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Abstract
Observations of groundwater pollutants, such as arsenic or Perfluorooctane sulfonate (PFOS), are riddled with left

censoring. These measurements have an impact on the health and lifestyle of the populace. Left censoring of these spatially
correlated observations is usually addressed by applying Gaussian processes (GPs), which have theoretical advantages.
However, this comes with a challenging computational complexity of O(n3), impractical for large datasets. Additionally,
a sizable proportion of the left-censored data creates further bottlenecks since the likelihood computation now involves an
intractable high-dimensional integral of the multivariate Gaussian density. In this article, we tackle these two problems
simultaneously by approximating the GP with a Gaussian Markov random field (GMRF) approach that exploits an
explicit link between a GP with Matérn correlation function and a GMRF using stochastic partial differential equations
(SPDEs). We introduce a GMRF-based measurement error into the model, which alleviates the likelihood computation for
the censored data, drastically improving the computational speed while maintaining admirable accuracy. Our approach
demonstrates robustness and substantial computational scalability compared to state-of-the-art methods for censored
spatial responses across various simulation settings. Finally, the fit of this fully Bayesian model to the concentration of
PFOS in groundwater available at 24,959 sites across California, where 46.62% responses are censored, produces prediction
surface and uncertainty quantification in real-time, thereby substantiating the applicability and scalability of the proposed
method. Code for implementation is made available via GitHub.

keywords and phrases: Censored high-dimensional spatial data, Gaussian Markov random field, Markov chain Monte
Carlo, Measurement error model, Perfluorooctane sulfonate, Stochastic partial differential equation.

1. INTRODUCTION
The statistical literature has regularly analyzed censored

data since the late 1900s, with the earliest instance of a
statistical analysis of censored data being in 1766 [32]. Mea-
surements are often censored due to limitations of measuring
instruments, physical inability to acquire data, human error,
or similar.

While most analyses on censored data focus on right-
censoring [20], some applications like analyzing the concen-
tration of contaminants such as arsenic or per-and polyfluo-
roalkyl substances (PFAS) in groundwater call for utilizing
methods involving left-censored data. This kind of censor-
ing is prevalent in environmental monitoring and has appli-
cations in environmental and public health, epidemiology,
hydrology, agriculture, and more. Typically, these applica-
tions involve geostatistical data, where the measurements
are censored because they fall below the minimum detec-
tion limit (MDL) of the measuring instrument. Early appli-
cations either remove censored observations, replace them
with makeshift values such as MDL or MDL/2, or impute
them with the mean or median of observed responses. Such
∗Corresponding author.

ad-hoc imputations can result in biased estimates of the
overall spatial variability, as demonstrated by [13].

Recent approaches for statistical inference of spatially
distributed censored data overwhelmingly considered the
Expectation-Maximization (EM) algorithm [25]. [28] pro-
posed an exact maximum likelihood (ML) estimation of
model parameters under censoring, called ‘CensSpatial’, us-
ing the Stochastic Approximation of the Expectation Max-
imization [SAEM; 11] algorithm. To tackle the computa-
tional complexities arising from censored likelihoods in cor-
related data, Monte Carlo approximations have been em-
ployed, both within the classical framework [40, 30], and the
Bayesian paradigm [10, 41, 34]. For example, [36] introduced
a semi-naive approach that utilizes an iterative algorithm
and variogram estimation to determine imputed values at
locations where data are censored. Finally, various data
augmentation techniques have been proposed to facilitate
analysis of spatially correlated censored data [1, 19, 13, 38].
However, the scalability of the suggested approaches is re-
stricted, rendering them unsuitable for analyzing large spa-
tial datasets featuring censoring, a common occurrence in
contemporary scientific research.
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Gaussian processes [GPs; 37] are heavily used for mod-
eling continuous spatial data due to their several theoret-
ical and computational advantages: the likelihood involves
only the first two moments, conditional independence and
zeros in the underlying precision matrix are equivalent, and
various linear algebraic results are well-known in the lit-
erature that are required for computing covariance matri-
ces [14]. However, once the number of spatial sites is large
and data at a large proportion of sites are censored, likeli-
hoods based on the underlying GPs involve an intractable
high-dimensional integral of a multivariate Gaussian density.
This paper aims to overcome the computational challenges
inherent to censored likelihoods for high-dimensional spatial
settings through a combined application of two key steps:

1. We focus on a fully Bayesian method for censored point
referenced data, where the underlying GP is approxi-
mated as a Matérn-like Gaussian Markov random field
[GMRF, 33]. The GMRF is obtained as the solution of a
stochastic partial differential equation [SPDE, 24] on a
fine mesh, which yields a sparse precision matrix of the
underlying basis function coefficients. This sparse spa-
tial structure then allows for fast and scalable Bayesian
computations.

2. We consider a GMRF-based measurement error model
incorporating a nugget effect in formulating the under-
lying GMRF that expedites the imputation process for
the censored observations. This inclusion effectively re-
duces the computational burden associated with cen-
sored likelihoods [17, 45, 46].

We draw inferences regarding model parameters using
an adaptive Markov Chain Monte Carlo (MCMC) sampling
approach, where we use random walk Metropolis-Hastings
(MH) steps within Gibbs sampling. Extensive simulations
demonstrate the scalability and performance of the pro-
posed methodology in comparison to the ‘CensSpatial’ al-
gorithm and a 2-dimensional B-splines basis function model
across varying degrees of censoring and varying grid sizes.
While traditional local likelihood methods [44, 35], when
applied with Vecchia’s approximation [42], are often con-
sidered ideal for handling high-dimensional spatial datasets,
their implementation becomes computationally challenging
in the presence of censoring. Specifically, they also require
the evaluation of high-dimensional integrals, which renders
these methods infeasible for large spatial datasets with cen-
soring. The idea of a GMRF-based measurement error model
has been explored in the context of spatial extremes [9, 16],
where replications of the underlying spatial processes are
available and censoring a portion of the data is artificial.
However, per our knowledge this modeling strategy has not
been explored yet for high-dimensional censored spatial data
without replications. Although the lack of temporal replica-
tions typically leads to unstable computations, the proposed
stable and scalable computational framework is tailored ex-
plicitly for handling censored spatial data without requiring

temporal replications. Furthermore, unlike previous stud-
ies involving the GMRF-based measurement error model, a
novel feature of the proposed approach is the inclusion of
spatial predictions.

