis β = 0 based on
Monte Carlo samples generated from a ANOVA mixed effect
model (2.3). It is observed from Figure 4 that to achieve
approximately 80% power at a 5% significance level, the
minimal sample size of PDX lines and animals per arm per
line per treatment group can be any of the following (n,m)
combinations: {(3, 5), (5, 3), (7, 2)}.

3.2 Power Analysis for the Mixed
Crossed/Nested Design with Censored
Data

If some of the animals are alive (right-censored) at the
end of an experiment, then Cox’s frailty model (2.2) should
be considered to account for the censoring information.

3.2.1 Power Analysis Based on Preliminary Data

Similar to Section 3.1.1, we have generated a censored
preliminary dataset named animals2 through a simulation,
which is stored in our package. This animals2 dataset com-
prises 18 animals and includes four columns: ID (PDX line
ID number), Y (survival time of each mouse), Tx (treatment
indicator with 1 for treatment and 0 for control), and status
(death status with 1 for dead and 0 for alive). A screenshot
of this dataset, produced as an output of the following R
code, is depicted below.

data(animals2)
animals2

ID Y Tx status
1 1 5.097348 0 1
2 1 1.446492 0 0
3 1 4.230326 0 1
4 1 11.769290 1 1
5 1 10.791371 1 1
6 1 4.127112 1 0
7 2 4.644014 0 1
8 2 7.199358 0 1
9 2 7.727166 0 1
10 2 2.248739 1 1
11 2 11.879063 1 1
12 2 9.307388 1 1
13 3 1.726963 0 1
14 3 12.821633 0 1
15 3 2.918010 0 1
16 3 5.162990 1 1
17 3 6.672597 1 1
18 3 11.787588 1 0

After loading animals2 in Rstudio, a call to the function
PowFrailtyDat derives the required priori information by
fitting Cox’s frailty model (2.2) on animals2, and subse-
quently performs simulation-based power analysis for Cox’s
frailty model (2.2) using the derived priori information for
various sample size combinations.

### Power analysis by assuming the time to event
### is Weibull-distributed
PowTab <- PowFrailtyDat(data = animals2,
formula = Surv(Y,status) ~ Tx + cluster(ID),
n = 3:10, m = 2:8,
Ct = 12, censor = TRUE,
sim = 500)

The inputs for the function PowFrailtyDat include data,
formula, the number of PDX lines n, the number of animals
m, Ct duration of follow-up, and censor whether type I cen-
soring is considered (Ct is then specified if TRUE), and the
number of Monte Carlo replicates sim. The output, saved in
PowTab, is shown below.
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Parameter estimates based on the pilot data:
Scale parameter (lambda): 0.0154
Shape parameter (nu): 2.1722
Treatment effect (beta): -0.8794
Variance of random effect (tau2): 0.0422

Monte Carlo power estimate, calculated as the
proportion of instances where the null hypothesis
H_0: beta = 0 is rejected (n = number of PDX lines,
m = number of animals per arm per PDX line,
N = total number of animals for a given combination
of n and m,
Censoring Rate = average censoring rate across 500
Monte Carlo samples):

n m N Power (%) for Cox’s frailty Censoring Rate
1 3 2 12 35.96 13.88
2 3 3 18 47.89 14.01
3 3 4 24 55.51 14.07
4 3 5 30 66.82 14.01
5 3 6 36 71.40 14.54
6 3 7 42 77.63 14.16
7 3 8 48 82.81 14.09
8 4 2 16 39.29 13.99
9 4 3 24 57.38 14.10
10 4 4 32 66.89 14.15
11 4 5 40 74.00 13.76
12 4 6 48 84.26 14.41
13 4 7 56 88.42 14.28
14 4 8 64 89.89 14.31
15 5 2 20 49.37 14.00
16 5 3 30 69.56 14.13
17 5 4 40 77.46 14.26
18 5 5 50 84.43 14.13
19 5 6 60 89.26 14.47
20 5 7 70 93.83 14.11
21 5 8 80 95.18 14.13
22 6 2 24 55.33 14.08
23 6 3 36 75.12 14.14
24 6 4 48 85.27 14.54
25 6 5 60 90.27 14.12
26 6 6 72 93.36 14.38
27 6 7 84 96.58 14.04
28 6 8 96 98.92 14.16
29 7 2 28 59.40 14.20
30 7 3 42 80.57 14.05
31 7 4 56 91.80 14.55
32 7 5 70 95.99 14.11
33 7 6 84 97.47 14.21
34 7 7 98 98.72 14.11
35 7 8 112 99.57 14.18
36 8 2 32 69.23 14.11
37 8 3 48 83.63 14.01
38 8 4 64 93.33 14.48
39 8 5 80 98.08 13.95
40 8 6 96 98.51 14.32
41 8 7 112 99.36 14.09
42 8 8 128 100.00 14.23
43 9 2 36 72.70 14.11
44 9 3 54 86.57 13.96
45 9 4 72 96.17 14.35

Figure 5: Power curve of the illustrating example for Cox’s
frailty model with preliminary data.

