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Abstract
While randomized trials may be the gold standard for evaluating the effectiveness of the treatment intervention, in some

special circumstances, single-arm clinical trials utilizing external control may be considered. The causal treatment effect of
interest for single-arm trials is usually the average treatment effect on the treated (ATT) rather than the average treatment
effect (ATE). Although methods have been developed to estimate the ATT, the selection and use of these methods require a
thorough comparison and in-depth understanding of the advantages and disadvantages of these methods. In this study, we
conducted simulations under different identifiability assumptions to compare the performance metrics (e.g., bias, standard
deviation (SD), mean squared error (MSE), type I error rate) for a variety of methods, including the regression model,
propensity score matching (PSM), Mahalanobis distance matching (MDM), coarsened exact matching, inverse probability
weighting, augmented inverse probability weighting (AIPW), AIPW with SuperLearner, and targeted maximum likelihood
estimator (TMLE) with SuperLearner.

Our simulation results demonstrate that the doubly robust methods in general have smaller biases than other methods.
In terms of SD, nonmatching methods in general have smaller SDs than matching-based methods. The performance of MSE
is a trade-off between the bias and SD, and no method consistently performs better in term of MSE. The identifiability
assumptions are critical to the models’ performance: Violation of the positivity assumption can lead to a significant inflation
of type I errors in some methods; violation of the unconfoundedness assumption can lead to a large bias for all methods.

According to the simulation results, under most scenarios we examined, PSM and MDM methods perform best overall
in terms of type I error control. However, they in general have worse performance in the estimation accuracy compared
to doubly robust methods given that the identifiability assumptions are not severely violated.

keywords and phrases: Single-arm trials, External control, Real-world data, Causal inference, Average treatment effect
on the treated.

1. INTRODUCTION
Randomized clinical trials (RCTs) are usually considered

the gold standard for demonstrating the efficacy and safety
of an intervention. However, for rare diseases it is difficult to
recruit a large number of patients, and for severe diseases it
is unethical to assign patients to placebo. Single-arm trials
utilizing an external real-world data (RWD) control could be
an appealing option. In addition to the feasibility and ethical
advantages, single-arm trials with external RWD controls
may save time and money and as a result have been receiving
increasing attention.

To draw inferences about the effect of a treatment, a tar-
get causal effect needs to be defined. For the single-arm tri-
als with external RWD controls, the causal treatment ef-
fect of interest could be the average treatment effect on
the treated (ATT) (i.e., the average treatment effect for
the population receiving the treatment compared to what
would have happened if they had not received treatment)
∗Corresponding author.
1Contributed equally.

if the treatment effect among the enrolled population is of
more interest [16, 17]. This is particularly the case if there is
heterogeneity between patients participating and those not
participating in the trial due to eligibility criteria. For exam-
ple, if the experimental drug is a second-line treatment, the
study drug’s effect cannot be considered for naive patients
who are not eligible to participate in the trial.

The ATT can also be of interest if there is heterogeneity
in the baseline characteristics between patients participating
and those who do not. E.g., patients who participate in the
trial are older than patients who do not. In this study, we
focus on estimating the causal effect of ATT.

Many well-established methods have been proposed to
estimate ATT, including the coarsened exact matching
(CEM), propensity score matching (PSM), Mahalanobis
distance matching (MDM), inverse propensity weighting
(IPW), augmented inverse propensity weighting (AIPW),
targeted maximum likelihood estimator (TMLE), etc. At-
tempts have been made to compare the performance of these
models in terms of estimating ATT. For example, Abdia et
al. compared the performance of the PSM, regression model,

1

https://journal.nestat.org/
https://doi.org/10.51387/25-NEJSDS77


2 H. Wang, F. Wu, and Y.-F. Chen

stratification model, and IPW [2]; Chatton et al. compared
the performance of the g-computation method, IPW, PSM,
and TMLE with different covariates sets [9]. However, the
choice of the model remains unclear and controversial in the
actual design stage of single-arm clinical trials with RWD
controls.

In this study, we examined the performance of 10 meth-
ods for causal inference, including the regression model,
PSM, MDM, CEM, IPW, AIPW, AIPW with SuperLearner,
and TMLE with SuperLearner via simulations. The metrics
of performance used for comparison included bias, standard
deviation (SD), mean squared error (MSE), and type I er-
ror. With our simulation results, practical advice on the use
of these methods in single-arm clinical trials with RWD con-
trols is provided.

This paper is organized as follows. The introduction sec-
tion provides background information on single-arm trials
with external RWD controls and presents the motivation
behind this study. The Methods section revisits the defini-
tions of ATT and identifiability assumptions and provides
a description of the models and simulation settings utilized
in this study. The Results section presents the findings from
various scenarios. In the Discussion section, we analyze the
experimental results and provide recommendations for plan-
ning single-arm trials with external controls. Finally, the
Conclusion section summarizes the study’s key findings, in-
terpretation, and implications.

2. METHODS

2.1 Average Treatment Effect on the Treated
In a real-world study, a causal effect of a treatment can

be defined in terms of the comparison between potential
outcomes (also known as the counterfactual outcomes) of a
population who would receive the treatment and potential
outcomes of the same population who would not receive the
treatment [18]. The comparison is drawn from a population
level instead of an individual level because only one of the
potential outcomes can be observed for each patient [1]. In
a nonrandomized, single-arm clinical trial with an external
RWD control, the population of interest is usually only the
patients receiving the treatment [13]. Correspondingly, the
causal effect of interest is the ATT.