PFAS constitute a substantial group of synthetic com-
pounds absent in natural environments, notable for their
resistance to heat, water, and oil. PFAS are persistent in
the environment, can accumulate within the human body
over time, and are toxic at relatively low concentrations
[43]. Exposure to elevated levels of PFAS can lead to vari-
ous adverse health outcomes, including developmental issues
during pregnancy, cancer, liver impairment, immune system
dysfunction, thyroid disruption, and alterations in choles-
terol levels [12]. Due to their chemical robustness, PFAS
endure in the environment and are resistant to degrada-
tion. Contamination of drinking water with PFAS occurs
through the use or accidental spillage of products containing
these substances onto land or into waterbodies [18]. PFAS
present a significant public health risk, with elevated concen-
trations identified at 3,186 locations across the United States
as of August 2023. In response, the U.S. Environmental Pro-
tection Agency (EPA) introduced new safety standards on
April 10, 2024, setting permissible limits between 4.0 and
10.0 parts per trillion (ppt; also expressed as nanograms
per litre (ng/L)) for six specific PFAS chemicals (including
PFOS) in drinking water [31]. A recent study [2] estimated
that PFAS in publicly accessible drinking water could af-
fect as many as 200 million people across the United States.
Along similar lines, a robust Bayesian hierarchical approach
was proposed [39] to accommodate left-censored PFAS re-
sponses; however, the model was implemented on a limited
number of sample site locations. As such, the review of ex-
isting literature highlights the necessity for further inves-
tigation into PFAS occurrences in groundwater, alongside
the development of fast and efficient approaches to handle
large-scale left-censored spatial data in real-time. Motivated
by data on PFAS concentrations collected by the Groundwa-
ter Ambient Monitoring and Assessment (GAMA) program
[26] across the state of California, we develop our Bayesian
scalable model for spatially-referenced left-censored PFAS
responses in an attempt to provide a more accurate quantifi-
cation of the groundwater contamination within the state.
These data, collected by GAMA since 2019, allow thorough
quality assessments of water sources and establish safety
thresholds for select PFAS constituents. Thus, our analy-
sis can identify possible hotspots of higher PFAS concen-
tration, providing insights for further study of impacts on
public health.

The subsequent sections of the paper are organized as fol-
lows. In Section 2, we provide details regarding the dataset
on the groundwater levels of PFAS within California, along
with some exploratory analyses. We outline our method-
ology and related computational details in Section 3 and
test its scalability and predictive performance on simulated
datasets in Section 4. In Section 5, we apply the proposed
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methodology to the PFAS dataset and report the findings.
We conclude with a brief discussion in Section 6.

2. MOTIVATING PFAS DATA
The groundwater PFAS data for the state

of California are available online at the website
GAMA Groundwater Information Systems under the
label Statewide PFOS Data. In this paper, we focus
specifically on the measurements of the chemical substance
known as Perfluorooctane sulfonate (PFOS). The dataset
contains 24,959 measurements (in ng/L) of PFOS concen-
tration and their locations (in longitudes and latitudes), as
well as indicators of whether the observations are censored
and the corresponding censoring limits within California.
Almost half of the measurements (46.62%) are censored
observations, with varying degrees of censoring limits.

Figure 1 shows transformed PFOS concentration mea-
surements after transforming the raw PFOS by g(PFOS) =
log(1 + log(1 + PFOS)) at the 24,959 irregularly sampled
spatial locations across the state of California, prompting an
approximate spatial inference model to be employed, which
also accounts for the considerable proportion of censored
observations. Most observation sites are located in densely
populated areas on the coast. The censored observations are
presented as tiny black dots in Fig 1. The censored observa-
tions are distributed across the entire spatial domain, rather
than being concentrated in a specific area. While the major-
ity of measurements are below 150 ng/L, some values reach
as high as 1,330,000 ng/L, and approximately 47% of the
observed concentrations exceed the new safety limit estab-
lished by the EPA.

The histogram of the raw non-censored PFOS observa-
tions is presented in the left panel of Figure 2. The raw data
exhibit a highly positively skewed nature. Thus, a stationary
Gaussian process assumption naturally becomes question-
able, even after considering a spatially-smooth mean sur-
face with covariates like longitude and latitude, commonly
used for estimating spatial trends [15, 34]. Following an ex-
ploration of different transformations of the raw data such
that the histogram behaves in an approximately bell-shaped
fashion, we identify that the iterated log-transformation
g(PFOS) = log(1+log(1+PFOS)) performs reasonably well;
the histogram of the transformed PFOS data is presented in
the middle panel of Figure 2. We further explore the effects
of the natural covariates longitude and latitude on the trans-
formed data; following a simple linear regression, we obtain
the residuals, and their histogram is presented in the right
panel of Figure 2. This histogram is reasonably bell-shaped,
and thus, we model this transformed PFOS data using a
Gaussian process framework with a regression structure for
the mean process where we allow longitude and latitude as
covariates.

We further explore spatial correlation using a variogram
analysis of the residuals (scaled by their sample standard

Figure 1: Concentrations of (transformed) PFOS, using the
transformation g(PFOS) = log(1 + log(1 + PFOS)), mea-
sured at 24,959 irregularly-sampled spatial locations across
the state of California (in ng/L). The tiny black dots indi-
cate the sites with censored data.

deviation) discussed above. The sample semivariogram at
distance d is defined as

γ̂(d) =
1

2N(d)

n∑
i=1

i∑
j=1

wij(d)(R(si)−R(sj))
2,

where, R(si) and R(sj) are the residuals at spatial sites si
and sj , wij(d) = 1 if dij ∈ (d − h, d + h) and wij = 0
otherwise, dij being the distance between si and sj . Also,
N(d) is the number of pairs with wij(d) = 1. The sample
semivariogram, presented in Figure 3, indicates the presence
of spatial correlation and possible nugget effects [4]. We fit
an isotropic Matérn spatial correlation function, with its
smoothness parameter set to one, plus a nugget effect, given
by

