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Abstract
The high cost of drug development and the relatively low success rates of phase III clinical trials highlight the need for

improved and reasonably sized phase II trial designs, especially when responses observed in treatment and control could
not lead to a clear-cut decision warranting further studies. To this end, we propose a three-outcome dual-criterion ran-
domized (TDR) trial design, which implements inconclusive region sculpting using boundaries defined by both statistically
significant differences between treatment and control as well as the clinical relevance of treatment responses. We provide
statistical justifications for the TDR design in both one-stage and two-stage trial settings. Additionally, we evaluate its
operating characteristics through a comparison with existing designs. The proposed design is shown able to achieve sample
size saving and type II error reduction while controlling the type I error at a marginal cost of power reduction. Lastly,
robustness under various deviations from the assumed control response rate is also demonstrated.
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1. INTRODUCTION
With the recent development in cancer treatment and

regulations, a greater focus has been placed on randomized
designs in phase II cancer clinical trials. In general, phase II
trials are a vital step in oncology drug development. A phase
II clinical trial should screen out inefficacious agents while
warranting subsequent large-scale phase III clinical trials
when a treatment demonstrates safety and efficacy [9, 13].
However, the rate of success in phase III trials is gener-
ally low [7], highlighting the need for more careful decision-
making in phase II trials [17]. A plethora of trial designs
have been proposed for phase II trials, including the com-
monly used Simon’s two-stage design [19], historical controls
[1], the reference control arm design [5], the pick-the-winner
design [18], and the screening design [14]. However, these
methods, especially those that utilize a single-armed design,
are subject to potential biases due to shifts in patient se-
lection and evolving standards of care [13]. Conventional
hypothesis testing results in two possible outcomes: either
rejecting or accepting the null hypothesis, which often poses
a dilemma for investigators, especially when the observed re-
sponses fall near the decision boundaries. In such scenarios,
the dichotomous framework requires a definitive acceptance
or rejection of one hypothesis over the other, despite the in-
herent uncertainty in observed data. Considering the high
cost of drug development and long development phases [21],
the impact of incorrect decisions can be substantial. In view
of the issue, several three-outcome designs have been pro-
posed. In a phase II trial setting, Storer [20] proposed a
∗Corresponding authors.

single-armed three-outcome design that allows for rejecting
neither H0 : p ≤ p1 nor Ha : p ≥ p2 when observed response
rates fall between probabilities p1 and p2. This design opti-
mizes the sample size to meet constraints on the probability
of rejecting neither hypothesis. Sargent et al. [15] proposed
an alternative three-outcome design with an inconclusive
region defined by two cutoff points for observed responses.
Building on this, Hong and Wang [6] extended Sargent’s
design to a two-armed randomized controlled trial that con-
trols design error rates and inconclusiveness probabilities,
resulting in considerable sample size savings compared to
traditional two-outcome designs.

Concurrently, researchers seek to enhance the validity and
practicality of phase II trials by incorporating a second cri-
terion of clinical relevance in decision rules. Fisch et al. [4]
raised the question of whether statistical significance be-
tween treatment and control arms alone is sufficient to jus-
tify advancing to phase III trials, noting that a statistically
significant but minor improvement may not warrant further
investment. Thus, they proposed a proof-of-concept design
where dual criteria of significance and relevance were evalu-
ated. Subsequently, Litwin et al. [10] extended this approach
to a two-stage randomized controlled trial method. They
proposed early termination probabilities under the null and
alternative hypotheses to derive the stage 1 sample size and
employed an incremental search for stage 2 sample size de-
termination. This method showed substantial sample size
savings, yet we see merits in addressing the borderline re-
sponse rates to further reduce false positives.