For patient with index i, let Zi denote the patient’s treat-
ment assignment with a value of 1 for treated and 0 for
not treated, Xi vector of the patient’s covariates, Yi the
patient’s observed outcome, Yi(1) and Yi(0) the patient’s
potential outcomes corresponding to Zi = 1 and Zi = 0,
respectively. Then the ATT of our interest in terms of the
difference scale τATT rather than others (e.g., ratio), can be
formally defined as

τATT ≡ E[Yi(1)− Yi(0)|Zi = 1].

2.2 Identifiability Assumptions
An average causal effect such as ATT is not always es-

timable. Hernán and Robins summarized three assumptions
needed to estimate an average causal effect: consistency, pos-
itivity, and conditional exchangeability [18]. The definitions
of these assumptions are as follows.

1. Consistency: Yi = Yi(1) if Zi = 1 and Yi = Yi(0) if
Zi = 0.

2. Positivity: 0 < P (Zi = 1|Xi = xi) < 1 for any Xi

with P (Xi = xi) > 0.
3. Conditional exchangeability (unconfoundedness):

Yi(0), Yi(1) ⊥⊥ Zi||Xi.

The consistency assumption means that a subject’s po-
tential outcome under his or her observed exposure his-
tory is equal to the subject’s observed outcome. The con-
sistency assumption requires that the treatment should be
sufficiently well-defined, contingent upon agreement among
experts based on the available substantive knowledge [18].

The positivity assumption implies that all subjects have
a non-zero probability of receiving (or not receiving) the
treatment. Positivity violations can be divided into two cat-
egories: 1) theoretical violation that the probability of being
treated is 0 or 1, e.g., certain patients are restricted from re-
ceiving the treatment or control, and 2) near or practical vi-
olation in the sampling due to high/low exposure prevalence
or small sample size [26]. One method for assessing the pos-
itivity assumption is via the propensity score (PS), which
is the probability of receiving the treatment conditional on
covariate values, i.e., PS(Xi) = P (Zi = 1|Xi) [38]. In par-
ticular, we can study the distribution of the PS for the
study population and explore whether there are subjects
with PS values near 0 or 1 (Figure 1). If many PS values
are distributed around 0 or 1, then the positivity assump-
tion should not hold; on the other hand, if no PS values are
distributed around 0 or 1, the positivity assumption can be
considered reasonable.

The conditional exchangeability assumption, also known
as the unconfoundedness assumption, suggests that all vari-
ables influencing treatment selection and outcomes are
measured and accessible. Violation of this assumption oc-
curs when unmeasured confounders are not adequately ac-
counted for. The unconfoundedness assumption is inher-
ently untestable. However, many sensitivity analyses have
been developed to indirectly assess the unconfoundedness
assumption, i.e., assessing the bias of the causal effect esti-
mate by assuming unmeasured confounding [30, 24, 11, 36].

2.3 Methods for Causal Inference
2.3.1 Linear Regression Model

In general, a regression model is not a sound model for
estimating ATT. However, if the true outcome model can be
properly fitted by a regression model, the regression model
may estimate ATT well. In particular, if 1) the identifiability
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Figure 1: Distributions of PS values in study populations
characterized by low (A) and high (B) potential for violat-
ing the positivity assumption. In these populations, subjects
with PS values close to 0 or 1 are more prone to violating
the positivity assumption.

assumptions are met and 2) the outcome model is correctly
specified, the ATT can be estimated through the regression
model. However, in practice, it is challenging to specify the
correct outcome model. In this study, we use the linear re-
gression (LR) that includes the specified covariates Xi and
the treatment variable Zi without interaction terms as a
simple reference model. The ATT is estimated through the
coefficient of the treatment variable Zi.

2.3.2 Matching

A fundamental problem of causal inference is that we can
only observe one potential outcome from each observation.
However, the information from the potential outcome that
we do not observe is needed in the estimation of the causal
effect. An intuitive approach is to estimate the unobserved
potential outcome with a similar one via matching. An un-
derlying assumption about the matching is that observations
similar on their covariate values are also similar on the po-
tential outcomes [25]. For estimating ATT using matching,
we can assume that the expectation of Yi(0) and Yi(0)

M are
the same where Yi(0)

M is the sample in the control group
that matches Yi(1) on Xi, i.e.,

E[Yi(0)|Xi] = E[Yi(0)
M |Xi]. (2.1)

Then by the unconfoundedness assumption, ATT can be
expressed as

τATT =E[Yi(1)− Yi(0)|Zi = 1]

=EXi|Zi=1{E[Yi(1)|Xi]− E[Yi(0)|Xi]}
=EXi|Zi=1{E[Yi(1)|Xi]− E[Yi(0)

M |Xi]}
=E[Yi(1)− Yi(0)

M |Zi = 1]

and estimated by

1

N1

∑
i∈[Z=1]

[Yi(1)− Yi(0)
M ],

where N1 is the sample size of the treatment group.

2.3.3 Coarsened Exact Matching

In practice, exact matching of covariates may not be fea-
sible when there are continuous covariates or when there
are categorical covariates with many levels. One approach
to address this issue is the CEM method, which is a form of
exact matching based on the subclasses of covariates [22]. It
involves two steps: 1) coarsening each covariate into several
“bins,” i.e., subclasses, and 2) performing exact matching
on those bins. The unmatched units are discarded.

For CEM, the choice of the number of bins is crucial to
model performance. Domain knowledge is required to deter-
mine the appropriate number of bin for each variable [22].
In this study, we arbitrarily choose 2 (denoted by CEM2), a
smaller number of bin, and 5 (denoted by CEM5), a reason-
ably larger one, for all covariates to study the performance
of the CEM model with different numbers of bins. For each
number of bins, the boundaries of the bins were set to be
evenly spaced between the maximum and minimum values
of the covariate [20].