ρ(si, sj) ≡ ρ(d) = γ
d

φ
κ1

(
d

φ

)
+ (1− γ)1(si = sj), (2.1)

where d is the Euclidean distance between locations si and
sj , φ > 0 is the range parameter, γ ∈ [0, 1] is the ratio of
spatial to total variation, κ1(·) is the modified Bessel func-
tion of second kind with degree 1, and 1(·) is the indica-
tor function. The fitted population semivariance indicates a
reasonable fit to the sample semivariogram. While these ex-
ploratory analyses are based on non-censored observations
only, they indicate a need for proper spatial modeling after
considering the censored nature of a large proportion of the
data. Specifically, most of the observations near the east-
ern regions of the study domain are censored, and ignoring
them in the spatial prediction would lead to poor spatial
prediction for the nearby regions.

https://gamagroundwater.waterboards.ca.gov/gama/datadownload
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Figure 2: Pictoral representation of the raw PFOS responses. Left panel: Histogram of raw concentrations of PFOS across
sites where the data are not censored. Middle: Histogram of non-censored PFOS concentrations after the transformation
g(PFOS) = log(1 + log(1 + PFOS)). Right panel: Histogram of the residuals obtained after regressing non-censored
transformed PFOS observations to longitude and latitude via a linear model.

Figure 3: Sample semivariogram of residuals obtained after
regressing non-censored transformed PFOS observations to
longitude and latitude as a function of distance (dots). The
overlapped solid line represents the fitted population semi-
variance obtained from (2.1).

3. METHODOLOGY
Let Y (s) represent transformed PFOS concentration at a

spatial location s ∈ D ⊂ R
2, where D represents the spatial

domain of interest, i.e., the entire state of California in our
case. We model Y (s) as

Y (s) = X(s)Tβ + τ−1/2Z(s),

where, X(s) = [X1(s), . . . , Xp(s)]
T denotes the vector of

p covariates at location s, β = [β1, . . . , βp]
T is a vec-

tor of unknown regression parameters and τ > 0 is a

spatially-constant precision parameter. Given the absence
of meaningful covariates in our data, we choose X(s) =
[1, longitude(s), latitude(s)]T for our analysis. We assume
that Z(·) is a standard (mean zero and variance one at
each site) GP with an isotropic Matérn spatial correlation
plus a nugget effect, given by (2.1). While the incorporation
of the nugget effect is justified by our exploratory analysis
(nonzero semivariance at origin), it effectively addresses the
issue of censoring in the response, thereby circumnavigating
the computational burden occurring due to censored likeli-
hoods [17, 45, 46]. Here, we fix the smoothness parameter
of the Matérn correlation of the purely spatial component
of (2.1) to one. In practice, it is difficult to estimate the
smoothness parameter from the data; hence, it is generally
fixed. Besides, we later build a stochastic partial differen-
tial equation-based approximation of the Matérn correlation
structure, where fixing the smoothness parameter to one is
a standard choice [9, 16].

Suppose the data are observed (either censored or non-
censored) at the set of sites S = {s1, . . . , sn}. In matrix
notations, the spatial linear model can be written as

Y = Xβ + τ−1/2Z, (3.1)

where Y(n×1) is the response vector, X(n×p) is the matrix of
covariates, β(p×1) is the vector of regression coefficients, and
Z(n×1) ∼ MVN(0, γΣ+ (1− γ)In), where Σ is the Matérn
correlation matrix, and In denotes the identity matrix of
order n. By construction and the PFAS dataset, Σ is non-
singular, and X has full rank.

In a spatial censored linear (SCL) model, it is further as-
sumed that Y (s) is not fully observed at all spatial locations.
Motivated by the dataset considered, we assume Y (·) to be
left-censored at sites S(c) = {s(c)1 , . . . , s

(c)
nc } ⊂ S and the cor-

responding censoring levels be U = {u1, . . . , unc}. However,
a similar approach can be applied if the response is right or
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interval-censored. We define the censoring indicator δ(s) as

δ(s) =

{
1, if Y (s) is censored at site s,

0, otherwise,

and the vector of censored observations as v = [Y (si) :

δ(si) = 1]T ≡ [Y (s
(c)
1 ), . . . , Y (s

(c)
nc )]

T . Then, for censored
spatial data, the likelihood is given by

L(θ) =
∫
v≤u

fMVN(y;Xβ, τ−1[γΣ+ (1− γ)In])dv, (3.2)

where the integral is over the censored responses {y :
y(si) ≤ ui if si ∈ S(c)} and fMVN(·;μ,Σ) denotes a mul-
tivariate normal density with mean μ and covariance ma-
trix Σ. A version of this likelihood has been studied in [34].

We can rewrite the model (3.1) as Y = Xβ+ τ−1/2W +
τ−1/2ε, where W ∼ MVN(0, γΣ) and ε ∼ MVN(0, (1 −
γ)In), i.e., the components of ε are independently and iden-
tically distributed as N(0, (1−γ)). Hence, given W , the com-
ponents of Y are independent and follow univariate normal
distributions. Thus, (3.2) simplifies to

L(θ) =
∫ ∏

i:si /∈S(c)

1

τ−1/2(1− γ)1/2
φ

(
yi − xT

i β − wi

τ−1/2(1− γ)1/2

)

×
∏

i:si∈S(c)

Φ

(
ui − xT

i β − wi

τ−1/2(1− γ)1/2

)
fMVN(w;0, τ−1γΣ)dw

(3.3)

where Φ(·) and φ(·) are the standard normal distribution
and density functions, respectively. Exploiting the condi-
tional independence structure and the univariate normal dis-
tribution structure, the censored components can be easily
imputed using sampling from truncated univariate normal
distributions, bypassing computationally expensive multi-
variate imputations. The nugget parameter plays a critical
role in this framework by allowing a hierarchical represen-
tation of the proposed model, where the data layer becomes
conditionally independent across spatial locations. When
γ = 1, the model loses this hierarchical representation, as
the data, conditioned on the latent process W (·), are no
longer independent across the space. Hence, the simplifica-
tion of (3.2) using (3.3) is not possible. In that case, the
multivariate imputation cannot be replaced with univariate
imputations. For real datasets where γ is unknown, restrict-
ing the parameter space to γ ∈ [0, 1) leads to equivalent
Bayesian inferences in case of a continuous prior; hence, we
assume this restriction throughout the rest of the paper.

