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Abstract
This paper discusses two elements of reproducibility in published research. First, it examines whether published results

are reproducible with author-supplied data: specifically, whether the authors publish their data, whether authors respond
to requests for data when data are claimed to be available upon reasonable request, and whether data provided are
usable to reproduce the authors’ results. Second, we seek to substantiate the currently mostly theoretical concerns about
the Hosmer-Lemeshow goodness-of-fit test’s lack of power by investigating its usage in practice: in published research, by
authors aiming to validate their models. By using the authors’ data to build larger alternative models and doing hypothesis
testing to show that the smaller models—validated by Hosmer-Lemeshow—do not adequately capture information that
is available in the data, we demonstrate that the Hosmer-Lemeshow goodness of fit test is often incapable of detecting
inadequacies in models.

keywords and phrases: Hosmer-Lemeshow test, Reverse p-hacking, Goodness-of-fit, Logistic regression, Reproducibil-
ity.

1. INTRODUCTION
Concerns of reproducibility and replicability are continu-

ally on the rise across many academic disciplines, with con-
tributing factors including “p-hacking,” improper statistical
analysis, and poor practices in data management and data
sharing. In fact, the problem of p-hacking has become so
widespread that, in 2016, the American Statistical Associ-
ation felt it necessary to release a statement on p-hacking,
the proper usage of p-values, and the impact of misusing p-
values on reproducibility [19], and a psychology journal ac-
tually banned the usage of p-values entirely [20]. Problems
with data sharing and data availability have also generated
concern; for example, starting in 2014, the journal PLOS
ONE implemented policies to promote data sharing and en-
couraging researchers to make the data used in its publica-
tions publicly available [6]. The question of whether these
policies are feasible and effective, especially due to confiden-
tiality concerns, has sparked discussion. Nonetheless, some
positive changes have been reported. For example, a study
[7] done in 2023 finds that, for the journal Management Sci-
ence, the “Data and Code Disclosure” policy implemented
in 2019 marked a substantial increase in the proportion of
articles that could be reproduced.

In this paper, we conduct analyses on both of these
factors—p-hacking and lack of responsible data sharing—
that contribute to the “reproducibility crisis”.

In consideration of the former problem, p-hacking, one
goal of this paper is to examine a currently under-examined
∗Corresponding author.

facet of this issue, which we will refer to as “reverse p-
hacking.” The term “reverse p-hacking” has been used previ-
ously to describe “[ensuring] that tests produce a nonsignif-
icant result” [4], which is similar in spirit to our intended
meaning. We will use the same vocabulary, but our specific
aims are to investigate the usage of “reverse p-hacking” in
the process of model validation. We seek to examine the
practice, intentional or otherwise, of using tests with low
power to validate models, thus producing insignificant p-
values that support the models based on which authors draw
conclusions.

Here, we define our specific area of focus: we analyze pub-
lished papers that develop a binary logistic regression model,
then use the Hosmer-Lemeshow goodness-of-fit test to vali-
date it. This particular topic is of interest due to the preva-
lence in usage of the Hosmer-Lemeshow test. The binary lo-
gistic regression remains one of the most popular statistical
models in application, and goodness-of-fit tests are typically
performed to validate the final logistic regression models.
When the data are grouped, the standard chi-square test
or deviance test are asymptotically valid [5]; however, when
one or more predictors are continuous, these tests cannot be
used. The Hosmer-Lemeshow test [9] was developed to ad-
dress this issue. It became and remains a very widely-used
[12] goodness-of-fit test for logistic regression on ungrouped
data and is widely cited (see our analysis on trends for ci-
tations, with data downloaded from the online article via
Taylor & Francis), and it is also taught in popular text-
books (one of which was written by Hosmer & Lemeshow
themselves [10] along with Rodney X. Sturdivant).
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Recently, concerns have been raised regarding the use of
the Hosmer-Lemeshow test for logistic regression (e.g. [13],
[21]). One major concern is the test’s lack of power in detect-
ing inadequacy of the model being assessed, which can be es-
pecially serious when the model has missed important vari-
ables available in the data that should have been included
(i.e. they significantly improve the model when included). If
these theoretical concerns are practically relevant, the usage
of the Hosmer-Lemeshow test may lead to, if not intentional,
passive “reverse p-hacking” for justification of a model by
the data analyst.

