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Abstract
Estimating a prediction function is a fundamental component of many data analyses. The super learner ensemble,

a particular implementation of stacking, has desirable theoretical properties and has been used successfully in many
applications. Dimension reduction can be accomplished by using variable screening algorithms (screeners), including the
lasso, within the ensemble prior to fitting other prediction algorithms. However, the performance of a super learner using
the lasso for dimension reduction has not been fully explored in cases where the lasso is known to perform poorly. We
provide empirical results that suggest that a diverse set of candidate screeners should be used to protect against poor
performance of any one screener, similar to the guidance for choosing a library of prediction algorithms for the super
learner. These results are further illustrated through the analysis of HIV-1 antibody data.
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1. INTRODUCTION
Estimating a prediction function is a fundamental compo-

nent of statistical data analysis. Based on measured outcome
Y and covariates X, the goal is to estimate the conditional
expectation E(Y | X). There are many approaches to es-
timating this regression function, ranging from simple and
fully parametric [e.g., generalized linear models; 20] to flex-
ible machine learning approaches, including random forests
[3], gradient boosted trees [13], the lasso [27], and neural
networks [2]. While a single estimator (also referred to as a
learner) may be chosen, it can be advantageous to instead
consider an ensemble of multiple candidate learners; a large
ensemble of flexible learners increases the chance that one
learner can approximate the underlying conditional expec-
tation well.

The super learner (SL) [29, 24] is one such ensemble, and
is related to stacking [32]. The super learner has been shown
to have the same expected loss for predicting the outcome as
the oracle estimator, asymptotically [29]. If both simple and
complex algorithms are included in the library of candidate
learners, the cross-validation used within the super learner
to select the optimal combination of candidate learners to
minimize a cross-validated loss function can minimize the
risk of overfitting [1]. The super learner has been used suc-
cessfully in many applications [see, e.g., 28, 23, 21, 18, 6]
and is implemented in several software packages for the R
programming language [25, 10].

In some settings, it may be of interest to perform variable
selection as part of certain candidate learners within the
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super learner. This includes high-dimensional settings where
prediction performance may be improved by reducing the
dimension prior to prediction and settings where having a
parsimonious set of variables is a goal of the analysis. While
recent work has developed general guidelines for specifying a
super learner [22], the choice of screening algorithms (often
referred to as screeners) has been relatively unexplored. In
particular, there are cases where theory suggests that the
lasso does not consistently select the most relevant variables
[17]. In this article, we explore the use of the lasso as a
screener within a super learner ensemble, with the goal of
determining if there are cases where the performance of the
ensemble is sensitive to possible poor performance of the
lasso screener.

2. OVERVIEW OF VARIABLE SCREENING
IN THE SUPER LEARNER

Phillips et al. [22] provide a thorough overview of the
super learner algorithm, which we briefly summarize here.
The super learner takes as input the following: the dataset
{(Xi, Yi)}ni=1; a library of candidate learners (e.g., random
forests, the lasso, neural networks), possibly including com-
binations with variable screeners (e.g., the lasso) that re-
duce the dimension of the covariates prior to prediction;
a fixed number of cross-validation folds; and a loss func-
tion to minimize using cross-validation. The ensemble super
learner (hereafter eSL) uses a meta-learner to combine the
predictions from the candidate learners [22]. Below, we will
refer to a special case of the eSL, which we call the cSL:
the convex combination of the candidate learners that mini-
mizes the cross-validated loss. The combination weights are
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greater than or equal to zero by definition. The discrete su-
per learner (dSL) selects the single candidate learner that
minimizes the cross-validated loss.

Including variable screeners in the SL library is moti-
vated by the fact that reducing the number of covariates
can improve prediction performance in some cases [see, e.g.,
27], for example, high-dimensional settings. Screeners can be
broadly categorized as outcome-blind, such as removing one
variable from a pair of highly correlated covariates; or based
on the outcome-covariate relationship. Examples of this lat-
ter category include removing covariates with univariate
outcome-correlation-test p-value larger than a threshold; re-
moving covariates with random forest variable importance
measure [3] rank larger than a threshold; or removing co-
variates with zero estimated lasso coefficient.

Strategies based on the outcome-covariate relationship, if
pursued, should be combined with other algorithms in the
SL library and should be evaluated using cross-validation
[22]. In practice, specifying a screener-learner combination
results in a new learner, where first the screener is applied
and then the learner is applied on the reduced set of co-
variates. This becomes one of the learners in the SL library,
and like any other learner, can either be chosen as part of
the optimal combination or assigned zero weight. For exam-
ple, suppose that q screeners and � learners are considered.
Then the candidate library could consist of all q×� screener-
learner combinations, or a subset of these combinations cho-
sen by the analyst. Below, we will consider all q×� screener-
learner pairs. The ensembling step of the super learner as-
signs non-negative coefficients to each of the screener-learner
combinations to create the ensemble learner.