3.1 Approximation of the Matérn Gaussian
Process

Although we bypass the problem of evaluating high-
dimensional integrals in (3.2) by introducing a latent vari-
able and exploiting conditional independence, evaluating the

likelihood in (3.3) remains a computationally taxing prob-
lem since W is a vector of large dimension (same as Y ).
For that purpose, we take cues from [16] for an approxima-
tion strategy of the Matérn GP. To ensure computational
efficiency, we choose to approximate the Gaussian process
W (·) with a GP W̃ (·), constructed from a Gaussian Markov
random field (GMRF) defined on a finite mesh, thereby
circumventing the computational overhead associated with
the dense correlation matrix inherent in the exact Matérn
GP defined by (2.1). This strategy capitalizes on the direct
correspondence between continuous-space Matérn GP with
dense covariance matrices and GMRFs with sparse precision
matrices [24], which yields an approximate data process

Y (s) ≈ X(s)Tβ + τ−1/2W̃ (s) + τ−1/2ε(s), s ∈ D.

For γ = 1, the Gaussian Matérn process Z(·) can be
obtained as a solution to the linear Stochastic Differential
Equation (SDE)

(φ−2 −Δ)W (s) = 4πφ−2W(s), s ∈ R
2, (3.4)

where W(·) is a Gaussian white noise process, and Δ
is the Laplacian. The solution W (s) to the SPDE can
be effectively approximated through finite-element meth-
ods [8] applied to a triangulated mesh defined within a
bounded region of R

2, where the triangulation is formed
through a refined Delaunay triangulation process [7]. In
practical applications, the mesh can be easily constructed
using the (currently depreciated) inla.mesh.2d function,
implemented in the R package INLA (www.r-inla.org) or
the fm_mesh_2d_inla function in the R package fmesher
(https://cran.r-project.org/package=fmesher); see [22] for
more details. The left panel of Figure 4 depicts the mesh
utilized in the data application discussed in Section 5.

We choose the inner extension distance of 0.15◦ and the
outer extension distance of 2.5◦; these choices are set us-
ing the argument offset. We set the minimum allowed dis-
tance between points (cutoff) to 0.25◦. The largest per-
mitted triangle edge lengths in the inner and outer exten-
sions (max.edge) are set to 0.25◦ and 1◦. While any specific
choices are not listed in the current literature, choices of
the arguments are problem-specific. Some discussions are in
[21]. In our case, these choices reasonably approximate the
true Matérn correlation function, as seen in the right panel
of Figure 4. We set the smoothness parameter to one as it
is difficult to estimate this parameter from purely spatial
data (where no time replications are available), like in our
case. Setting the smoothness parameter to one reduces the
stochastic partial differential equation (SPDE) introduced
in [24] to a stochastic differential equation (SDE), as shown
in (3.4). However, since the method is commonly referred to
as the SPDE approach, we continue to use this terminology
for consistency, even in this simplified case.

Let S∗ = {s∗1, . . . , s∗N} denote the set of mesh nodes.
We construct a finite-element solution by writing W̃ (s) =

http://www.r-inla.org
https://cran.r-project.org/package=fmesher
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Figure 4: Triangulated mesh over California that approximates the spatial SDE process Z(·), where the black lines represent
the edges, along with their corners representing the mesh nodes, and the red dots mark the observation locations (left
panel); Comparison of the true Matérn correlation (solid line) and the pairwise covariances between two spatial locations
obtained by the SDE approximation (points) as a function of distance (right panel). The parameters are set to φ = 0.1ΔS ,
where ΔS is the maximum spatial distance between two locations in the domain, and γ = 0.8.

∑N
j=1 ζj(s)W

∗
j , and plugging it in (3.4) in place of W (·).

Here, {ζj(·)} are piecewise linear and compactly-supported
“hat” basis functions defined over the mesh, and {W ∗

j }
are normally distributed weights defined for each basis
function (that is, one for each mesh node in S∗). Then,
W ∗ = [W ∗

1 , . . . ,W
∗
N ]T ∼ MVN(0,Q−1

φ ), where the (N×N)-
dimensional precision matrix Qφ can be written as

Qφ =
φ2

4π

[
1

φ4
D +

2

φ2
G1 +G2

]
, (3.5)

where D, G1, and G2 are sparse (N × N)-dimensional
finite-element matrices that can be obtained as follows.
The matrix D is diagonal with its jth diagonal entry
Dj,j = 〈ζj(·), 1〉, where 〈f, g〉 =

∫
f(s)g(s)ds denotes an

inner product. Similarly, G1 has the elements G1;j,k =
〈∇ζj(·),∇ζk(·)〉 and G2 = G1D

−1G1. Efficient computa-
tion of these sparse matrices is implemented using the func-
tion inla.mesh.fem from the R package INLA. For further
theoretical details, see [3] and [23].

In order to map the spatial random effects W ∗ (defined
across mesh nodes) back to the observation locations S, we
use an (n×N)-dimensional projection matrix A. The (i, j)th
element of this matrix corresponds to ζj(si) for every spatial
location si ∈ S and mesh node s∗j ∈ S∗, allowing us to
compute AW ∗, the projection of W ∗ at the data locations.
The generation of the matrix A is carried out through the
function inla.spde.make.A within the R package INLA.

We now approximate W to include the nugget effect γ ∈
[0, 1] as

W̃ =
√
γAW ∗,

which has the covariance matrix

ΣW̃ = γAQφA
T.

This subsequently leads to the approximation of (3.3) to

L(θ)=
∫ ∏

i:si /∈S(c)

1

τ−1/2(1−γ)1/2
φ

(
yi−xT

i β−wi

τ−1/2(1−γ)1/2

)

×
∏

i:si∈S(c)

Φ

(
ui−xT

i β−wi

τ−1/2(1−γ)1/2

)
fMVN(w;0, τ−1ΣW̃ )dw.

(3.6)

The SPDE approach yields a precise approximation of the
true correlation structure; see the right panel of Figure 4.
Leveraging the sparsity of the matrix Q−1

φ , we can facilitate
rapid Bayesian computations.