46 9 5 90 98.72 13.94
47 9 6 108 98.95 14.30
48 9 7 126 99.58 14.15
49 9 8 144 100.00 14.24
50 10 2 40 74.23 14.28
51 10 3 60 89.88 13.95
52 10 4 80 97.48 14.43
53 10 5 100 98.97 13.98
54 10 6 120 99.58 14.37
55 10 7 140 100.00 14.16
56 10 8 160 100.00 14.24

Similarly, one may generate a graphical representation of
the estimated power listed in the above table, as shown in
Figure 5, by calling the function plotpower:

### Visualize the above table
plotpower(PowTab[[5]], ylim = c(0.3, 1))

It is observed from Figure 5 that to achieve approximately
80% power at a 5% significance level, the minimal sample
size of PDX lines and animals per arm per line per treat-
ment group can be any of the following (n,m) combinations:
{(3, 8), (4, 6), (5, 5), (6, 4), (7, 3)}.

3.2.2 Power Analysis Without Preliminary Data

Similar to Section 3.1.2, when preliminary data on
the treatment under investigation are not available, Ta-
ble 2 provides a summary of the required information for
power calculations using Cox’s frailty model for the mixed
crossed/nested PDX experimental design if one assumes the
time-to-event outcome follows a Weibull distribution.

The power calculations in the following example assume
a constant hazard (ν = 1, set as default), endpoint of the
study period (Ct=12), and an approximate variance of the
log survival across PDX lines (τ2 = 0.1, set as default, i.e.,
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Table 2. Parameter value elicitation for Weibull distributed data for given number of PDX lines n and animals per cell line m.
Parameter Interpretation Values
Cox’s frailty
ctl.med.surv Median survival in the control arm Any positive number
tx.med.surv Median survival in the treatment arm Any positive number
ν Baseline Weibull shape parameter ν = 1 constant hazard, default

ν > 1 increasing hazard
ν < 1 decreasing hazard

τ2 Heterogeneity of PDX lines. τ2 = 0: no heterogeneity
− Set to assumed variance in τ2 > 0: heterogeneity
log survival between PDX lines set τ2 = 0.1 as default

0.31 unit of standard deviation in treatment effect β across
PDX lines).
### Power analysis by specifying the median
### survival of control and treatment group and
### assuming the time-to-event is
### Weibull-distributed
PowTab <- PowFrailty(ctl.med.surv = 2.4,
tx.med.surv = 7.2, nu = 1, tau2 = 0.1, sim = 500,
censor = TRUE, Ct = 12,
n = 3:10, m = 2:8)

The output, saved in PowTab, is shown below.
Treatment effect (beta): -1.098612
Scale parameter (lambda): 0.2888113
Shape parameter (nu): 1
Variance of random effect (tau2): 0.1

Monte Carlo power estimate, calculated as the
proportion of instances where the null hypothesis
H_0: beta = 0 is rejected (n = number of PDX lines,
m = number of animals per arm per PDX line,
N = total number of animals for a given combination
of n and m,
Censoring Rate = average censoring rate across 500
Monte Carlo samples):

n m N Power (%) for Cox’s frailty Censoring Rate
1 3 2 12 45.26 17.72
2 3 3 18 60.74 17.93
3 3 4 24 70.73 18.13
4 3 5 30 78.88 17.63
5 3 6 36 85.69 18.37
6 3 7 42 88.71 17.84
7 3 8 48 93.25 17.62
8 4 2 16 53.36 17.82
9 4 3 24 73.10 17.89
10 4 4 32 81.97 18.22
11 4 5 40 89.41 17.44
12 4 6 48 92.01 18.17
13 4 7 56 96.33 17.98
14 4 8 64 97.15 17.93
15 5 2 20 63.43 17.62
16 5 3 30 81.57 17.91
17 5 4 40 91.94 18.28
18 5 5 50 95.27 17.84