In this paper, we propose a randomized controlled phase
II clinical trial design that considers both the uncertainty in
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trial outcomes and clinical relevance. By incorporating the
inconclusive regions in the hypothesis testing framework,
the proposed design allows practical considerations such as
clinical, regulatory, and commercial decision-making. The
adoption of the dual criteria further ensures the predicted
power to warrant a phase III trial and reduces the type I
error. The remainder of the paper is organized as follows.
In Section 2, we propose three-outcome dual-criterion ran-
domized designs with controls on the inconclusive region,
presented in both one-stage and two-stage manners. We also
describe the sample size determination procedure and intro-
duce a loss function for optimizing the design parameters. In
Section 3, we evaluate the proposed method numerically and
compare it with existing methods. In Section 4, we apply the
proposed design to data from the VIT-0910 trial. The paper
is concluded with discussions in Section 5. The TDR sample
size calculation program in the form of R code is available
online at https://github.com/ywangaz/TDRdesign.

2. METHODS
In this section, we describe a three-outcome dual-criterion

randomized (TDR) design for phase II trials with binary ef-
ficacy endpoints. The design aims to attain sample size sav-
ings while controlling type I and type II errors as well as
maintaining adequate statistical power. This is achieved by
sculpting the hypothesis rejection region, taking both sta-
tistical significance and clinical relevance into account. The
probability of incorrectly rejecting either the null hypothesis
or the alternative hypothesis is reduced by introducing an
inconclusive region, which allows comprehensive considera-
tions of other aspects in addition to statistical significance
and clinical relevance in drug development when observed
results are borderline. We first focus on the TDR design in
a one-stage trial setting, and the design in a two-stage trial
setting will also be discussed. For simplicity, the 1:1 ran-
domization is illustrated in this paper, and the design can be
applied to other randomization schemes where appropriate.

2.1 TDR One-Stage Design
In phase II trials with binary efficacy endpoints, let pE

and pC denote the true response rates for the experimental
arm and the control arm, and p̂E and p̂C denote the observed
response rates. We aim to address the two-sample test with
the following hypotheses:

H0 : pE = pC = p0,

Ha : pE = p1, pC = p0, p1 > p0.

Traditional approaches for the two-sample test rely solely on
between-arm comparisons and yield only binary trial out-
comes: either rejecting or accepting H0. To reduce the re-
quired sample size and draw more meaningful conclusions
from two-sample tests, we combine one-sample rejection de-
cision rules with traditional two-sample rules and introduce
a statistically inconclusive region.

In a one-stage setting, assume nE patients are recruited
to the experimental arm and nC patients are recruited to
the control arm, leading to a total of N = nE+nC patients.
Let yE and yC denote the number of patients demonstrating
successful responses in the experimental and control arm,
respectively. The decision rules for reaching one of the three
outcomes of rejecting H0, rejecting Ha, or rejecting neither
are defined as follows:

If p̂E − p̂C ≥ ps ∩ p̂E ≥ pm, reject H0;

If p̂E − p̂C < ps, reject Ha;

If p̂E − p̂C≥ps ∩ p̂E<pm, declare statistically inconclusive,
(2.1)

where ps denotes the statistical significance boundary
(ps > 0), and pm denotes the clinical relevance boundary
(pm > 0). Given a 1:1 randomization, the decision rules in
Equation (2.1) can be simplified by assuming nE = nC =
N/2, that is

If yE − yC ≥ s ∩ yE ≥ m, reject H0;

If yE − yC < s, reject Ha;

If yE − yC ≥ s ∩ yE < m, declare statistically inconclusive,

where s = N
2 ps, and m = N

2 pm. Here we refer to this de-
sign as a 2-by-2 TDR design, where the decision rules for
both statistical significance and clinical relevance each con-
tain two regions: yE − yC ≥ s or yE − yC < s for statistical
significance, and yE ≥ m or yE < m for clinical relevance.
Under the independent and normality assumption, the con-
ditions of the decision rules are equivalent to constructing
two z-test statistics.

The statistically inconclusive region is reserved for the sit-
uation where there are substantial differences between the
experimental arm and the control, while the observed re-
sponses in the experimental arm are suboptimal in terms of
the historical control rate. This may occur when the trial
population differs from the population used to derive the
historical control rate. In this case, the clinical decision re-
garding whether to proceed to a phase III trial or terminate
the current trial requires more deliberation. Primary investi-
gators and statisticians should comprehensively review fac-
tors such as regulatory requirements, commercial potential,
and practicality of administering the treatment, in order to
decide on warranting further investigations.