3.2 Final Hierarchical Model
We write the vector of the final approximate data process,

Ỹ (·), evaluated at S by Ỹ = [Ỹ (s1), . . . , Ỹ (sn)]
T and de-

fine a rescaled random effects vector defined at mesh nodes
by W̃ ∗ =

√
γ/τW ∗. By introducing a latent process W (s)

(Section 3) and approximating it by W̃ =
√
γAW ∗ (Sec-

tion 3.1), we avoid the need for multiple imputations, and
the hierarchical model for Ỹ can then be written as

Ỹ |W̃ ∗ ∼ MVN
(
Xβ +AW̃ ∗, τ−1(1− γ)In

)
,

W̃ ∗ ∼ MVN(0, γτ−1Q−1
φ ),

{β, τ, φ, γ} ∼ π(β|τ)× π(τ)× π(φ)× π(γ). (3.7)
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The first layer of (3.7) models the “true” data, which, when
observed, is the same as the observed data. When the ob-
served data is censored, the only information we have about
the “true” data is that it is smaller than the censoring limit.
These two situations are represented by the first two terms
within the integral in (3.6), where the first term (normal
density, except the product) conveys the contribution of the
“true” data that is observed, and the second term (nor-
mal distribution function, except the product) presents the
contribution of the censored observations to the data like-
lihood. The second layer of (3.7) corresponds to the latent
spatial random effect, whose contribution is represented by
the third term in (3.6). The integral in (3.6) comes from in-
tegrating out the spatial random effect to get the observed
data likelihood solely, which isn’t necessary under a hierar-
chical modeling. Here, the last layer of the model indicates
prior choices for the model parameters that we discuss in
Section 3.4. Instead of the likelihood based on (3.1), we fit
the approximate data process (3.7) to the actual observation
process with the likelihood function in (3.2) approximated
as the one in (3.6).

3.3 Prediction
Let S(0) = {s(0)1 , . . . , s

(0)
n0 } ⊂ D denote a set of n0 predic-

tion sites, and define Ỹ (0) = [Ỹ (s
(0)
1 ), . . . , Ỹ (s

(0)
n0 )]

T . Also,
let X(0) denote the (n0×p)-dimensional design matrix, with
its ith row X(s

(0)
i ), i = 1, . . . , n0 denoting the vector of co-

variates at prediction location s
(0)
i . For mapping the (scaled)

spatial random effects W̃ ∗ (defined across mesh nodes) to
the prediction locations S(0), we use an (n0×N)-dimensional
projection matrix A(0). The (i, j)th element of this matrix
corresponds to ζj(s

(0)
i ) for every spatial location s

(0)
i ∈ S(0)

and mesh node s∗j ∈ S∗, allowing us to compute A(0)Z̃∗, the
projection of W̃ ∗ at S(0). Then, given W̃ ∗, the conditional
distribution of Ỹ (0) is

Ỹ (0)|W̃ ∗ ∼ MVN
(
X(0)β +A(0)W̃ ∗, τ−1(1− γ)In

)
(3.8)

3.4 Computational Details
Inference concerning the model parameters is conducted

through Markov chain Monte Carlo (MCMC) sampling, im-
plemented in R. Given the computational dependence on
prior selections for the model parameters, we first spec-
ify these priors. Whenever feasible, we opt for conjugate
priors and employ Gibbs sampling to update them itera-
tively. When prior conjugacy is unavailable, we resort to
random walk Metropolis-Hastings (MH) steps for parame-
ter updates. During the burn-in period, we adjust the can-
didate distributions within the MH steps to ensure that the
acceptance rate throughout the post-burn-in period remains
within the range of 0.3 to 0.5.

Here we draw samples from the full posterior

π(β, τ, φ, γ, W̃ ∗, Ỹ (c)|Ỹ (nc)),

where Ỹ (c) is the vector of censored data vector and
Ỹ (nc) is the vector of non-censored data vector. For the
vector of regression coefficients β, we consider weakly-
informative conjugate prior β|τ ∼ MVN(0, 1002τ−1Ip).
The full conditional posterior of β is then multivariate
normal and updated using direct sampling within Gibbs
steps. Due to the strong posterior correlation between β
and W̃ ∗, they are updated jointly within each Gibbs sam-
pling step. We also consider the non-informative priors for
the hyperparameters involved in the correlation function
in (2.1). Specifically, we choose φ ∼ Uniform(0, 0.5ΔS)
for the spatial range parameter, where ΔS is the largest
Euclidean distance between two data locations, and γ ∼
Uniform(0, 1) for the nugget effect γ. We further desig-
nate a non-informative conjugate prior for the spatially-
constant precision parameter τ in the process model, namely
τ ∼ Gamma(0.1, 0.1). The full conditional posterior distri-
bution of Ỹ (c) is MVN

(
X(c)β +A(c)W̃ ∗, τ−1(1− γ)In

)
,

where X(c) and A(c) are design matrix and SPDE projec-
tion matrix (from mesh nodes), respectively, corresponding
to the locations with censored data, i.e., they comprise of
the rows of X and A that correspond to the censored entries
of Y .

3.5 Software
We have developed an open-source R package, called

CensSpBayes, which implements the proposed approximate
Matérn GP model for large left-censored spatial data. Im-
plementation code, along with details of execution using
simulated data, are made available at https://github.com/
SumanM47/CensSpBayes.

4. SIMULATION STUDY
In this section, we conduct simulation studies using syn-

thetic data to assess the efficacy of our proposed scalable
modeling framework in terms of spatial prediction while im-
puting censored values. We simulate 100 datasets over grids
D∗ = {(i, j) : i, j ∈ {1/K, 2/K, . . . , 1}} of varying sizes
within a spatial domain [0, 1]2. We consider K × K grids
with K = 20, 50, 100, and 200 to demonstrate the com-
putational power and scalability inherent to our proposed
methodology.

For simulating the datasets, we consider a model with
two covariates and an intercept term. The values of the co-
variates are randomly generated from N(0, 1) and N(5, 0.49)
respectively, and we assume the true value of the regression
coefficient to be βtrue = (3, 1.2, 0.5)T. The true value of the
range parameter of the spatial Matérn correlation is chosen
to be φtrue = 0.15×Δ∗, where Δ∗ =

√
2, the maximum spa-

tial distance between two locations in [0, 1]2. The smooth-
ness parameter is set to one and not estimated while fitting
our proposed model. The true ratio of partial sill to total
variation is chosen to be γtrue = 0.9, and the true precision

https://github.com/SumanM47/CensSpBayes
https://github.com/SumanM47/CensSpBayes
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parameter is chosen to be τ true = 1/5. Exact simulations
are conducted to generate datasets from a GP with Matérn
correlation, as given in (2.1).