One goal of this paper is therefore to investigate the abil-
ity, or lack thereof, of the Hosmer-Lemeshow test to detect
a poorly-fit model. We conduct a practically-oriented ex-
amination of the test’s applications—specifically, its actual
usage in published research.

In addition to the analysis on the Hosmer-Lemeshow
goodness-of-fit test, we also investigate the second factor of
the reproducibility problem highlighted above: the lack of
proper data sharing practices, either by not sharing data at
all or by supplying data that cannot be used to reproduce
the results of the paper. Collecting our own data is outside
the scope of this project, so we rely on raw data being
made available by authors to reproduce results described
in their papers. Therefore, since reproducing the results
described in the papers is a necessary first step in our
analysis of the Hosmer-Lemeshow test, we also examine
potential problems with data availability. We investigate
this problem from two different angles. First, whether data
is made available, particularly when the authors claim
that data already is or can be made available. Second,
for the data provided—whether they are already included
in a “Supplemental Materials” section of the paper or
supplied by request—we check if they are actually usable
to reproduce the results described in the paper.

When we say “reproducing results”, we specify two ob-
jectives: the first is to replicate the results of the regression
itself, preferably exactly, by getting identical or very nearly
identical odds ratios as those reported in the given paper;
the second is to reproduce the conclusion of the Hosmer-
Lemeshow test—simply obtaining a non-significant p-value
at the threshold indicated in the paper, and therefore reach-
ing the same conclusion as the paper’s, is sufficient for our
purposes. It is after the successful replication of these two
components of the paper’s results that we begin our analysis
of the Hosmer-Lemeshow test itself.

2. STUDY DESIGN
2.1 Search Term Engineering

To examine publications in a systematic way, we designed
a search term set on Google Scholar, then reviewed the pa-
pers in the order that Google Scholar displayed them. To
obtain the highest proportion of relevant and usable papers
in our analysis, we used a specific set of keywords as the
search terms in Google Scholar.

Naturally, to obtain papers that use the Hosmer-
Lemeshow test, we include the term “hosmer-lemeshow.”
During the process of search-term engineering, we found
that raw data is rarely easily accessible, but the few pa-
pers that did have data available usually included a data
availability statement. We thus extracted some of the most
commonly used phrases in such data availability statements,
such as “data availability,” “availability of data,” and
“relevant data are available,” and included them in our
search term set using the “OR” keyword. Using these search
terms yielded a high proportion of desired results, but a
large number of them included a calibration for the model.
To avoid this complexity, we added an additional term -
calibration NEAR hosmer-lemeshow.

Thus, the final search term set used to find papers on
Google Scholar was: “hosmer-lemeshow” AND “data
availability” OR “availability of data” OR “rele-
vant data are available” -calibration NEAR hosmer-
lemeshow.

2.2 Dataset Organization
We created our own dataset to keep a record of all papers

we analyzed. We organize the dataset as follows: the first
column is the title of the paper, the next is the year of
publication, then the link Google Scholar provided, then the
“availability statement status” of the paper—whether the
paper included data availability statement or not. There are
6 categories for the “statement status:”

1. “Not Relevant”: These papers are not usable for our
analysis, e.g. Hosmer and Lemeshow’s own paper, or
some kind of meta-analysis done on previous results.

2. “No Statement”: These papers had no data availabil-
ity statement. These papers reference the availability of
data obtained from other sources that they needed to
produce their own results, not whether they will pro-
vide their raw data to their readers.

3. “Contacted”: In these cases, the statement directs the
reader to email the corresponding author(s). It is stated
that data are available upon reasonable request.