3. NUMERICAL EXPERIMENTS

3.1 Data-Generating Mechanisms
To demonstrate the performance of the SL procedure us-

ing different screeners, we consider several data-generating
scenarios. In each scenario, our simulated dataset consists of
independent replicates of (X,Y ), where X = (X1, . . . , Xp)
is a covariate vector and Y is the outcome of interest.

We consider a continuous outcome with Y | (X = x) =
f(x)+ ε, where ε ∼ N(0, 1) independent of X; and a binary
outcome with Pr(Y = 1 | X = x) = Φ{f(x)}, where Φ de-
notes the cumulative distribution function of the standard
normal distribution (so Y follows a probit model). The out-
come regression function f is either linear, with f(x) = xβ,
or nonlinear, with

f(x) = β1f1
{
c1(x1)

}
+ β2f2

{
c2(x2), c3(x3)

}
+ β3f3

{
c3(x3)

}
+ β4f4

{
c4(x4)

}
+ β5f2

{
c5(x5), c1(x1)

}
+ β6f3

{
c6(x6)

}
,

f1(x) = sin

(
π

4
x

)
, f2(x, y) = xy,

f3(x) = x, f4(x) = cos

(
π

4
x

)
.

The functions c1, . . . , c6 scale each variable to have mean
zero and standard deviation one. The vector β determines
the strength of the relationship between outcome and covari-
ates. We define a weak relationship between the outcome
and covariates by setting β = (0, 1, 0, 0, 0, 1,0p−6), where
p − 6 variables do not affect the outcome, and a stronger
relationship between the outcome and covariates by setting
β = (−3,−1, 1,−1.5,−0.5, 0.5,0p−6). The covariates follow
a multivariate normal distribution with mean zero and co-
variance matrix Σ. In the uncorrelated case, Σ is the identity
matrix. In the correlated case, the variables in the active
set (a subset of the first six variables) have correlation 0.9
(in the case of the strong outcome-covariate relationship) or
0.95 (in the case of the weak relationship) while the remain-
ing variables have correlation 0.3. Based on the strength of
relationship between outcome and features, whether it is lin-
ear or nonlinear, and whether the features are correlated, the
outcome rate in the binary case ranges from approximately
13% to 80%.

3.2 Prediction Algorithms
We compared several main prediction algorithms: the

lasso, the cSL without including the lasso in its library of
candidate learners [referred to as cSL (-lasso)], the cSL in-
cluding the lasso (referred to as cSL), and the dSL with
and without the lasso in its library of candidate learners
(referred to as dSL and dSL (-lasso), respectively). For the
super learner approaches, we further considered four possi-
ble sets of screeners that were fit prior to any learners: no
screeners; a lasso screener only; rank correlation, univari-
ate correlation, random forest, and lasso screeners (referred
to as “All” screeners); and all possible screeners except the
lasso [referred to as “All (-lasso)”]. Tuning parameters for
the screeners depended on the total number of features, ex-
cept for the lasso screener, which always removed variables
with zero regression coefficient based on a tuning parameter
selected by 10-fold cross-validation. For p = 10, we consid-
ered a screener that selected all variables and a univariate
correlation screener that removed variables with outcome-
correlation-test p-value less than 0.2. For p > 10, the rank
correlation screeners removed variables outside of the top
10, 25, or 50 ranked correlation-test p-values; the univariate
correlation screener removed variables with p-value less than
0.2 or 0.4; and the random forest screener removed variables
outside of the top 10 or 25 most-important variables, ranked
by the random forest variable importance measure [3].

We finalized our cSL specification following the guidelines
specified in Phillips et al. [22]. First, because we were inter-
ested in estimating the true continuous prediction function
for both continuous and binary outcomes, we estimated the
V -fold cross-validated least squares loss (for continuous out-
comes) or log-likelihood loss (for binary outcomes); we then
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Table 1. All possible candidate learners for super learners used in the simulations, along with their R implementation, tuning
parameter values, and description of the tuning parameters. All tuning parameters besides those listed here are set to their

default values. In particular, the random forests are grown with a minimum node size of 5 for continuous outcomes and 1 for
binary outcomes and a subsampling fraction of 1; the boosted trees are grown with shrinkage rate of 0.1, and a minimum of

10 observations per node.
Candidate learner R implementation Tuning parameter and possible values Tuning parameter description
Generalized linear models base – –