2.3.4 Mahalanobis Distance Matching

An alternative way to loosen the exact match require-
ment is by using MDM so that similar subjects are matched.
MDM pairs subjects that are close based on the Mahalanobis
distance. The Mahalanobis distance between Patients u and
v, denoted by du,v, is defined as

du,v =
√

(Xu −Xv)�Σ−1(Xu −Xv),

where Σ is the covariance matrix of the covariates.

2.3.5 Propensity Score Matching

Matching can also be conducted on the PS of the relevant
covariates instead of on the covariates themselves. Rosen-
baum and Rubin proved that PS is a balancing score and
that potential outcomes are independent of treatment condi-
tional on a balancing score if the unconfoundedness assump-
tion holds [31]. Then the assumption of unconfoundedness
for the given covariates can be relaxed to be unconfounded-
ness for the given PS values, i.e.,

Yi(0), Yi(1) ⊥⊥ Zi | Xi ⇒ Yi(0), Yi(1) ⊥⊥ Zi | PS(Xi).

In addition, according to equation (2.1) and the law of
total expectation, we have

E[Yi(0)|PS(Xi)] =E{E[Yi(0)|Xi]|PS(Xi)}
=E{E[Yi(0)

PSM |Xi]|PS(Xi)}
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=E[Y PSM
i (0)|PS(Xi)], (2.2)

where Yi(0)
PSM is the sample in the control group that

matches Yi(1) on PS(Xi). Then, by the assumption of the
unconfoundedness given the PS and equation (2.2), ATT
can be obtained by

τATT =E[Yi(1)− Yi(0)|Zi = 1]

=EPS(Xi)|Zi=1{E[Yi(1)|PS(Xi)]− E[Yi(0)|PS(Xi)]}
=EPS(Xi)|Zi=1{E[Yi(1)|PS(Xi)]

− E[Yi(0)
PSM |PS(Xi)]}

=E[Yi(1)− Yi(0)
PSM |Zi = 1]

and estimated by

1

N1

∑
i∈[Z=1]

[Yi(1)− Yi(0)
PSM ].

For a comprehensive introduction of matching-based
methods, including PSM, refer to the overview by Stu-
art [33].

2.3.6 Inverse Probability Weighting

The IPW is another PS-based method that can be used to
estimate the ATT. The IPW uses the PS to balance the char-
acteristics of covariates in the treated and control groups by
weighting each subject in the analysis by the inverse proba-
bility of receiving his/her actual exposure [10]. In this study,
we used a generalized version of the IPW estimator, which
has the following expression:∑n

i=1 WiZiYi∑n
i=1 WiZi

−
∑n

i=1 Wi(1− Zi)Yi∑n
i=1 Wi(1− Zi)

where Wi =
̂PS(Xi)

Zi
̂PS(Xi)+(1−Zi)(1−̂PS(Xi))

[27, 28]. This IPW
estimator is a consistent estimator of ATT when the identi-
fiability assumptions hold and P̂S(Xi) is a consistent esti-
mator of the PS.

2.3.7 AIPW

The AIPW method combines the IPW method and an
outcome estimation model. It is a doubly robust estimator
in the sense that it is consistent if either the treatment as-
signment model or the potential outcome model is correctly
specified, but not necessarily both [29]. In this study, we
used the following AIPW estimator for ATT estimation:∑n

i=1 P̂S(Xi))(Q̂1(Xi))− Q̂0(Xi))∑n
i=1 P̂S(Xi)

+

∑n
i=1 WiZi(Yi − Q̂1(Xi))∑n

i=1 WiZi

−
∑n

i=1 Wi(1− Zi)(Yi − Q̂0(Xi))∑n
i=1 Wi(1− Zi)

where Wi =
̂PS(Xi)

Zi
̂PS(Xi)+(1−Zi)(1−̂PS(Xi))

and Q̂1(Xi) and

Q̂0(Xi) denote the estimators for E[Yi|Xi, Zi = 1)] and
E[Yi|Xi, Zi = 0)], respectively [28].

2.3.8 Targeted Maximum Likelihood Estimator

The TMLE, introduced by van der Laan and Rubin,
is an alternative doubly robust estimation method that is
maximum-likelihood–based and includes a targeting step
that optimizes the bias-variance tradeoff for the parameter
of interest [34, 32].

The application of TMLE for estimating ATT involves
the following steps [35, 12]:

1. Obtain an initial estimate of the expected outcome
Ê0[Yi|Zi,Xi] by fitting an outcome model.

2. Obtain an initial estimate of the PS, i.e., P̂S
0
(Zi|Xi),

by fitting a treatment assignment model.
3. Apply the targeted learning theory to update the ini-

tial estimates of Ê0 [Yi|Zi,Xi] and P̂S
0
(Zi|Xi) to

Ê∗ [Yi|Zi,Xi] and P̂S
∗
(Zi|Xi), respectively. These up-

dates are performed such that they solve the efficient
score equation:

n∑
i=1

D
(
Ê∗ [Yi|Zi,Xi] , P̂ S

∗
(Zi|Xi) , P̂

∗
Xi|Zi=1

)
= 0

where D is defined as

D
(
E [Yi|Zi,Xi] , PS (Zi|Xi) , PXi|Zi=1

)
=

[
I (Zi = 1)

P (Zi = 1)
− I (Zi = 0)PS(Zi = 1|Xi)

P (Zi = 1)PS(Zi = 0|Xi)

]
× (Yi − E [Yi|Zi,Xi])

+
I(Zi = 1)

P (Zi = 1)
(E[Yi|Zi = 1,Xi]− E[Yi|Zi = 0,Xi]

− τATT)

and P̂ ∗
Xi|Zi=1 is the empirical estimator of PXi|Zi=1.