4. “Claimed Available”: In these cases, the data avail-
ability statement reads, approximately, “relevant data
are included in the paper or the Supporting Materi-
als section,” but the data is actually not accessible,
or the supplemental materials provided are not raw
data.

5. “Claimed Not Available”: This means that the state-
ment is present, but it directly informs the reader that
data cannot be made available, usually due to confiden-
tiality concerns regarding sensitive data.

6. “Data Available”: This means that raw data is in-
cluded, usually in the “Supporting Information” section
of the paper.

The last column indicates the paper’s replication status:
whether we ultimately were able to replicate the published
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logistic regression (matching odds ratios as reported in the
paper), or if there were roadblocks, such as missing vari-
ables.

2.3 Timeline of Research
Systematic review of the papers using the search term set

described above began in August of 2022.
As of the date 23 August, 2023, all papers in the first 8

pages of results in Google Scholar are included in our dataset
of analyzed articles in the order they appeared in. How-
ever, because the order of results in Google Scholar shifts
over time, there are articles included at the bottom of our
dataset (specifically, the last 8) that occur on later pages
of a Google Scholar Search. These papers were examined at
earlier dates and are now not displayed within the first 8
pages of Google Scholar. We include them in our dataset for
the sake of completeness. Therefore, we have 88 examined
papers in total.

We briefly note that, due to the inclusion of the three
search terms about data availability, these 88 papers are, in
the far majority, published within the last few years, with
74% published 2020 or later, and 87.5% published 2016 or
later. The Google Scholar search results with these search
terms omitted are far older.

3. RESULTS
3.1 Data Availability of Examined Publications

Out of 88 papers, we deemed 81 relevant to our research,
so we will examine the data availability claims and the final
outcomes (whether data was actually obtainable and ulti-
mately usable) of these 81 papers.

Even when a data availability statement was present,
some were merely suggestions to contact the corresponding
author(s), and even when data are claimed to be available,
what was provided was not always raw data or usable data.

We therefore present a detailed breakdown of the 81 pa-
pers in question and their data availability: in Figure 1,
we visualize the set of papers in a tree, where each set of
branches divides its node into subsets using some data avail-
ability status criterion. For example, the first set of branches
divides the root node into two categories: one for papers that
have data availability statements, and one for papers that
do not. For each child node, the percentage of its parent
node its category encompasses is labeled.

After omitting irrelevant papers (e.g. Hosmer and
Lemeshow’s own paper) and papers with no data availability
statement, we discard 24 papers and retain 64. We describe
the breakdown of the data availability statement categories,
i.e. claiming “data is available” or “data is not available,” or
including a comment to “contact the author(s),” and the ul-
timate true availability of the data (i.e. whether raw, usable
data can actually be obtained).

Out of the 64 papers with data availability statements,
43 claimed data would be made available upon reasonable
request, 15 claimed data to be available in the paper or its
“Supporting Information” section, and 6 claimed confiden-
tiality concerns.

We further examine the former two categories: out of the
15 papers that claimed data are available, 4 papers included
supplemental materials that were not raw data, 2 papers had
links to data that are not functional, 4 provided data that
are not usable due to missing predictors or the outcome, and
5 provided usable raw data.

Out of the 43 papers for which we contacted correspond-
ing author(s), 33 yielded no response (the most recent email
sent was on 23 August, 2023), 7 responses cited confidential-
ity concerns, some requesting certification with institutions
in their home country (which we did not pursue), and some
requesting specific publication details (which we were not
able to provide). We encountered 1 message send error, in
which the email was not delivered, possibly due to an invalid
or outdated email address. In 2 cases, usable raw data was
provided by email.
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Figure 1: Tree of replicability status of resulting papers.

Thus, in total, we find several concerning trends in published
research regarding data availability:

1. Lack of data availability statement: Unless the presence
of a data availability statement is explicitly included in
our set of search terms, published papers displayed in
a Google Scholar search often do not include one.

2. Providing non-data: Data are claimed to be available,
but the supporting materials were actually summary
statistics or other materials, not raw data used to build
the regression model.