Random forests ranger [33] num.trees = 1000 Number of trees
min.node.size ∈ {5, 20, 50, 100, 250} Minimum node size

Gradient boosted trees xgboost [7] max.depth = 4 Maximum tree depth
ntree ∈ {100, 500, 1000} Number of iterations
shrinkage ∈ {0.01, 0.1} Shrinkage

Multivariate adaptive
regression splines

earth [19] nk = min{max{21, 2p+ 1}, 1000}† Maximum number of model
terms before pruning

Lasso glmnet [12] λ, chosen via 10-fold cross-validation �1 regularization parameter
†: p denotes the total number of predictors.

used the non-negative least squares (NNLS) or non-negative
log-likelihood metalearner to obtain the optimal convex
combination of these learners, respectively. We used strat-
ified cross-validation [16] in the binary-outcome case. We
used nested cross-validation in all cases to estimate the per-
formance of the cSL and all individual screener-learner pairs.
Second, we computed the effective sample size neff, and
based our choice of V on the flowchart in Figure 1 of Phillips
et al. [22]; the values of V are provided below. Finally, our
library of screener-learner pairs specified above was designed
to be computationally feasible and adapt to high dimensions
and different underlying true regression functions.

3.3 Experimental Overview
For each n ∈ {200, 500, 1000, 2000, 3000}, p ∈ {10, 500},

and simulation scenario described above, we generated 1000
random datasets according to this data generating mech-
anism. For continuous outcomes, neff = n; thus, we set
V = 20 for n ≤ 500 and set V = 10 otherwise. For binary
outcomes, neff ranged from 10 (the 5% incidence outcome at
n = 200) to 1367 (a 54% incidence outcome at n = 3000).
We set V = neff in three cases, and V = 20 or V = 10 other-
wise, depending on the value of neff. The exact values of neff
and V used are provided in the Supporting Information. We
additionally generated a test dataset with sample size 1 mil-
lion in each replication to estimate the true prediction per-
formance of each prediction function estimated using V -fold
cross-validation. We measured prediction performance for
each algorithm described above using R-squared for contin-
uous outcomes and area under the receiver operating char-
acteristic curve (AUC) and non-negative log likelihood for
binary outcomes. For the continuous outcome, R-squared is
equivalent to the cross-validated metric that is being opti-
mized: the mean squared error, which is equal to R-squared
up to a scaling factor, the outcome variance. For the binary

outcome, AUC is often of interest when assessing prediction
performance. AUC is not equivalent to non-negative log-
likelihood; however, developing a super learner using AUC
loss can be unstable in some settings.

3.4 Results
We display the results under a strong outcome-feature

relationship in Figures 1 and 2. Focusing first on a continu-
ous outcome, when the outcome-feature relationship is linear
(Figure 1 left column), all estimators have prediction per-
formance converging quickly to the best-possible prediction
performance as the sample size increases. In small samples
with a linear relationship, removing the lasso from the SL li-
brary results in decreased performance. When the outcome-
feature relationship is nonlinear (Figure 1 right column),
the results depend on the variable screeners and algorithm
used. The lasso has poor performance regardless of sample
size, particularly in the case with correlated features; this
is consistent with theory [17]. Also, particularly for large
numbers of features (e.g., when p = 500), using the lasso
screener alone within a super learner degrades performance,
while using a large library of candidate screeners can im-
prove performance over a super learner with no screeners.
Having a large library of candidate screeners can protect
against poor lasso performance. Results are similar for the
binary outcome.

The results under a weak outcome-feature relationship
follow similar patterns (Figures 3 and 4). In this case, the
best-possible prediction performance is lower than in the
strong-relationship case, as expected; and a larger sample
size is required to achieve prediction performance close to
this optimal level.

In the Supporting Information, we provide additional re-
sults. Results for the binary outcome with respect to non-
negative log-likelihood follow similar patterns to those ob-
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Figure 1: Prediction performance versus sample size n, measured using cross-validated R-squared, for predicting a con-
tinuous outcome. There is a strong relationship between outcome and features. The top row shows results for correlated
features, while the bottom row shows results for uncorrelated features. The left-hand column shows results for a linear
outcome-feature relationship, while the right-hand column shows results for a nonlinear outcome-feature relationship. The
dashed line denotes the best-possible prediction performance in each setting. Color denotes the variable screeners, while
shape denotes the estimator (lasso, convex ensemble super learner [cSL], and discrete super learner [dSL]). Note that the
y-axis limits differ between panels.

served here using AUC. We considered further feature di-
mensions p with a fixed number of cross-validation folds
V , and found similar results to the primary results pre-
sented above. Finally, we present results for n = 500 and
p = 2000 and for candidate learners within the super learner.
In the high-dimensional setting, performance follows the
same trends across outcomes and estimators as the other
(n, p) combinations.