4. The TMLE estimator for the ATT is then obtained as:

τ̂∗ATT

=

∫ (
Ê∗ [Yi|Zi=1,Xi]−Ê∗ [Yi|Zi=0,Xi]

)
dP̂ ∗

Xi|Zi=1.

In this study, we implemented TMLE by using the Su-
perLearner for the estimation of both propensity scores and
outcomes [14]. The model is denoted as TMLE_SL. In ad-
dition, we implemented a model, denoted as AIPW_SL, on
the basis of the AIPW method and the SuperLearner’s es-
timation of the propensity scores and outcomes.

2.4 Simulation
The performance of the methods described in Section 2.3

for estimating ATT was compared by using Monte Carlo
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Table 1. Treatment selection models.

Scenario 1 logit(pi,treat) = α0,treat + 0.1X1,i + 0.1X2,i + 0.05X2
1,i + 0.02X2

2,i + 0.02X1,iX2,i

Scenario 2 logit(pi,treat) = α0,treat + 1.25X1,i +X2,i + 0.5X2
1,i + 0.5X2

2,i + 0.75X1,iX2,i

Scenario 3 logit(pi,treat) = α0,treat + 0.1X1,i + 0.1X2,i + 0.05X2
1,i + 0.02X2

2,i + 0.02X1,iX2,i + 0.05X4,i + 0.02X2
4,i

Table 2. Outcome models.

Setting 1 Yi =

{
Zi + 1.5X1,i + 0.75X3,i + εi, (Scenarios 1&2 )
Zi + 1.5X1,i + 0.75X3,i + 5X4,i + εi, (Scenario 3 )

Setting 2 Yi =

{
Zi + 1.5X1,i + 0.75X3,i + 1.75X2

1,i + εi, (Scenarios 1&2 )
Zi + 1.5X1,i + 0.75X3,i + 1.75X2

1,i + 5X4,i + εi, (Scenario 3 )

Setting 3 Yi =

{
Zi + 1.5X1,i + 0.75X3,i + 1.5X1,iZi + εi, (Scenarios 1&2 )
Zi + 1.5X1,i + 0.75X3,i + 1.5X1,iZi + 5X4,i + εi, (Scenario 3 )

simulations. To evaluate the methods in practical situations
where the identifiability assumptions may be violated, we
considered the following three scenarios:

• Scenario 1: No violation of identifiability assumptions,
• Scenario 2: Violation of the positivity assumption,
• Scenario 3: Violation of the unconfoundedness assump-

tion.
Note that we did not consider the scenario where the con-

sistency assumption was violated because the consistency
could be ensured by proper study design and conduct.

In the simulation, the patient’s treatment status was gen-
erated by the treatment selection model based on the co-
variates, while the patient’s outcome was generated by the
outcome model based on the covariates and treatment sta-
tus.

In Scenarios 1 and 2, we assumed three independent co-
variates X1 −X3 that followed the standard normal distri-
bution. X1 was a confounder that affected both the treat-
ment selection and the outcome, and X2 and X3 affected the
treatment selection and the outcome, respectively. In Sce-
nario 3, an additional confounder X4 was assumed to follow
the standard normal distribution and to be independent of
X1 −X3.

The treatment selection models for corresponding sce-
narios used in our simulations are listed in Table 1. For
each subject, treatment status, denoted by Zi, was gener-
ated from a Bernoulli distribution with a probability of suc-
cess of pi,treat. We considered five different prevalence rates
of treatment, i.e., expectations of pi,treat with respect to the
distributions of covariates: 0.05, 0.10, 0.20, 0.33, and 0.50.
The intercept α0,treat in each treatment selection model
was determined numerically to obtain the desired treatment
prevalence.

For each scenario, we considered three settings of outcome
models:

• Setting 1: Linear outcome model.
• Setting 2: Nonlinear outcome model.
• Setting 3: Outcome model with the interaction term

between the treatment variable and the covariate.

The outcome models used in our simulations to reflect
these settings are listed in Table 2, where we assumed εi ∼
N(0, 2).

We performed 200 simulations for each prevalence rate
of treatment under each combination of treatment selection
model and outcome generation model. The steps of simula-
tions are described below.

1. Generated N sets of covariates from independent stan-
dard normal distributions, assuming that each set was
associated with one patient. The sample size N was
determined by making the expected number of treated
patients equal to 50, e.g., N = 1000 if the prevalence
rate of treatment was 0.05, and N = 500 if the preva-
lence rate of treatment was 0.10.

2. For each set of the covariates associated with a patient,
compute pi,treat by using the corresponding treatment
selection model. The patient’s treatment status Zi was
then generated via the Bernoulli distribution with a
success probability of pi,treat. The patient’s outcome
Yi was generated by using the corresponding outcome
model.

3. Estimated the ATT by using the methods described in
Section 2.3. For each method, we included only covari-
ates X1 − X3 for estimation. We used the logistic re-
gression based on X1−X3 to estimate the PS for PSM,
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PSM_1:2, IPW, and AIPW. And we used the LR based
on X1 −X3 to estimate the outcomes for AIPW.