Once the datasets are generated, we divide each dataset
randomly into 80% training and 20% test datasets. Within
each training set, we consider two different levels of cen-
soring (denoted by L1 and L2) for the response by setting
different values of the minimum detection limit (MDL):

L1 Low censoring: The MDL is at the 15th percentile point
of observations and thus 15% data are censored.

L2 High censoring: The MDL is at the 45th percentile
point of observations and thus 45% data are censored.

For each of the two levels of censoring, we implement
our proposed approximate Matérn GP model under three
different settings, denoted by S1, S2, and S3:

S1 We selectively exclude spatial locations where observa-
tions are censored and apply the spatial model approx-
imated via SPDE, as elaborated in Section 3.1, exclu-
sively to the observed locations. This does not require
any imputation of the censored observations.

S2 We impute the censored observations using the mean of
the observed data and employ the SPDE-approximated
Matérn GP model, as detailed in Section 3.1. This once
again circumvents the need for imputing the censored
observations.

S3 We fit the full proposed model, treating the observa-
tions below MDL as censored observations, and imple-
ment the SPDE-approximated Matérn GP model, as in
Section 3.1, while simultaneously performing imputa-
tions for the censored observations.

In each of the three scenarios, the approximated spatial
process using SPDE has been fitted to assess the effects of re-
moving or considering ad hoc imputations of censored obser-
vations in terms of mean squared prediction error (MSPE),
in contrast to treating them as genuinely censored. The prior
distributions for β and γ as described in Section 3.4 remain
unchanged in the simulation study. However, for the range
parameter, we assume φ ∼ Uniform(0, 0.25Δ∗).

For comparison, we consider two additional models, S4
and S5:

S4 We use a 2-dimensional B-spline estimation, along with
covariates, for mean modeling ignoring the covariance
structure while excluding the censored value, i.e.,

Y (s)=x(s)Tβ+

K1∑
i=1

K2∑
j=1

αijB(s1; s
0
ij,1)B(s2; s

0
ij,2)+ε(s),

where ε(s) are i.i.d. with zero mean and variance τ2 and
B(sk; s

0
ij,k) is the evaluation of the one dimensional B-

spline at the k-th coordinate of s and the k-th coordi-
nate of the (i, j)th knot, k = 1, 2. Defining a model that

models only the mean structure enables us to demon-
strate the impact of disregarding both the covariance
structure and the presence of censoring in the data. We
use an ML estimation scheme here with the number of
knots for the 2-dimensional B-splines set at 20% of the
grid size.

S5 We use the ‘CensSpatial’ algorithm to perform an exact
ML estimation of model parameters, which implements
the SAEM algorithm of [28] with the package defaults
used for the optimization procedures and standard set-
tings for initial values and search limits. The covariance
model was set as Matérn covariance with smoothness
parameter of 1.

Table 1 presents the median (across 100 simulated
datasets) mean squared prediction errors (MSPE), along
with corresponding median standard errors, obtained from
fitting the models S1-S5 to data in test sets that vary ac-
cording to censoring levels and grid sizes. Notably, under
low levels of censoring (L1), the proposed model in scenario
S3 yields better results compared to situations where cen-
sored observations are either excluded from the analysis or
imputed using the mean of observed values. However, ig-
noring spatial locations with censored observations entirely
leads to unreliable estimates, particularly for the covariance
parameters. Similarly, in high data censoring (L2) instances,
the proposed model, along with the imputation of censored
observations (S3), outperforms all other models. It is note-
worthy that the ‘CensSpatial’ method also demonstrates rel-
atively favorable performance for a grid size of 20×20 when
the data-generating model is Matérn GP; however, its com-
putational inefficiency and inadequate scaling impeded our
ability to apply the method to the higher-dimensional sim-
ulated datasets. In fact, [28] showcased the efficacy of the
‘CensSpatial’ algorithm through simulations involving only
50 and 200 spatial locations, clearly indicating its inade-
quacy regarding scalability. Ignoring the covariance struc-
ture does affect the performance here as the MSPE for the
B-spline based method (S4) is consistently higher than those
for S1. Moreover, S4 often fails to produce a respectable
MSPE likely because of ignoring both the censoring and
the covariance structure. These conclusions are further sup-
ported by the boxplots of log (MSPE) values shown in Fig-
ure 5. Specifically, under the high data censoring scenario
(100× 100 in row 2), the method S4 displays a notably tall
boxplot, suggesting that it produces more unstable results
compared to the other methods.

Table 2 presents the median computation time corre-
sponding to fitting the models S1-S5 to data in test sets that
vary according to censoring levels and grid size. The compu-
tation times for S1, S2, and S3 are comparable, as they all
employ the SPDE-approximated Matérn GP, with runtime
approximately proportional to the size of the INLA mesh
used for process approximation (between 557 and 673 nodes
for different datasets of different sizes). As anticipated, the
runtime for the local likelihood approach utilizing Vecchia’s
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Figure 5: Boxplots of log (MSPE) values for S1 (censored data removed, GP approximated), S2 (censored data mean
imputed, GP approximated), S3 (proposed methodology), S4 (censored data removed, 2D B-spline for mean modeling and
no covariance modeling), and S5 (CensSpatial, only for 20× 20) on the simulated datasets grouped by different gridsizes
for 15% (top) and 45% (bottom) censoring scenarios. Outliers were not reported to make the boxplots easier to see.



10 I. Sahoo et al.

Table 1. Median mean squared prediction error (MSPE) corresponding to model fitting under the five different settings
(S1-S5) based on 100 simulated data sets from a Matérn GP that varies with censoring levels L1 (low-censoring; 15%) and L2
(high-censoring; 45%), and grid sizes. The values in parenthesis represent the corresponding median prediction standard errors.
The lowest median MSPE in each row is in bold. Since model S5 (‘CensSpatial’) was infeasible for larger grids, table entries

(median MSPE and standard errors) appear as ‘-’.