19 5 6 60 95.73 18.34
20 5 7 70 98.98 17.80
21 5 8 80 99.17 17.77
22 6 2 24 72.07 17.72
23 6 3 36 87.78 17.85
24 6 4 48 95.47 18.47
25 6 5 60 98.57 17.90
26 6 6 72 98.57 18.24
27 6 7 84 99.79 17.71
28 6 8 96 100.00 17.83
29 7 2 28 79.46 17.85
30 7 3 42 91.04 17.80
31 7 4 56 97.34 18.49
32 7 5 70 99.59 17.89
33 7 6 84 99.59 18.07
34 7 7 98 99.79 17.82
35 7 8 112 100.00 17.89
36 8 2 32 85.77 17.82
37 8 3 48 94.68 17.78
38 8 4 64 99.19 18.41
39 8 5 80 99.80 17.75
40 8 6 96 99.59 18.18
41 8 7 112 100.00 17.83
42 8 8 128 100.00 18.01
43 9 2 36 87.06 17.89
44 9 3 54 95.89 17.78
45 9 4 72 99.19 18.25
46 9 5 90 99.80 17.79
47 9 6 108 99.59 18.16
48 9 7 126 100.00 17.94
49 9 8 144 100.00 17.98
50 10 2 40 90.10 18.18
51 10 3 60 96.31 17.73
52 10 4 80 99.80 18.27
53 10 5 100 100.00 17.85
54 10 6 120 100.00 18.24
55 10 7 140 100.00 17.91
56 10 8 160 100.00 17.94

Similarly, one may generate a graphical representation of
the estimated power listed in the above table, as shown in
Figure 6, by calling the function plotpower:

### Visualize the above table
plotpower(PowTab, ylim = c(0.4, 1))
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Figure 6: Power curve of the illustrating example for Cox’s
frailty model when there is no preliminary data available.

It is observed from Figure 6 that to achieve approximately
80% power at a 5% significance level, the minimal sample
size of PDX lines and animals per arm per line per treat-
ment group can be any of the following (n,m) combinations:
{(3, 5), (4, 4), (5, 3), (7, 2)}.

4. DISCUSSION
We have introduced an R package, ‘PDXpower’, de-

signed for simultaneously determining the required number
of both PDX lines and animals per line per treatment group
for PDX experiments under the mixed crossed/nested design
for either uncensored or right-censored time-to-event out-
comes. We have also provided step-by-step tutorials for its
utilization, accommodating scenarios with or without pre-
liminary data. For a right-censored outcome, our package is
tailored to type I censoring because it is typical in a PDX
experiment for all animals to start treatment at the same
time and subsequently be subject to right-censoring by the
same administrative censoring at the end of follow-up.

Our power calculation strategy is simulation-based, in-
volving fitting either the mixed effects ANOVA model for
uncensored outcomes or Cox’s frailty model with a normal
random effect for right-censored outcomes over a large num-
ber of Monte Carlo samples. We have implemented a parallel
computing strategy in our package to speed up the compu-
tation. Based on our experience, our package is fast for the
mixed effects ANOVA model for uncensored outcomes as it
took around 0.5 minutes to run 500 Monte Carlo samples to
generate Figure 3 on a MacBook Pro with 8-Core M1 Pro
and 16GB RAM running MacOS. However, it took about 20
minutes to generate the power curves in Figure 5 based on
Cox’s frailty model for right-censored outcomes. One could
obtain results more quickly by considering a coarser grid for
n and m, resulting in fewer combinations. To enhance the

computational efficiency of power calculation for censored
data, one could also explore alternate working models, such
as different frailty models like the gamma frailty model [2]
or standard fixed-effects Cox models treating PDX as fixed
effects. Further investigations into these models are war-
ranted.

While the possibility to assign multiple animals to the
same PDX line allows for meaningful gains in power, in the
evaluation of competing designs, it is important to account
for clinical generalizability. Therefore, for a given effect size
and power, designs maximizing the number of independent
PDX lines are often preferred to designs maximizing the
number of animals per PDX line.

In choosing whether to use a Cox’s frailty model vs.
a mixed-effects model to power a study, the investigator
should decide if the study will generate time-to-event data
with possible censoring (fixed follow-up within which not
all animals may experience the event of interest) or if all
survival outcomes are expected to be observed without cen-
soring. In the first case, using a Cox frailty model is more
appropriate and power figures may be obtained in relation
to different censoring scenarios. In the latter case (no cen-
soring), the use of a mixed effects model may lead to simpler
design considerations.

The sample size calculation paradigm introduced in this
manuscript can be generalized to include variations in the
study design structure as in [6]. Similarly, for studies requir-
ing multiple measurements per animal, a simple extension
of our framework would consider including a second level of
nested random effects/random frailties at the animal level.

Our PDXpower package requires users to have some
basic working knowledge of R [14]. We also plan to build
interactive web apps based on PDXpower using Rshiny
[1], which will enable users with no R knowledge to per-
form power analysis for PDX experiments under the mixed
crossed/nested design.

SOFTWARE
An R package, PDXpower, designed for conducting

simulation-based power analysis in this paper, is pub-
licly available at The Comprehensive R Archive Network
(https://CRAN.R-project.org/package=PDXpower).