4. Repeated the above process 200 times.
5. Evaluated the performance of each method through fol-

lowing metrics:

• The bias in estimating ATTs, i.e., the average dif-
ference between the 200 estimated ATT and the
true ATT. Note that the true ATTs in Settings 1
and 2 are 1. For Setting 3, it is difficult to cal-
culate the true ATT analytically and we approx-
imated the true ATT by using a large number of
simulated samples (i.e., 107) from the treatment
models described in Table 1.

• The empirical SD of the estimated ATTs, i.e., the
SD of 200 estimated ATTs.

• The average theoretical SD of the estimated ATTs,
i.e., the average of 200 model-based SDs, each gen-
erated directly by the model in each simulation.

• The MSE in estimating ATTs, i.e., the MSE of 200
estimated ATTs.

• The type I error rate, i.e., the average rate of re-
jecting the null hypothesis of ATT = 0 versus the
alternative hypothesis of ATT �= 0 using a two-
sided test at the 0.05 significance level by making
Zi = 0 in the outcome models described in Ta-
ble 2.

Note that we set the expected number of treated subjects
as 50 to reflect the practical situation that the feasible num-
ber of patients who can be enrolled in the study requiring
the external control is often limited.

In this study, the nearest neighbor matching without re-
placement algorithm with a caliper of 0.2 was used in form-
ing matched pairs for PSM, PSM_1:2, and MDM to improve
the balance of the matching and reduce the MSEs of the es-
timates [5, 6]; a trimming threshold of 0.05 was used for
estimated the PS for IPW and AIPW for better variance
estimation [7]; a truncation threshold of 5/(

√
N ln(N)) was

used for estimated the PS for AIPW_SL and TMLE_SL to
minimize both bias and MSE of the estimates [15].

For the CEM, MDM, and PSM implemented in this
study, the average theoretical SD of the ATT were esti-
mated through the paired t-test between two groups in
matched samples to account for the dependence induced by
the matching [3]. For PSM_1:2, the estimator-based SD was
also estimated through the paired t-test in matched samples
where each treated sample is compared to the average of the
two matched control samples.

For this study, all statistical analyses were conducted in
R (Version 4.2.2) using the following libraries: MatchIt (Ver-
sion 4.5.5), PSweight (Version 1.1.8), tmle (Version 2.0.0),
and their respective dependencies.

3. RESULTS
We report results for the three different scenarios: 1) no

violation of the identifiability assumptions, 2) violation of
the positivity assumption, and 3) violation of the uncon-
foundedness assumption separately in the following subsec-
tions.

3.1 Scenario 1 : No Violation of the
Identifiability Assumptions

The distribution of the PS values for Scenario 1 assum-
ing no violation of the positivity or the unconfoundedness
is shown in Figure S1 in the Supplementary Material. As
shown in the figure, the distributions are bounded away from
0 and 1, and thus the positivity assumption can be consid-
ered reasonable. The bias, empirical SD (hereafter referred
to as SD), average theoretical SD, MSE, and type I error
rate for the 10 methods in Scenario 1 under three different
settings are shown in Figures S2-S4 in the Supplementary
Material, respectively.

In Setting 1 with linear effect of covariates in the
true outcome model, all methods have very small biases.
The matching-based methods (i.e., CEM2, CEM5, PSM,
PSM_1:2, and MDM) have relatively larger SDs than the
other methods for most prevalence rates of treatment, which
results in greater MSEs of these methods. Among the
matching-based methods, PSM_1:2 has a relatively smaller
SD than PSM when the prevalence rate of treatment is
less than 0.5, while CEM2 has a relatively smaller SD than
CEM5. The IPW, AIPW, AIPW_SL, and TMLE_SL mod-
els in general have similar performance in terms SD and
MSE. Under the null treatment effect, the type I error rates
of all methods are generally controlled at 0.05.

In Setting 2 with nonlinear effect of covariates in the true
outcome model, the biases of most models increased com-
pared with Setting 1. The CEM2 in general presents the
largest bias while the CEM5 presents a relatively small bias,
indicating that CEM model with two bins is too coarse to
catch the nonlinear effect. The MDM and LR models in gen-
eral yield the second and third largest biases, respectively.
The AIPW_SL and TMLE_SL have the smallest biases and
SDs and hence the smallest MSEs. The PSM in general has
the largest SD and therefore a relatively large MSE. Un-
der the null treatment effect, many methods in Setting 2
have larger type I error rates than in Setting 1 (e.g., CEM2,
MDM, and LR), due to their increased biases in Setting 2.

In Setting 3 with the interaction between the treat-
ment variable and the covariate in the true outcome model,
most methods yield very small biases. In terms of SD, the
matching-based methods in general have relatively larger
SDs than the other methods. The MSE pattern is similar
to the SD pattern. Under the null treatment effect, the out-
come models for Settings 1 and 3 are the same, therefore,
the findings regarding the type I error are also the same for
these two settings.
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3.2 Scenario 2 : Violation of the Positivity
Assumption

The distribution of the PS values for Scenario 2 assuming
violation of the positivity or the unconfoundedness is shown
in Figure S1 in the Supplementary Material. As shown in
the figure, a large proportion of subjects’ PS values are dis-
tributed at or close to 0 or 1 and thus the positivity assump-
tion is considered violated. The bias, empirical SD, average
theoretical SD, MSE, and type I error rates for the 10 meth-
ods in Scenario 2 under three different settings are shown in
Figures S5–S7 in the Supplementary Material, respectively.