Censoring Grid Median Mean Squared Prediction Errors
Level size S1 S2 S3 S4 S5

L1

20× 20 0.88(0.83) 2.13(1.17) 0.76(0.84) 1.54(1.12) 0.81(0.94)
50× 50 0.67(0.75) 2.16(1.10) 0.60(0.78) 0.87(0.85) -

100× 100 0.61(0.72) 2.07(1.07) 0.56(0.74) 0.70(0.76) -
200× 200 0.58(0.71) 2.01(1.05) 0.54(0.73) 0.63(0.73) -

L2

20× 20 1.89(0.85) 5.77(0.92) 0.88(0.89) 2.50(1.04) 1.43(1.08)
50× 50 1.28(0.75) 6.34(0.85) 0.64(0.79) 1.63(0.90) -

100× 100 1.03(0.70) 6.00(0.83) 0.58(0.76) 2.67(0.76) -
200× 200 0.95(0.68) 6.26(0.82) 0.54(0.74) 1.20(0.08) -

Table 2. Median computation time (in minutes) corresponding to model fitting under the five different settings (S1-S5) based
on 100 simulated data sets from a Matérn GP that varies with censoring levels L1 (low-censoring; 15%) and L2

(high-censoring; 45%), and grid sizes. The values in parenthesis represent the median absolute deviation for the corresponding
computing times. Since model S5 (‘CensSpatial’) was infeasible for larger grids, table entries appear as ‘-’.

Censoring Grid Median Computation Time (in minutes)
Level size S1 S2 S3 S4 S5

L1

20× 20 22.60(0.43) 23.41(0.38) 23.36(0.34) < 0.01 (< 0.01) 42.65(1.01)
50× 50 19.43(0.33) 19.21(0.36) 19.32(0.60) < 0.01 (< 0.01) -

100× 100 25.45(0.41) 25.31(0.50) 25.76(0.32) 0.05(< 0.01) -
200× 200 26.06(0.59) 26.30(0.49) 27.10(0.41) 2.20(0.08) -

L2

20× 20 21.06(0.38) 23.38(0.32) 23.69(0.29) < 0.01 (< 0.01) 80.27(1.67)
50× 50 19.03(0.54) 19.29(0.36) 19.25(0.51) < 0.01 (< 0.01) -

100× 100 25.37(0.45) 25.57(0.39) 25.75(0.61) 0.04(< 0.01) -
200× 200 26.35(0.81) 26.18(1.03) 27.04(0.60) 0.02(< 0.01) -

approximation increases with larger grid sizes. As discussed
earlier, the ‘CensSpatial’ algorithm was infeasible for larger
grids. The initial four methods, S1–S4, were executed on
SLURM clusters with one core per job and 8 GB RAM allo-
cation. However, due to the current version of ‘CensSpatial’
on CRAN being incompatible with the UNIX system, the al-
gorithm was implemented on a personal Dell 7210 computer
featuring 16 GB RAM, an Intel Core i5 dual-core processor,
and a Windows 11 Enterprise 64-bit operating system.

5. APPLICATION: CALIFORNIA PFAS DATA
5.1 Analysis Plan and Hyperparameters

We use the iterated log-transformed data (as described
in Section 2) as our input to the proposed method. Since we
have no covariates in this dataset, we use the coordinates of
the locations (longitude, latitude) as covariates. In Califor-
nia, longitude reflects the distance from the Pacific Ocean,
and the southern regions tend to have more desert-like areas
compared to the northern regions. Consequently, incorpo-
rating geographic coordinates (longitude and latitude) can
capture potential spatial trends in the data. Furthermore,

recent news reports have suggested elevated PFAS concen-
trations in urban areas of Southern and Central California
[27, 29]. Including longitude and latitude as covariates in
our study enables us to corroborate these claims within a
rigorous statistical framework. The hyperparameters for the
priors are the same as mentioned in Section 3.4. We fit a var-
iogram model on the non-censored observations to obtain an
initial set of parameter estimates for β, τ , φ, and γ. We run
three chains with different starting values that are all close
to the initial parameter estimates obtained by variogram
fitting to allow for checking convergence and increasing the
reliability of the model output. Each chain was run for 25,
000 iterations, with the first 15, 000 samples discarded as
burn-in. We thinned the post-burn-in samples by 5 to ob-
tain 2, 000 samples from the posterior distribution of the
parameters.

5.2 Results
For the observed data comprising 24, 959 locations and

the prediction grid of 0.1° × 0.1°, yielding 405, 893 predic-
tion locations across California, each of the three MCMC
chains completed in approximately 62 minutes. These com-



Computationally Scalable Bayesian SPDE Modeling for Censored Spatial Responses 11

Figure 6: Left: The predicted surface map for g(PFOS) = log(1+ log(1+PFOS)) concentration in the state of California.
Right: The corresponding uncertainty estimates associated with the predictions for g(PFOS) across the pixels.

Table 3. Table of estimates (posterior mean) and posterior
standard deviations corresponding to the parameters β0, β1

and β2 denoting the intercept and the 2 covariates,
respectively, φ (the spatial range), τ (the precision) and γ

(ratio of partial sill to total variance).

Estimates Standard Deviation
β0 −22.04 7.60
β1 −0.23 0.08
β2 −0.14 0.07
φ 0.07 0.02
τ 0.22 0.08
γ 0.95 0.02

putations were performed on an SLURM cluster with an
8GB RAM allocation. We observed a reasonable well-mixing
of the three chains. The different parameter estimates, as
calculated by the posterior means and the corresponding
standard errors, as calculated by the posterior standard de-
viations, are presented in Table 3. Both estimated covariate
effects are negative and are significant in our study. The esti-
mated spatial range is relatively low (∼7km). The posterior
distribution of γ exhibits left skewness, suggesting that the
majority of the variance in the data is attributable to the
spatial structure rather than local noise, highlighting the
significance of modeling the spatial covariance. The predic-
tion surface is smooth at places (left panel of Figure 6) with
higher detailing around the regions with observed data. The
prediction standard deviation is low towards the western
parts, where we have more observed data, but has an in-
triguing pattern on the east-southeastern parts (right panel
of Figure 6). Our analysis confirms the findings of previous

studies and news reports, as we observe significant nega-
tive effects of longitude and latitude. We predict elevated
PFOS concentrations in urban areas along the western coast
of Central and Southern California, with values exceeding
the news EPA safety threshold of approximately 0.95 on the
transformed scale. Notably high PFOS levels are detected in
and around Sonoma, Napa, Solano, Contra Costa, Alameda,
San Francisco, and Santa Clara counties in central-western
California, as well as in Los Angeles, Orange, and San Diego
counties in southwestern California.