SUPPLEMENTARY MATERIAL
We conducted additional simulations across multiple sce-

narios with varying true treatment effects (β) for the Weibull
event outcome and the log-normal outcome. Estimates of re-
jection power under the alternative hypothesis are presented
in Tables S1–S4. The results show that rejection power es-
timates are generally lower across all sample sizes of PDX
lines and animals when the true β is smaller. When the
true β = 0.2 and other parameters are consistent with those
in the main text, it was observed that none of the chosen

https://CRAN.R-project.org/package=PDXpower
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Table S1. Estimated rejection power of a level α = 0.05 Wald
test for β = 0 using the mixed effects ANOVA model (2.1)
based on 2,000 Monte Carlo samples generated from model

(2.3) for various combinations of PDX lines
n = (3, 4, 5, 6, 7, 8, 9, 10) and animals per line per treatment

group m = (3, 4, 5, 6, 7, 8) under β = 0.2.

n/m 3 4 5 6 7 8
3 0.0995 0.0970 0.1165 0.1275 0.1415 0.1555
4 0.1045 0.1120 0.1345 0.1580 0.1700 0.2040
5 0.1165 0.1315 0.1655 0.1965 0.2035 0.2515
6 0.1325 0.1470 0.1965 0.2195 0.2545 0.2810
7 0.1415 0.1755 0.2085 0.2375 0.2730 0.3350
8 0.1590 0.1915 0.2285 0.2670 0.2990 0.3695
9 0.1815 0.2155 0.2625 0.2920 0.3345 0.4115
10 0.1930 0.2340 0.2815 0.3215 0.3655 0.4415

Table S2. Estimated rejection power of a level α = 0.05 Wald
test for β = 0 using the mixed effects ANOVA model (2.1)
based on 2,000 Monte Carlo samples generated from model

(2.3) for various combinations of PDX lines
n = (3, 4, 5, 6, 7, 8, 9, 10) and animals per line per treatment

group m = (3, 4, 5, 6, 7, 8) under β = 0.5.

n/m 3 4 5 6 7 8
3 0.3050 0.3785 0.4810 0.5440 0.6035 0.6750
4 0.3865 0.4780 0.6015 0.6625 0.7230 0.8130
5 0.4575 0.5810 0.6920 0.7815 0.8205 0.8920
6 0.5325 0.6710 0.7735 0.8465 0.8780 0.9390
7 0.6075 0.7410 0.8285 0.8985 0.9255 0.9685
8 0.6580 0.7965 0.8745 0.9335 0.9585 0.9850
9 0.7145 0.8470 0.9075 0.9575 0.9725 0.9915
10 0.7655 0.8850 0.9320 0.9765 0.9830 0.9960

Table S3. Estimated rejection power of a level α = 0.05 Wald
test for β = 0 using Cox’s frailty model (2.2) based on 2000
Monte Carlo samples generated from model (2.4) for various

combinations of PDX lines n = (3, 4, 5, 6, 7, 8, 9, 10) and
animals per line per treatment group m = (3, 4, 5, 6, 7, 8)

under β = 0.2.
n/m 3 4 5 6 7 8

3 0.0912 0.0809 0.1040 0.0934 0.0999 0.1106
4 0.0958 0.0918 0.1130 0.1091 0.1025 0.1295
5 0.0890 0.0865 0.1162 0.1190 0.1172 0.1444
6 0.0816 0.0905 0.1125 0.1365 0.1314 0.1602
7 0.0830 0.1011 0.1267 0.1445 0.1546 0.1824
8 0.0907 0.1040 0.1341 0.1642 0.1701 0.2007
9 0.0902 0.1151 0.1541 0.1648 0.1898 0.2114
10 0.1050 0.1213 0.1657 0.1763 0.1997 0.2307

combinations of PDX line and animal sample sizes were suf-
ficient to achieve the desired rejection power, such as 80%.
However, larger treatment effects are often hypothesized for
powering animal experiments, as the observed differences in
survival time between the two arms can be noticeably large
in many pilot studies.

Table S4. Estimated rejection power of a level α = 0.05 Wald
test for β = 0 using Cox’s frailty model (2.2) based on 2000
Monte Carlo samples generated from model (2.4) for various

combinations of PDX lines n = (3, 4, 5, 6, 7, 8, 9, 10) and
animals per line per treatment group m = (3, 4, 5, 6, 7, 8)

under β = 0.5.
n/m 3 4 5 6 7 8

3 0.1903 0.2210 0.2785 0.3031 0.3326 0.3909
4 0.2237 0.2737 0.3482 0.3669 0.4156 0.4843
5 0.2478 0.3151 0.3996 0.4369 0.5021 0.5724
6 0.2881 0.3577 0.4451 0.5018 0.5770 0.6393
7 0.3309 0.4009 0.5096 0.5717 0.6359 0.7106
8 0.3652 0.4404 0.5688 0.6222 0.6931 0.7644
9 0.4082 0.4985 0.6099 0.6672 0.7421 0.8067
10 0.4444 0.5279 0.6680 0.7118 0.7954 0.8445
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