In our one-stage TDR design, we use exact binomial prob-
abilities to calculate the type I error α, type II error β, and
inconclusive region probabilities η under H0 and γ under
Ha, as follows:

α =
∑

D1∩D2

B(yE , nE , pE | H0)B(yC , nC , pC | H0),

β =
∑
D′

1

B(yE , nE , pE | Ha)B(yC , nC , pC | Ha),
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η =
∑

D1∩D′
2

B(yE , nE , pE | H0)B(yC , nC , pC | H0),

γ =
∑

D1∩D′
2

B(yE , nE , pE | Ha)B(yC , nC , pC | Ha),

where D1 = {(yE , yC) : yE − yC ≥ s}, D2 = {yE : yE ≥ m},
and D′

1 and D′
2 denote the complementary sets of D1

and D2. In addition, we introduce λ = (η + γ)/2 as the
expected inconclusive probability. This definition is based
on a common assumption that the unknown true response
rates of both arms vary uniformly between the null and al-
ternative hypotheses. The statistically inconclusive regions
under H0 and Ha can be controlled simultaneously by con-
straining γ and λ instead of γ and η to prevent highly im-
balanced inconclusive regions under H0 and Ha. To provide
finer control over inconclusive regions, it is possible to in-
troduce both upper and lower boundaries for determining
the statistical significance. This extension is referred to as a
3-by-2 TDR design, with three regions for statistical signifi-
cance (i.e. yE−yC ≥ s, r < yE−yC < s, or yE−yC ≤ r) and
two regions for clinical relevance (i.e. yE ≥ m or yE < m)
in the decision rules. A detailed description is provided in
Section 1.1 of the Supplementary Materials.

2.2 TDR Two-Stage Design
In this section, we consider extending the proposed de-

sign to a two-stage trial setting, for the purpose of ethically
stopping a trial early given insufficient evidence of efficacy.
In stage 1, we enroll and randomize nC1 patients to the con-
trol arm and nE1 patients to the experimental arm. If the
trial is not stopped early, we proceed to stage 2, where nC2

and nE2 patients are randomized to each arm. We denote
N1 = nC1 + nE1 and N2 = nC2 + nE2 as the total sample
size in stages 1 and 2, respectively. The number of responses
observed in the stage 1 (or stage 2) are denoted as yE1 and
yC1 (or yE2 and yC2) for the treatment and control arms, re-
spectively. At the conclusion of stage 1, an interim analysis
is performed, and the trial proceeds to stage 2 if

yE1 − yC1 > s1 and yE1 ≥ m1, (2.2)

where s1 is a statistical difference threshold for early stop-
ping and m1 is a clinical relevance threshold for early stop-
ping. Note that the inconclusive regions are excluded in the
interim analysis for simplicity. We denote the probabilities of
proceeding to stage 2 under H0 and Ha as Pr(S1 | H0) and
Pr(S1 | Ha), respectively, where S1 = {nE1, nC1, s1,m1 :
yE1 − yC1 > s1 ∩ yE1 ≥ m1} represents the condition (2.2).
In our design, we propose to control

Pr(S1 | H0) ≤ 1− es0 and Pr(S1 | Ha) ≥ 1− es1,

where es0 and es1 are early stopping probability levels un-
der the null and alternative hypotheses, respectively. In this
paper, we set es0 = 0.50 and es1 = 0.05 as reasonable con-
straints.