6. DISCUSSION
We present a novel method to address the problem of

modeling censored, spatially correlated outcomes in big data
settings. We observe that the proposed model scales nicely
with an increased number of observation locations and per-
forms better than all other competing methods, even when
nearly half of the observed data are censored. Despite be-
ing a fully Bayesian model, the runtime is moderate and
at least comparable or better than the competing methods,
highlighting its scalability, which, combined with its demon-
strated accuracy, makes this method an efficient approxi-
mate method for modeling large spatial data in the presence
of (left-) censoring. The real data analysis demonstrated this
further as the model achieved satisfactory mixing of three
chains for a large dataset in only an hour, producing sensible
prediction surfaces and uncertainty quantification.

However, the data presents specific challenges during
modeling, which may also be considered as limitations of the
proposed method. The predicted surface in the left panel of
Figure 6 is very smooth towards the east-southeast end of
California. This is expected, as we have very few observa-
tions around that area to inform our spatial process. This,



12 I. Sahoo et al.

while being non-desirable, makes sense and is in line with
what one would expect to happen for such a dataset. We
can not hope to manufacture information in the absence of
observations and we do not, reflecting the consistency of sta-
tistical principles being adhered to here in our analysis. The
map of prediction uncertainty (right panel of Figure 6) also
reflects this. We have nearly zero uncertainty for most of
the region, where we observe numerous instances and have
higher uncertainty whenever we move far from observations.
Interestingly, we also notice a quilting pattern in the right
panel of Figure 6. This is a byproduct of the mesh object
and the lack of observations in the east-southeast region.

Further consideration is therefore needed to choose the
mesh and smoothness parameters to fit the model. We ex-
plain our choice of mesh in Section 3.1. However, this pro-
cess is ad-hoc, and a concrete workflow for selecting a mesh
would greatly benefit users. We consider this to be a plausi-
ble future research direction. Another development on both
the software and methodological fronts would include frac-
tional smoothness parameters in the model, which is cur-
rently restricted to integer smoothness (we use ν = 1 for
all our analyses). One possible approach would be to use
the fractional rational approximations to the SPDE model
[6, 5]. Combining the theory for fractional approximations
with the software should render additional model flexibil-
ity and be more well-suited to real data applications. Fur-
ther developments for multivariate extensions of the model
handling multiple spatial processes, simultaneously having a
mix of censored and uncensored observations, are underway.

Another important component to consider here is the as-
sumption of stationarity in the spatial covariance model,
which may not be realistic in many real-world applications.
To address potential non-stationarity, we incorporate geo-
graphical locations as covariates, aiming to ensure that the
residuals are stationary and can be effectively modeled using
the proposed approach, while accounting for data censoring.
If the residuals exhibit non-stationary spatial dependence, it
would be necessary to develop a model that accommodates
non-stationary spatial structures. Given the large size of the
dataset, a suitable approximation method for non-stationary
spatial data would be required. Although such methods are
relatively rare, some efforts have been made to address this
challenge. In particular, we could extend our approach by
utilizing the non-stationary version of the SPDE framework,
as described by [24], to account for non-stationary spatial
covariance in future work.

Other than proposing a novel, scalable spatial model in
its own right, the implications of this study extend beyond
academic interest. By elucidating the spatial distribution of
PFAS/PFOS contamination and its associated factors, we
can inform targeted interventions, policy recommendations,
and resource allocation to mitigate the impact of PFAS ex-
posure on public health. Additionally, our research provides
a framework that can be adapted to analyze censored data

in other environmental contexts, fostering a deeper under-
standing of complex contamination scenarios and enabling
evidence-based decision-making.

APPENDIX A. ADDITIONAL ANALYSES
FOR THE CALIFORNIA PFAS

DATA
We provide additional analyses on PFOS concentration

across California data by applying the two methods S1 and
S2 (as detailed in Section 4) on the data along with the
proposed method (S3) and doing a comparative analysis.
Table 4 presents the different parameter estimates (poste-
rior means) and the corresponding uncertainty (posterior
standard deviation) for the covariate effects (β0, β1, β2), the
spatial range (φ) and precision (τ) parameters, and the ratio
of partial sill to total variance (γ). These vary from analysis
to analysis showing the different inference we can have by
treating the censored observations differently (since that is
the only difference between the methods). Unlike Section 4,
the true values are unknown in the real data analysis, mak-
ing it impossible to objectively determine which method is
superior based on the provided estimates. However, the co-
variate effects of latitude and longitude are not statistically
significant in both S1 and S2. This suggests that using meth-
ods S1 and S2 to pre-process censored data may result in the
omission of important covariate effects, potentially leading
to misleading conclusions in the analysis. Finally, the 2D B-
splines method (S4) was not applied to the real data due to
its inability to account for the spatial correlation structure.
Similarly, the ‘CensSpatial’ method (S5) was excluded from
this analysis because of its limitations in scalability.

Table 4. Posterior means (standard deviation) of the model
parameters (covariate effects, spatial range, precision, and

ratio of partial sill to total variance) in analyzing the
California PFOS data using methods S1 through S3

(Approximate Gaussian process fit differing by how the
censored data are treated: namely, left out, mean imputed or

imputed by the proposed method).

S1 S2 S3
β0 −1.52(1.96) −0.47(1.48) −22.23(7.51)
β1 −0.03(0.02) −0.02(0.02) −0.23(0.08)
β2 −0.02(0.02) −0.02(0.01) −0.14(0.07)
φ 0.06(0.01) 0.05(0.01) 0.07(0.02)
τ 2.06(0.42) 2.18(0.51) 0.22(0.08)
γ 0.81(0.04) 0.8(0.05) 0.95(0.02)

Figure 7 presents a comparison between the predictions
concentration maps (top) and their associated uncertainties
(bottom) derived from methods S1 through S3 for estimat-
ing PFOS concentrations across a fine grid in California (dis-
played on the iterated logarithmic scale). The predictions
from S1 and S2 show minimal spatial variation, and their
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Figure 7: Top: Spatial surface maps of predicted PFOS concentrations (on the iterated log scale) based on Models S1, S2
and S3. Bottom: The corresponding uncertainty estimates.

uncertainty estimates reflect a similar homogeneity. This
suggests that these methods may not adequately capture
spatial variability. However, without comprehensive knowl-
edge of the true PFAS levels across the region, it is difficult
to accurately compare the performances of these methods.
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