3. Providing incomplete data: Data given has variables
omitted without disclaimer or otherwise clear indica-
tion of reason for its omission. Processes were some-
times described for the derivation of variables ulti-
mately used in the regression, but not in enough detail
to allow reproduction of results.

4. Ignoring email requests: Although the data availability
statement welcomes requests sent by email to the corre-

sponding author(s), more than 70% of emails received
no response.

Even though a majority of papers claim that data already
is or can be made available, for very few papers were we
actually able to obtain usable data. This finding offers some
support of earlier research concluding that mandating these
data availability statements does not make data sharing sub-
stantially more effective [16].

3.2 Data Description for Papers Included in
Further Analysis

There are 7 papers included in the ultimate analysis
on the reliability of the usage of the Hosmer-Lemeshow
test, and because two papers developed 2 separate logis-
tic regression models, there are a total of 9 models ana-
lyzed.

The first step is replicate the authors’ selected models as
closely as possible, as a baseline for comparison. To do this,
we analyze the available datasets.

3.2.1 Dataset Summary
We summarize the basic metadata of each dataset we

used to replicate the models.
We note in Table 1 the number of observations (rows) in

the dataset, excluding null rows, the number of total vari-
ables (columns) included in the dataset by the authors, and
the number of variables ultimately included in the final mul-
tivariate binary logistic regression model, including the out-
come variable.

3.2.2 Datasets Enabling Exact Replication of Expected Results
Five of the analyzed models, with two from the same pa-

per, had data exactly as described. In most cases, other vari-
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Table 1. Paper Datasets Basic Metadata.
Paper Authors Number of Observations Total Variables Variables in Model

Mithra et al. [14] 450 222 7
Gebeyehu et al. [8] 421 53 2
Campos et al. [3] 198 37 3

Peterer et al. (Model 1) [15] 311 66 6
Peterer et al. (Model 2) [15] 311 66 6

Zhu et al. (Model 1) [22] 76,359 23 3
Zhu et al. (Model 2) [22] 77,018 26 7

Kibi et al. [11] 5,313 37 7
Wang et al. [18] 115 6 5

ables that were not included in the final multiple regression
model were also present, either because they were included
in univariate analyses, because the authors deemed them
otherwise important to keep in the dataset, or they were
not removed for the sake of completeness. To replicate the
authors’ models exactly, we first removed these extraneous
variables during this step, keeping only those specified to be
in the final multivariate model.

For categorical variables, it was necessary to map them
to binary or otherwise numeric values (one-hot encoding).
When the binary logistic regression was run, the odds ratios
were identical or nearly identical to the described results in
the paper (it was sometimes necessary to use the additive
reciprocal of the output coefficient to match the given odds
ratios, when the coefficients produced by the regression were
the opposites of those reported).

3.2.3 Datasets with Anomalies in the Replication Process

For three of the models, there were anomalies in the data,
omissions in the description of the data, or other roadblocks
in replicating the papers’ reported results exactly. We de-
scribe these three datasets here.

For the paper by Gebeyehu et al., only a subset of the
data were made publicly available. The rest of the data were
not released due to a data sharing policy (as relayed to us via
an email conversation). We thus proceeded with the publicly
available subset of the data, which includes 421 rows, and
we attempted to replicate the results in the paper. Our odds
ratios obtained are quite similar to those reported in the pa-
per, and using Hosmer-Lemeshow obtains a non-significant
p-value of nearly 1. The paper does not report an exact p-
value, just stating that the significance level is 0.05 and that
the p-value obtained was not significant.

For the paper by Kibi et al., the process of dealing with
third-category responses to binary questions (such as “I
don’t know whether I received a flu vaccine”) was not de-
scribed. Experimenting with different methods of dealing
with these third-category responses, we were still able to get
extremely similar odds ratios/coefficients to those reported
in the paper for all but one variable. However, we encoun-
tered another unexpected problem: when using the Hosmer-
Lemeshow test, we obtain a significant p-value (with number

of bins ranging from 2 to 15 tested) at the alpha = 0.05 level.
The paper’s authors reported using a 0.05 significance level
but did not report their exact p-value, and we did not re-
ceive a response to our email inquiring about the significant
results.