4. PREDICTING HIV-1 NEUTRALIZATION
SUSCEPTIBILITY

HIV-1 is a genetically diverse pathogen. Broadly neutral-
izing antibodies (bnAbs) against HIV-1 neutralize a wide
array of HIV-1 genetic variants. One such bnAb, VRC01,
was recently evaluated in two placebo-controlled random-
ized trials [9]. Predicting whether or not a given HIV-1

virus is susceptible to neutralization by a bnAb, includ-
ing VRC01, is an important component of prevention re-
search; several prediction models have been developed re-
cently [15, 5, 14, 4, 26, 8, 34, 18, 30, 11, 31].

We analyze HIV-1 envelope (Env) amino acid (AA) se-
quence data from 611 publicly-available HIV-1 Env pseu-
doviruses made from blood samples of HIV-1 infected indi-
viduals [18]. In addition to binary indicators of specific AA
residues at each position in the Env sequence, the data also
include information on the geographic region of origin of the
virus, the subtype of the virus, and viral geometry; there are
over 800 features in total. We considered two outcomes of in-
terest: the log10-transformed 50% inhibitory concentration,
IC50, defined as the concentration (μg/mL) of VRC01 neces-
sary to neutralize 50% of viruses in vitro, with large values
of IC50 indicating resistance to neutralization; and suscepti-
bility to neutralization, defined as the binary indicator that
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Figure 2: Prediction performance versus sample size n, measured using cross-validated AUC, for predicting a binary
outcome. There is a strong relationship between outcome and features. The top row shows results for correlated features,
while the bottom row shows results for uncorrelated features. The left-hand column shows results for a linear outcome-
feature relationship, while the right-hand column shows results for a nonlinear outcome-feature relationship. The dashed
line denotes the best-possible prediction performance in each setting. Color denotes the variable screeners, while shape
denotes the estimator (lasso, convex ensemble super learner [cSL], and discrete super learner [dSL]). Note that the y-axis
limits differ between panels.

IC50 < 1 μg/mL. For each outcome, we considered the same
prediction algorithms and eSL specification as in Section 3.
Following Phillips et al. [22], we set V = 10 for both the
continuous and binary outcome.

The results are presented in Tables 2 and 3. For both
outcomes, some screening tended to be beneficial. Among
the analyses that used screeners, using the lasso screener
alone resulted in the worst performance for the binary out-
come and near the worst for the continuous outcome. Again,
for both outcomes, having a large set of screeners protected
against poor lasso performance; the lasso performed worse
than the cSL or dSL for both outcomes. The lasso had a
cross-validated (CV) R-squared for the continuous outcome
of 0.331 with a 95% confidence interval (CI) of [0.305, 0.358],
and a CV AUC for the binary outcome of 0.757 [0.633,
0.882]. For the continuous outcome, the largest point es-
timate of CV R-squared was achieved by the cSL with all

screeners, including the lasso; the CV R-squared was 0.394
[0.371, 0.417]. The best-performing dSL was in the case with
all screeners but the lasso, with CV R-squared 0.391 [0.372,
0.411]. For the binary outcome, the largest CV AUC for the
cSL was 0.826 [0.723, 0.929] in the case with all screeners
but the lasso; for the dSL, the largest CV AUC was 0.837
[0.737, 0.936] in the case with no screeners. In the Support-
ing Information, we present cross-validated performance for
the candidate learners in each cSL; cross-validated negative
log-likelihood loss for the binary susceptibility outcome; and
the cSL coefficients and dSLs for each cross-validation fold.

5. DISCUSSION
In this manuscript, we explored the effect of using dif-

ferent combinations of variable screeners within the super
learner. We found that both the lasso and the ensemble su-
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Figure 3: Prediction performance versus sample size n, measured using cross-validated R-squared, for predicting a con-
tinuous outcome. There is a weak relationship between outcome and features. The top row shows results for correlated
features, while the bottom row shows results for uncorrelated features. The left-hand column shows results for a linear
outcome-feature relationship, while the right-hand column shows results for a nonlinear outcome-feature relationship. The
dashed line denotes the best-possible prediction performance in each setting. Color denotes the variable screeners, while
shape denotes the estimator (lasso, convex ensemble super learner [cSL], and discrete super learner [dSL]). Note that the
y-axis limits differ between panels.

per learner (cSL) using only a lasso screener had poor pre-
diction performance when the outcome-feature relationship
was nonlinear; in other words, in the case where the lasso
is misspecified. However, if a sufficiently rich set of candi-
date screeners were included, then including the lasso as a
candidate screener did not degrade performance. These re-
sults held for both continuous and binary outcomes, and for
both strong and weak relationships between the outcome
and features. The same patterns held for the discrete super
learner (dSL). In an analysis of 611 HIV-1 envelope protein
pseudoviruses with over 800 features, we found similar re-
sults to the simulations. There, the dSL tended to result in
performance similar to the cSL.