In Setting 1 with linear effect in the true outcome mod-
els, CEM2 and IPW in general have noticeably larger biases
compared to other methods. The increased bias of CEM2
in Scenario 2 compared to Scenario 1 is attributed to the
impact of violating the positivity assumption. Under Sce-
nario 2, many subjects cannot be matched exactly but are
still matched when using two bins, thus causing a larger
bias. The IPW also produces a relatively larger bias un-
der Scenario 2. The SD pattern in Scenario 2 differs from
that in Scenario 1 in the following ways: 1) The SDs of
IPW, AIPW, and TMLE_SL have a noticeable increase,
and 2) the average theoretical SD of TMLE_SL is much
smaller than the empirical SD. In terms of MSE, LR and
AIPW_SL are the best two performing models. Under the
null treatment effect, CEM2, IPW, and TMLE_SL experi-
ence remarkable type I error inflation. According to Figure
S5 in the Supplementary Material, the type I error infla-
tion of the CEM2 or IPW is mainly due to the large bias,
while the type I error inflation of the TMLE_SL is mainly
due to its underestimation of the SD. In contrast, PSM and
PSM_1:2 perform best in terms of type I error control.

In Setting 2 with nonlinear effect in the true outcome
models, in addition to the CEM2 and IPW, which are al-
ready substantially biased in Setting 1, LR and AIPW are
also largely biased. The bias of CEM5 is relatively large
when the prevalence rate of treatment is low and relatively
small when the prevalence rate of treatment is high. The
biases of PSM and PSM_1:2 are the smallest. The SDs of
most models in Setting 2 increase compared to Setting 1,
especially for IPW and LR. The AIPW_SL has a relatively
small bias and the smallest SD, resulting the smallest MSE.
Under the null treatment effect, LR, CEM2, IPW, AIPW,
and CEM5 show severe type I error inflation, mainly due
to their large biases (Figure S6 in the Supplementary Ma-
terial); TMLE_SL also shows severe type I error inflation,
mainly due to its underestimation of the SD (Figure S6 in
the Supplementary Material). AIPW_SL has relatively mild
type I error inflation, while PSM, PSM_1:2, and MDM have
the best type I error control.

In Setting 3 with the interaction between the treatment
variable and the covariate in the true outcome model, the
IPW, LR, and matching-based methods in general have rel-
atively large biases (Figure S7 in the Supplementary Mate-
rial). The doubly robust methods (i.e., AIPW, AIPW_SL,

and TMLE_SL) in general have relatively small biases.
Among the doubly robust methods, AIPW and TMLE_SL
have relatively large SDs and hence relatively large MSEs.
The MSE of AIPW_SL is the smallest, due to its relatively
small bias and SD. The findings for Setting 3 regarding the
type I error inflation are the same as those for Setting 1
(Figure S7 in the Supplementary Material).

3.3 Scenario 3 : Violation of the
Unconfoundedness Assumption

For all methods and three settings of the outcome model,
violation of the unconfoundedness assumption in Scenario
3 leads to a certain amount of bias (or a larger bias if the
method is already biased) compared to Scenario 1 where
this assumption is not violated (Figures S8–S10 in the Sup-
plementary Material). The biases induced by violation of un-
confoundedness assumption are all positive under our simu-
lation settings. We conducted post-hoc analyses by varying
the coefficient values of the unmeasured confounder in the
three settings and found that the sign and magnitude of the
induced bias are mainly determined by the coefficient value
of the unmeasured confounder.

The pattern of SD is similar between Scenario 1 and Sce-
nario 3. The MSEs observed in Scenario 3 are greater than
those observed in Scenario 1. Under the null hypothesis, the
type I error rates in Scenario 3 generally increase compared
to Scenario 1 due to the larger biases.

4. DISCUSSION
4.1 Performance of Estimation
4.1.1 Matching-Based Methods

Among matching-based methods, our simulation results
show that the PSM model in general results in a small bias
when the positivity assumption is held. When the positivity
assumption is violated and when there is interaction between
the treatment variable and the covariate (i.e., Scenario 2
Setting 3 ), a mild bias can be induced. This is because un-
der the violation of the positivity assumption, the integra-
tion of E[Yi(1)|PS(Xi), Zi = 1] − E[Yi(0)|PS(Xi), Zi = 0]
in equation (2.2) is carried out in the overlapped range
of the PS distributions for the two groups and hence the
causal effect of interest has been deviated from the ATT.
Similar issues occur in the other matching-based methods
that we studied. Of note, the bias of the PSM can still be
small in cases with positivity violation but without inter-
action between the treatment variable and the covariate,
e.g., Scenario 2 Settings 1 or 2, because in equation (2.2),
E[Yi(1)|PS(Xi), Zi = 1] − E[Yi(0)|PS(Xi), Zi = 0] =
E[E[Yi(1)|Xi, Zi = 1] − E[Yi(0)|Xi, Zi = 0]|PS(Xi)] is a
constant, and its integration over PS(Xi)|Zi = 1 is the
same as its integration in the overlapped range of the PS
distribution.
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The bias of PSM_1:2 was comparable to that of PSM.
However, the MSE of PSM_1:2 is generally smaller than
PSM due to a smaller SD.

When considering the choice of matching ratio, our sim-
ulation indicates that 1 to 2 matching provides a reasonable
balance between bias reduction and precision for estimat-
ing the ATT in most of our settings with the prevalence
rate of treatment ≤ 0.33. This finding aligns with the sim-
ulation results of Austin [4] for observational studies, which
demonstrated that matching one or two untreated subjects
to each treated subject generally provides good performance
for ATT estimation. For scenarios where the control group
is substantially larger than the treatment group and high-
quality matches are available, using 1 to r matching with
r > 2 may be considered to improve efficiency, though main-
taining match quality is needed.