For the paper by Peterer et al., there are two models
built, each with the same set of predictors but a different
outcome. One of the used variables in the two final multivari-
ate logistic regressions, “Gender”, was not available due to
confidentiality. However, the authors did not find this vari-
able to be significant in either model. We thus attempted
to run logistic regressions using the other variables, omit-
ting the missing “Gender” variable. We find that our coeffi-
cients are quite close to those reported in the paper, despite
the Gender variable being excluded. Upon using Hosmer-
Lemeshow, we also find an insignificant p-value. We thus
still choose to include this paper in the next stage of our
analysis.

3.3 Reproducing Binary Logistic Regressions
For all 9 models, we obtained odds ratio values that are

reasonably close to those reported by the authors. Nearly
all were comfortably within the confidence interval reported
in the results (far closer to the exact value reported than
the boundaries). The one exception was a single predictor
in the paper by Kibi et al., which was outside the reported
confidence interval.

The p-values we obtained from conducting the Hosmer-
Lemeshow test do differ from the ones reported in the pa-
pers. This is likely due to varying implementations of the
Hosmer-Lemeshow test. Additionally, the number of bins
used was not specified in any of the papers, so we used a de-
fault of 10 in the following reported values. An examination
of the differing p-values resultant from bin count variation
is included in later analysis in this paper. Despite the differ-
ences in p-values, the conclusions drawn, using a threshold
α = 0.05, are consistent with those of the authors (with the
exception described above for Kibi et al.).

We report our obtained p-values using the default bin
number of 10, compared to those given in the original pa-
pers, in Table 2.
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Table 2. Comparison of p-Values.
Paper Title Given p-Value Obtained p-Value
Mithra et al. Not Reported (> 0.05) 0.299

Gebeyehu et al. Not Reported (> 0.05) 1.0
Campos et al. 0.684 0.442
Peterer et al. 0.11 0.600
Peterer et al. 0.88 0.640

Zhu et al. 0.130 0.970
Zhu et al. 0.638 0.843
Kibi et al. Not Reported 7.20e-10
Wang et al. 0.962 0.462

3.4 Hosmer-Lemeshow Sensitivity to Bin
Count

To analyze the sensitivity of the Hosmer-Lemeshow test
to the number of bins used in the implementation, we vary
the bin count when conducting the test with the models we
obtained. Existing concerns about the Hosmer-Lemeshow
test include bin sensitivity: In a blog post by Paul Allison in
Statistical Horizons [2], it was found that changing the bins
from 8 to 9 changes the result from significant (p = 0.0499)
to not significant (p = 0.11), and further increasing the bins
to 11 increases the p-value to 0.64. To analyze these concerns
on our collection of datasets, we use bins 5–16, and examine
the resultant p-value.

We find that varying the bin count does not change the
conclusion for any of the models. In 8 out of 9 models, the
p-value is above the reported cutoff threshold, 0.05, for all
12 bin counts. For the 1 model in which we obtained a sig-
nificant p-value with the default 10 bins, the p-values are
significant for all 12 bins.

We do notice, however, that there is a rather large range
the p-values take depending on the bin count. Many papers
have a range as wide as 0.6 (excluding the paper with a
significant p-value, which had a range of several factors of
10), and in the paper by Mithra et al., the p-value dropped
to 0.07, near the 0.05 threshold, with 8 bins.

3.5 Assessing the Efficacy of
Hosmer-Lemeshow

We now study the efficacy of the Hosmer-Lemeshow
test. We are interested in analyzing whether the Hosmer-
Lemeshow goodness-of-fit test is able to detect a poorly-fit
or non-ideal model. A comparison to the full model with all
available predictors, the saturated model, is a requirement
of a goodness-of-fit test for binary logistic regressions [10],
so if, when we use additional predictors from the dataset,
the model is significantly improved, this suggests that the
Hosmer-Lemeshow test was not able to detect that the orig-
inal model is not a proper fit—that the original model was
missing information that can substantially improve model
performance.