Taken together, the results suggest that some caution
must be used when specifying screeners within a super
learner, but that a sufficiently large set of candidate screen-
ers can protect against misspecification of a given screener.
This guidance is similar to the guidance to specify a diverse
set of learners in a super learner [22], and can be viewed as

complementary, since an algorithm-screener pair defines a
new candidate learner.

SUPPLEMENTARY MATERIAL
Additional numerical results are available in the

Supporting Information. Code to reproduce all nu-
merical experiments and the data analysis is avail-
able on GitHub at https://github.com/bdwilliamson/
sl_screening_supplementary.
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Figure 4: Prediction performance versus sample size n, measured using cross-validated AUC, for predicting a binary
outcome. There is a weak relationship between outcome and features. The top row shows results for correlated features,
while the bottom row shows results for uncorrelated features. The left-hand column shows results for a linear outcome-
feature relationship, while the right-hand column shows results for a nonlinear outcome-feature relationship. The dashed
line denotes the best-possible prediction performance in each setting. Color denotes the variable screeners, while shape
denotes the estimator (lasso, convex ensemble super learner [cSL], and discrete super learner [dSL]). Note that the y-axis
limits differ between panels.

Table 2. Estimates of cross-validated R-squared for the
continuous IC50 outcome, for the convex ensemble super

learner (cSL), the discrete super learner (dSL), and the lasso,
under each combination of learners and screeners. For

screeners, ‘None’ denotes no screeners; ‘Lasso’ denotes only a
lasso screener; ‘All (-lasso)’ denotes random forest,

rank-correlation, and correlation-test p-value screening; ‘All’
denotes these three screener types plus the lasso; and ‘All
(+none)’ denotes all screeners plus the ‘none’ screener.

Learners Screeners Algorithm Min Max Point estimate [95% CI]
All None cSL 0.208 0.501 0.373 [0.353, 0.393]
All None dSL 0.058 0.491 0.366 [0.347, 0.385]
All None lasso 0.331 0.331 0.331 [0.305, 0.358]
All Lasso cSL 0.175 0.527 0.388 [0.364, 0.414]
All Lasso dSL 0.173 0.516 0.387 [0.366, 0.409]
All All (-lasso) cSL 0.182 0.535 0.390 [0.370, 0.411]
All All (-lasso) dSL 0.192 0.519 0.391 [0.372, 0.411]
All All cSL 0.180 0.545 0.394 [0.371, 0.417]
All All dSL 0.173 0.516 0.387 [0.365, 0.409]
All All (+none) cSL 0.203 0.533 0.378 [0.354, 0.403]
All All (+none) dSL 0.173 0.516 0.387 [0.365, 0.409]

Table 3. Estimates of cross-validated AUC for the binary
sensitivity outcome, for the convex ensemble super learner

(cSL), the discrete super learner (dSL), and the lasso, under
each combination of learners and screeners. For screeners,
‘None’ denotes no screeners; ‘Lasso’ denotes only a lasso

screener; ‘All (-lasso)’ denotes random forest,
rank-correlation, and correlation-test p-value screening; ‘All’
denotes these three screener types plus the lasso; and ‘All
(+none)’ denotes all screeners plus the ‘none’ screener.

Learners Screeners Algorithm Min Max Point estimate [95% CI]
All None cSL 0.755 0.874 0.823 [0.719, 0.928]
All None dSL 0.763 0.895 0.837 [0.737, 0.936]
All None lasso 0.647 0.813 0.757 [0.633, 0.882]
All Lasso cSL 0.727 0.865 0.806 [0.696, 0.915]
All Lasso dSL 0.730 0.897 0.811 [0.703, 0.919]
All All (-lasso) cSL 0.752 0.906 0.826 [0.723, 0.929]
All All (-lasso) dSL 0.772 0.907 0.827 [0.724, 0.929]
All All cSL 0.750 0.873 0.823 [0.719, 0.928]
All All dSL 0.772 0.897 0.826 [0.723, 0.929]
All All (+none) cSL 0.746 0.879 0.825 [0.720, 0.929]
All All (+none) dSL 0.772 0.897 0.829 [0.727, 0.931]
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