In stage 2, the proposed design will proceed as described
in Section 2.1, with type I error α, type II error β, and
inconclusive region probabilities η under H0 and γ under
Ha defined as below:

α =
∑

D1∩D2

B(yE2, nE2, pE | H0)B(yC2, nC2, pC | H0) Pr(S1 | H0),

β =
∑

D′
1

B(yE2, nE2, pE | Ha)B(yC2, nC2, pC | Ha) Pr(S1 | Ha),

η =
∑

D1∩D′
2

B(yE2, nE2, pE | H0)B(yC2, nC2, pC | H0) Pr(S1 | H0),

γ =
∑

D1∩D′
2

B(yE2, nE2, pE | Ha)B(yC2, nC2, pC | Ha) Pr(S1 | Ha),

where D1 = {(yE2, yC2) : yE2 − yC2 ≥ s2 − (yE1 − yC1)},
D2 = {yE2 : yE2 ≥ m2 − yE1}, s2 is the statistical signif-
icance boundary (s2 > yE1 − yC1), and m2 is the clinical
relevance boundary (m2 > yE1).

2.3 Sample Size Determination
With the introduction of the inconclusiveness region, the

power of the TDR design is defined as π = 1− β− γ, which
is the probability of rejecting H0 when Ha is true. Given a
specific minimum target power πmin and maximum type II
error level βmax, we control the inconclusive region proba-
bilities γ and λ under their maximum allowable constraints
γmax and λmax. As a result, there might be multiple sets of
(α, β, γ, λ) satisfying these requirements. For example, given
πmin and βmax, the maximum allowable inconclusive proba-
bility under Ha is given by γmax = 1− (βmax+πmin). To en-
sure proper control of the trial’s inconclusive probabilities, a
possible γ should not exceed this threshold (i.e., γ ≤ γmax).
Similarly, λmax is given by λmax = (ηmax + γmax)/2, where
ηmax represents the maximum target level for the incon-
clusive probability η. To facilitate parameter search under
these constraints, we propose a loss function for systematic
evaluation, which is discussed in Section 2.4.

The sample size for the proposed one-stage TDR design
is determined using a two-step approach. Firstly, for each
candidate sample size, sets of parameters {s,m, nC , nE}
are obtained through an incremental search over a grid
of design parameters {(α, β, γ, λ, π) : α ≤ αmax, β ≤
βmax, γ ≤ γmax, λ ≤ λmax, π ≥ πmin}, where αmax denotes
the maximum target type I error level. For each given set
of (α, β, γ, λ, π) satisfying these constraints, we search for
all possible pairs of s and m within pre-defined searching
regions. Reasonable regions for s and m can be

{
s : s ∈

[
pC(nE − knC), pEnE − kpCnC + 4σpool

]
,

− nC ≤ s ≤ nE

}
,{

m : m ∈ [pCnE , pEnE + 4σE ],m ≤ nE

}
,

where k is the randomization ratio, σpool is the pooled stan-
dard error, and σE is the standard error under Ha. The
optimal (s,m) is then obtained by selecting the pair with
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the smallest type I error α. Secondly, among all candidate
sample sizes, the optimal design parameters (α, β, γ, λ, π)
and the corresponding sample size are selected through a
loss function that balances the trade-off between trial power
and sample size. We provide a systematic evaluation of sam-
ple size and power using the loss function described in Sec-
tion 2.4. The parameters yielding the smallest loss score are
then selected as the optimal parameters.

The proposed one-stage design is expected to reduce type
I error by introducing the inconclusive region, compared to
the design by [10], at the same sample size. This occurs when
the difference in the number of responses between the two
arms is larger than s, but the number of observed responses
in the experimental arm is less than m. Theoretically, given
a fixed sample size N , the relationships between (s,m) and
the associated error rates (or inconclusive probabilities) can
be summarized as follows: when m is kept constant, increas-
ing s reduces α, increases β, and reduces γ and η; when s
is kept constant, increasing m reduces α, increases γ and η,
and has no effect on β. Under H0, the criterion of clinical rel-
evance has less effect compared to its effect under Ha. This
is because, when pE = pC , it is more likely that yE < m.
For the same reason, η is generally larger than γ.