To test this, we consider not only those predictors ulti-
mately chosen in the authors’ final multivariate logistic re-
gression model, but also those predictors not selected (but
still present in the data, of course). We work to produce
an alternative model to the authors’ reported final model,
and specifically, we require our model have a superset of the
original predictors. The following describes the process in
producing this alternative model:

1. We begin with all available data. We first omit vari-
ables with too many null values. We also omit variables
where the values are too complex (for example, if the
value is description based, not numerical or categori-
cal). We then omit variables that were either used in
any way to construct the outcome, or are too similar to
the outcome, such as a continuous version of the binary
outcome variable.

2. To consider predictors that were not used in the au-
thors’ final multivariate logistic regression, it was nec-
essary to omit rows in which there were null values in
the originally unused columns. This was done to ensure
consistency in the regression comparison, and particu-
larly in the comparison of the degrees of freedom. In
certain cases, this caused fluctuations in how well the
original model was able to be reproduced, but changes
in odds ratios were not significant.

3. Using this dataset containing all acceptable predictors,
we first re-run the original model proposed by the au-
thors as a baseline. Next, using all predictors, we im-
plement a backward stepwise regression to select the
“ideal” subset of them (as defined by the backward step-
wise regression process).

4. We then compare this model ultimately chosen in the
backward stepwise regression with the original model
chosen by the authors. We take note of the differences
in predictors selected, then run a regression with the
following set of predictors:
(a) all variables originally chosen by the authors, and
(b) the variables chosen in the backward stepwise re-

gression that were not in the original model.
We thus produce an alternative model, one with a su-
perset of the original predictors.

Prior to discussing the comparison between the original and
alternative models, we discuss the execution of the above
process for each paper.

First, we find that for two papers, Wang et al. and Mithra
et al., the remaining predictors included in the data are
difficult to extract due to missingness, encoding difficulties,
or other factors (for example, convergence issues when there
are too many binary variables included in the model). We
thus do not include them in this section of analysis.

The paper by Gebeyehu et al., uses the Hosmer-
Lemeshow test for variable selection rather than for vali-
dating their final multivariate regression, so we choose to
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analyze separately, and thus do not include it in this section
of analysis.

We will thus focus on examining the remaining four pa-
pers using the methodology described above. For papers
Campos et al. and the model for male patients in Zhu et al.,
we identified 3 and 4 additional variables that improve the
model, respectively. For the model for female patients in Zhu
et al., the backward stepwise regression process produced a
subset of the original variables chosen by the authors, so we
do not investigate this model further.

In the other cases, an alternative model was produced,
but with deviations in the process described above, and a
more detailed description of the methodology of construct-
ing the model is required:

1. In the paper by Kibi et al., there is a column containing
the age category of the participants, in which there are
5 categories. In the final regression model described in
the paper, there is one binary age variable used, where
the age categories are combined to form two categories:
under 18 and over 18. We find that using the original
“age category” variable instead of the binary “adult”
variable yields a significantly better model.
Another set of variables identified by the backward
stepwise regression are the “education” variables, with
7 categories in total.
We therefore examine three different alternative mod-
els: one with the binary age variable changed to 5 cate-
gories, one keeping the original binary age variable and
adding the “education” variables, and one doing both.

2. In the paper by Peterer et al., the backward stepwise
regression did not yield a significantly better model.
However, we consider the encoding of a variable the au-
thors did use: the Injury Severity Score (ISS) is a score
ranging from 0–75. The column of raw ISS values are
mapped to ISS groups, following the standard of a cut-
off at 16: scores 9–15 are considered moderate, and 16
and above are considered severe. Some literature sup-
ports usage of an additional category: separating val-
ues above 16 into 16–24 and 25 and above [17]. We
experiment with using the raw ISS score, a continuous
variable, and using the ISS score with three categories
instead of two. In both cases, we see an improvement
in the model. We also note that when changing the
discrete binary “ISS group” variable into the continu-
ous version, there is no loss in degrees of freedom, but
when we use the alternative discrete “ISS group” value,
we lose 1 degree of freedom due to the addition of the
third category. This consideration is naturally only rel-
evant if dividing the score into a binary variable is not
a rigid requirement.