The performance of MDM was in general similar to PSM.
The MDM has a relatively large bias in Scenario 1 Set-
ting 2 because we used Mohalanobis distance to match only
first-order terms and the second-order terms were not well
matched. Through simulations, we found that if we also con-
sider the second order terms (i.e., treat X2

1 , X2
2 , and X2

3 as
three additional covariates to be matched) in the MDM, the
bias of the model in Setting 2 minimized. However, in real-
istic situations we may not know the functional forms of the
covariates in the outcome model for matching.

Compared to PSM and MDM, which are members of the
class of equal percent bias reducin (EPBR) and do not guar-
antee any level of imbalance reduction, CEM is a member
of the class of Monotonic Imbalance Bounding (MIB) and
is able to guarantee that the imbalance will not be larger
than the ex ante user choice [23]. However, the selection of
the number of bins can be challenging. If a large number
of bins are used, the matching performance would be good,
but too many samples may be discarded, resulting in in-
efficient inference. If a small number of bins are used, the
number of matched samples may be large, but the matching
performance is likely to be poor [21, 23]. As a result, sub-
stantive knowledge of the measurement scale of each variable
is needed to decide how much each variable can be coars-
ened without losing crucial information [23]. In addition, it
is difficult to perform exact matching for data with a large
number variables even with very coarse bins, i.e., the curse
of dimensionality. Our simulations also show that the per-
formance of the CEM is highly dependent on the choice of
the number of bins. In most of our settings, CEM2 had the
largest bias and therefore the largest MSE among all mod-
els we studied. In contrast, the bias of CEM5 is generally
small. However, in some settings (e.g., Scenario 1 Setting 1 ),
CEM5 has a larger SD than CEM2, which leads to a larger
MSE.

4.1.2 Nonmatching-Based Methods
The nonmatching methods in general have relatively

smaller SDs than the matching based methods as they can
utilize information from more samples.

Figure 2: Summary of MSE based on simulations under Sce-
narios 1 and 2. We evaluate models by comparing their
relative performance to other models and scenario-setting
combinations; therefore, identical icons do not ensure equal
performance.

In many of our settings, the SD and MSE of the basic
model LR are very small. However, when the nonlinear effect
is present in the outcome model, the bias and the MSE of
the LR model can be very large. In addition, the LR is also
affected by the violation of the positivity assumption. As
shown in our simulation results, the bias of the LR model
under Scenario 2 Setting 2 is much greater than its bias
under Scenario 1 Setting 2 because the model dependence
issue is exaggerated through extrapolation with positivity
violation [19].

For the inverse probability weighting methods, the per-
formance of the AIPW model in our simulations is always
not inferior to, if not better than, the IPW model in terms
of bias and MSE, which demonstrates the advantage of the
AIPW’s doubly robustness in estimation accuracy. However,
when the nonlinear effect is present in the outcome model
(e.g., Scenario 1 Setting 2, Scenario 2 Setting 2 ), the AIPW
model has a relatively large bias because it does not provide
a good estimate of the treatment assignment or the outcome.

The bias of AIPW_SL is much smaller than the AIPW
when the nonlinear effect is present and comparable to the
AIPW in other settings. Attributed to the doubly robust-
ness and SuperLearner’s flexibility, the AIPW_SL always
presents a small bias in all of our settings in Scenarios 1
and 2. In addition, the SD of AIPW_SL is also very small
for all settings in Scenarios 1 and 2. Therefore, the MSE of
AIPW_SL is always one of the smallest, if not the smallest,
of all settings for Scenarios 1 and 2. Another doubly robust
estimator with the SuperLearner, TMLE_SL, has similar
bias/SD/MSE as the AIPW_SL in Scenario 1, but higher
SD and MSE in Scenario 2.

A summary of MSE based on simulations under Scenar-
ios 1 and 2 is provided in Figure 2.

Under Scenario 3 where an important confounder is not
considered in estimating ATT, a substantial bias is intro-
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Figure 3: Summary of type I error rates based on simu-
lations under Scenarios 1 and 2. We evaluate models by
comparing their relative performance to other models and
scenario-setting combinations; therefore, identical icons do
not ensure equal performance.

duced in all models. Therefore, the bias due to the viola-
tion of unconfoundedness cannot be mitigated by model se-
lection. Although the unconfoundedness assumption cannot
be formally examined, sensitivity analyses have been devel-
oped to assess whether a significant result is sensitive to
potential unmeasured confounding. For example, a popular
sensitivity analysis is based on the E-value measuring the
minimum strength of association that an unmeasured con-
founder would need to have with both the treatment and
outcome to explain away the observed causal effect [36]. It
is important to note, however, that the application of the
E-value is constrained by certain limitations, and its inter-
pretation should be approached with caution [8].

4.2 Type I Error Control
In terms of type I error control, the PSM, PSM_1:2, and

MDM models perform best for all settings in Scenarios 1
and 2 because of their small biases and accurate estimation
of SDs.

In certain scenario-setting combinations, LR, CEM2,
CEM5, IPW, and AIPW exhibit inflated type I errors, pri-
marily attributable to biases in their estimation.

The adequacy of type I error control in TMLE_SL is con-
tingent on the fulfillment of the positivity assumption. Our
simulations reveal that when this assumption is breached,
TMLE_SL tends to underestimate the SD, resulting in se-
vere type I error inflation. This result echoes previous find-
ings in the literature that the use of TMLE in estimating the
average treatment effect (ATE) produces type I error infla-
tion [26]. The AIPW_SL encounters a similar issue, though
its severity is less pronounced compared to the TMLE_SL.

A summary of type I error rates based on simulations
under Scenarios 1 and 2 is provided in Figure 3.

4.3 Scope and Limitations of Simulation
Findings

We would like to emphasize that the primary purpose of
our simulations is to identify scenarios and settings that re-

veal the limitations of the causal inference methods, rather
than to provide a comprehensive evaluation under all possi-
ble conditions, which is not feasible. As a result, the compar-
ison results for performance of estimation and type I error
control may not directly generalize to other simulation set-
tings. When considering specific methods, we recommend
that trialists perform thorough evaluations tailored to their
particular needs prior to implementation.

4.4 Considerations on the Design and
Selecting Analytic Methods for Single-Arm
Trials with External Controls

This study compared the performance of various meth-
ods for estimating the ATT in single-arm clinical trials
with external RWD controls. Through simulations under
different identifiability assumptions, we evaluated metrics of
10 causal inference methods, including matching-based and
nonmatching-based approaches. We found that the doubly
robust methods generally outperformed other approaches in
terms of bias. However, no single method consistently out-
performed others in terms of MSE. Additionally, the iden-
tifiability assumptions played a critical role in the models’
performance, with violations of the positivity and uncon-
foundedness assumptions leading to potential inflation of
type I errors and biases. Among the matching-based meth-
ods, PSM, PSM_1:2, and MDM showed robustness under
various settings, but their performance was affected by the
violation of the positivity assumption and the interaction
between the treatment variable and the covariate. By con-
trast, nonmatching methods in general had smaller SDs than
matching-based methods due to their ability to utilize more
data. AIPW_SL and TMLE_SL exhibited advantages in
terms of bias and MSE due to their double robustness and
flexibility, but they tended to underestimate the SD and
experienced type I error inflation with violated positivity
assumption.

In light of these findings, it is essential to recognize the
limitations of causal inference methods for single-arm trials
with external controls, especially when any identifiability
assumption can be violated. Violations of these assumptions
can lead to biased estimates of treatment effects and an
increased risk of type I errors. Therefore, it is crucial to have
careful considerations of these factors in both the design and
analysis phases of such trials. Accordingly, we would like to
recommend the following procedures for planning the single-
arm trial with an external control.

1. Determine the causal treatment effect of inter-
est: To address pertinent clinical questions, it is es-
sential to select the appropriate causal treatment ef-
fect of interest. Specifically, when seeking to understand
the treatment effect solely in treated patients, attention
should be directed towards ATT.

2. Consider the consistency assumption in the de-
sign phase: The consistency assumption requires the
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treatment be sufficiently well-defined. Therefore, during
the design stages, the clinical experts should scrutinize
the definition of the treatment to ensure that it is ad-
equately well-defined. Additionally, it is important to
ensure that the data to be collected contain values that
align with the well-defined treatment.

3. Consider the positivity assumption in the de-
sign phase: The positivity assumption cannot be ex-
amined at the trial design stage. However, measures
should be used to make this assumption as valid as
possible. If historical trial patients are selected for in-
clusion in the external control arm (ECA), the planned
single-arm trial and historical trials should share similar
inclusion/exclusion criteria and other design elements.
For other sources of RWD to be included in an ECA,
e.g., electronic medical records, the eligibility criteria
for the single-arm and the ECA should also be made
to avoid theoretical violation of the positivity assump-
tion. An alternative and preferred way to fulfill this pur-
pose is to use prospectively-collected RWD rather than
retrospectively-collected. In addition, if possible, prior
study information can be used to evaluate the positiv-
ity assumption, e.g., plotting the PS distribution based
on historical studies with the same treatment.

4. Consider the unconfoundedness assumption in
the design phase: The unconfoundedness assump-
tion can be met if all confounders are identified and
controlled. However, if an important confounding fac-
tor is not taken into account, the analysis results can
be highly biased. Every effort should be made to iden-
tify all important confounders through the literature
and expert knowledge. In addition, it should be ensured
that the information from all important confounders is
measured in the planned single-arm trial and is avail-
able in the RWD used for the ECA. Furthermore, sen-
sitivity analyses such as the E-value or other tipping
point analyses should be pre-planned during the design
stage.

5. Select appropriate analytic models for the pri-
mary and sensitivity analyses: One of the most im-
portant requirements for the primary analysis method
is to ensure the control of the type I error. After the
type I error control is taken into account, the accu-
racy of the causal effect estimation is the next im-
portant consideration. For trials in which the positive
assumption cannot be validly justified in the design
phase, we suggest using methods that can largely con-
trol the type I error even if the positive assumption
does not hold, e.g., the PSM or MDM model. When
the expected prevalence rate of treatment is low, then
1 to r matching with r ≥ 2 should be considered.
For experiments where the positivity assumption can
be validly justified, a doubly robust approach such as
TMLE_SL or AIPW_SL may be recommended as the
primary analysis method to obtain better estimation
precision.

After the trial is conducted and the trial data are avail-
able, one may consider the following procedures to assist in
analyses using the causal inference models.

1. Check the performance of the method: For ex-
ample, balance diagnostics should always be conducted
to evaluate the matching performance of the matching-
based method [37].

2. Evaluate the positivity assumption: The plot of
the PS distribution should be plotted to evaluate the
positivity assumption. If the positivity assumption ap-
pears to be clearly violated, then results based on meth-
ods that are strongly influenced by the violation of this
assumption, such as doubly robust methods with the
SuperLearner, may not be reliable and should be inter-
preted with caution.

3. Conduct sensitivity analyses for the uncon-
foundedness assumption: Although the unconfound-
edness assumption in general cannot be tested di-
rectly, sensitivity analyses should be performed to as-
sess whether the primary analysis results are robust
against the unmeasured confounder.
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