We may use the Akaike information criterion (AIC) [1], a
widely used model selection tool, to conduct a first compar-
ison of the original and alternative models. We immediately
see that the AIC scores of our alternative models are lower
than those of the original models.

Table 3. AIC Scores.
Paper Title Original Model Alternative Model

Campos et al. 239.8 228.66
Kibi et al. (with age) 5520.3 5344.6

Kibi et al. (with education) 5520.3 5385.1
Kibi et al. (with both) 5520.3 5312.7

Zhu et al. 1471.1 1461.5
Peterer et al. (continuous) 266.98 211.45

Peterer et al. (ternary) 266.98 253.72

Next, we do a more rigorous comparison of the original
versus the alternative models. We do this by examining the
residual deviance. For two models where one has a subset of
the predictors of the other, the larger model naturally has
fewer degrees of freedom. Under the assumption that the
smaller model is proper, the difference in the residual de-
viance follows a chi-square distribution with n2−n1 degrees
of freedom, where n2 and n1 are the degrees of freedom for
the larger and smaller models, respectively.

We thus may take the difference in the residual deviance,
and use a chi-square test with the appropriate degrees of
freedom to determine whether the discrepancy is significant.

We visualize our results in the Table 4, where the sub-
rows are the residual deviance and degrees of freedom for the
original and alternative models as well as the difference be-
tween them, which is the test statistic used. The last column
is the p-value obtained using the chi-square distribution.

We thus find that the discrepancy in model performance
is highly significant.
3.5.1 A Misuse of the Hosmer-Lemeshow Test

During our analysis of the usage of the Hosmer-Lemeshow
test, we found that it was used incorrectly for a task unre-
lated to the nature of the test, i.e., the methodology of using
the test for variable selection as described in Gebeyehu et al.

The authors did not use the Hosmer-Lemeshow test to
analyze the goodness-of-fit of the final model, but was rather
used it on each of the univariate regressions to test whether,
for that predictor, the difference in expected and observed
proportions is significant. The predictors that passed this
test were then included in the further multivariate analysis.

We express skepticism about the validity of this method-
ology, and conduct the following two experiments:

1. In this experiment, we generate y values randomly, and
test whether the Hosmer-Lemeshow test allows predic-
tors to pass the test despite having no predictive ability
(the outcome being random).
(a) Using a Bernoulli random value generator, we gen-

erate random outcome values with probability of
success being 0.9, matching the proportion of pos-
itive outcomes in the actual data.

(b) We then use the Hosmer-Lemeshow test on a uni-
variate logistic regression with each independent
variable, and observe the p-values.
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Table 4. Comparison of Original Model with Alternative.
Paper Title Original Model Alternative Model Test Statistic p-Value

Campos et al. 219.80 202.66 17.14 6.614e-4
df = 188 df = 185 df = 3

Kibi et al. (age) 5498.3 5316.6 181.7 3.787e-39
df = 5255 df = 5252 df = 3

Kibi et al. (edu) 5498.3 5353.1 145.2 1.403e-29
df = 5255 df = 5250 df = 5

Kibi et al. (both) 5498.3 5274.7 223.6 6.680e-44
df = 5255 df = 5247 df = 8

Zhu et al. 1463.1 1445.5 17.6 1.477e-3
df = 76355 df = 76351 df = 4

Peterer et al. (cont.) 256.98 201.45 55.53 n/a
df = 205 df = 205 n/a

Peterer et al. (ternary) 256.98 241.72 15.26 9.368e-05
df = 205 df = 204 df = 1

Ultimately, around 98% of runs, we obtain the result
that all predictors have non-significant p-values, in fact,
nearly all are almost exactly 1. As we can see from this
experiment, the Hosmer-Lemeshow test is not capable
of identifying when the variable is not very predictive—
all predictors tested passed the test, despite the fact
that the outcome values are randomly generated.

2. We conduct another experiment in the other direction:
we consider whether the Hosmer-Lemeshow test would
reject a significant predictor when conducting univari-
ate analysis.
In this experiment, we first randomly generate data in
the following manner:
(a) Let variable x1 be a value randomly generated

from a uniform distribution with range [−5, 5].
(b) Let variable x2 be equal to (x1 + ε)2, where ε is

noise randomly generated from a normal distri-
bution with mean 0 and variance 2. Using this
value for variance produces x1 and x2 vectors with
a Pearson correlation coefficient of approximately
0.5.

(c) Let coefficients β1 and β2 both be 0.5, and let the
intercept be β0 = 0. We use these chosen values
to calculate probabilities of being in the positive
class for each row of data.

(d) Using Bernoulli random variables with the calcu-
lated probabilities for each row, we then generate
values for each y.

(e) We now conduct two regressions: the first is a bi-
variate regression with both x1 and x2, and the
second is a univariate regression with only x1. For
the bivariate regression, we check whether the co-
efficient for x1 is significant, using a threshold of
α = 0.05.

(f) We then use the Hosmer-Lemeshow test on the
univariate regression with only x1 and check
whether the test rejects x1 as a fit predictor for the
outcome, mimicking the univariate analysis done
in Gebeyehu et al. We find that, with approxi-
mately 95% of runs, although x1 is deemed to be
significant in the bivariate analysis, the Hosmer-
Lemeshow test actually rejects the predictor.

We see that in this case, the Hosmer-Lemeshow test
erroneously rejects an important predictor.

These two experiments illustrate the fact that the Hosmer-
Lemeshow test, by design, is not a proper tool for variable
selection, and its usage in Gebeyehu et al. is therefore not
suitable.

4. CONCLUSION
The irreproducibility crisis is now widely recognized in

the scientific community. There are a number of contribut-
ing factors, and two are addressed in this work; namely, the
ability to obtain data and reproduce the same quantitative
results by the same data analysis procedure, and the reli-
ability of a statistical tool that is free from p-hacking or
reverse p-hacking.

Our research has these two specific goals: to investi-
gate the reproducibility of the results from published pa-
pers whose objective is to develop a logistic regression and
validate their results using the Hosmer-Lemeshow test, and
to investigate the adequacies of the widely-used Hosmer-
Lemeshow test itself.

First, on the reproducibility of results in published re-
search using authors’ data, we found serious discrepancies
between data that are claimed to be available and data that
are usable to reproduce results. Out of the 88 papers ini-
tially included in our study, 64 were relevant to our goals,
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and of these 64 papers that claim data are available or can be
made available upon reasonable request, we were able to re-
produce the results of only 7, an astonishingly small number.
With most papers that have a data availability statement
claiming that the raw data are available upon reasonable
request, contacting the authors fails to receive a response.
When data are claimed to be available in a supplemental
materials section of the paper, the materials available are
often not data. When raw data is indeed provided, the data
is often unusable to reproduce the authors’ results, either
due to missing variables or corrupted files.

Second, on the inadequacies of the Homser-Lemeshow
goodness-of-fit test, we substantiated the theoretical con-
cerns of its lack of power by demonstrating that the Homser-
Lemeshow test failed to detect the improper models pro-
posed by the authors in published research. In all 4 models
that were ultimately tested, we were able to build a signif-
icantly better model, which we verified based on chi-square
tests using the difference in residual deviance of our new
proposed model and the authors’ original model. With such
prevalence of the Hosmer-Lemeshow goodness-of-fit test in
many fields of research, we demonstrated that its continued
usage is indeed a substantial problem, improperly certifying
a misspecified model and the subsequent conclusions.

SUPPLEMENTARY MATERIAL
We include our meta-data dataset, described in Sec-

tion 2.2 of the paper. We also include the R code used to
run the regressions and tests.
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