2.4 Loss Function
Previous studies have established the practice of opti-

mizing trial design using loss functions, such as [8, 12, 16],
among others. In this design, we propose using a loss func-
tion to systematically evaluate the effects of inconclusive
region constraints to optimize both sample size and power.
For each sample size and its corresponding optimal design
parameters (α, β, γ, λ, π), we calculate a loss score at the
sample size n and power π with respect to a reference sam-
ple size n0 and a reference power π0 by a loss function
L(n, π, n0, π0). The reference sample size n0 is the sample
size per arm calculated using a standard two-group sam-
ple size calculation under the same hypothesis as the TDR
design. The reference power π0 is the corresponding power
calculated in the reference sample size method, i.e. the prob-
ability of correctly accepting the alternative hypothesis of
the reference sample size method. The primary principle of
the loss function is to penalize an increase in sample size
and a reduction in power. According to [11], a loss function
should meet the following criteria:

1. Monotonicity: at a fixed sample size n or a fixed power
π, the loss score should monotonously increase if power
decreases or sample size increases.

L(n, π1, n0, π0) > L(n, π2, n0, π0) ⇔ π1 < π2;

L(n1, π, n0, π0) > L(n2, π, n0, π0) ⇔ n1 > n2.

2. Scale invariance: proportional scaling in sample size n
and reference sample size n0 at the same power, or pro-
portional scaling in power π and reference power π0

at the same sample size, should produce the same loss
score.

L(n, π, n0, π0) = L(c · n, π, c · n0, π0);

L(n, π, n0, π0) = L(n, d · π, n0, d · π0),

where ∀c > 0, ∀d > 0, d ·π ≤ 1, d ·π0 ≤ 1. Additional design
consideration includes interpretability and being bounded
within (0, 1).

Based on the criteria discussed above, we propose the
following loss function:

L(n, π, n0, π0) = σ

(
w

n

n0
+ (1− w)

π0

π
− 1

)
,

where w is a weighing parameter, and σ(·) is a link func-
tion defined as σ(x) = 1

1+e−x . The link function σ(·) scales
the loss score to the range of (0, 1). The parameter w de-
termines the trade-off between reducing sample size and in-
creasing power. We performed a sensitivity analysis on w
and found that the sample size and power were invariant
to w when w > 0.4 (Supplementary Figure S1). Within
the range of w ≤ 0.4, a larger w gives greater priority to
reducing the sample size, while a smaller w prioritizes in-
creasing power. Therefore, we recommend using w = 0.5,
which assigns equal importance to sample size reduction
and power improvement and provides an optimized balance
between sample size and power. We recommend calculat-
ing n0 using the standard sample size formula for testing
H0 : pE − pC = 0 and Ha : pE − pC > 0 [2]. When the
sample size is smaller than that of the standard two-sample
test and the power is greater, which is the most desirable
scenario, the sum of the first two components is smaller than
1, resulting in a loss score smaller than 0.5; when the sample
size and power match those of the standard two-sample test,
the loss score equals 0.5; when the sample size is larger and
the power is lower, the loss score is greater than 0.5, which
is considered undesirable.

The optimal parameters for the inconclusive regions are
selected as the smallest solution set that minimizes the loss
function. Firstly, given minimum target power πmin and
sample size n, we specify a pair of (γmax, λmax). Then the
optimal design sample size and the corresponding power
(N∗, π∗) are determined by minimizing the loss score. For-
mally,

(
N∗, π∗) = arg min

N∈Q
L(N, π, n0, π0|γmax, λmax), (2.3)

where Q represents the search set for the sample size. An
example illustrating the determination of γmax and λmax is
provided in Table S1 in the Supplementary Materials. In
practice, we impose an additional constraint on power π to
ensure that it remains at a relatively high level, requiring
π ≥ πmin − c, where c is a constant (e.g., c = 0.05). When
comparing different trial configurations, the loss score pro-
vides a systematic evaluation of both sample size and power.
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Table 1. Optimal design parameters of the TDR one-stage 2-by-2 design with αmax = 0.20, βmax = 0.20, πmin = 0.80, and
c = 0.05.

Setting Design Parameter
δ pC pE γmax λmax s m N π β α γ η λ

0.15 0.10 0.25 0.08 0.20 1 4 44 0.79 0.13 0.15 0.08 0.25 0.16
0.20 0.10 0.30 0.08 0.20 1 3 28 0.80 0.13 0.14 0.08 0.23 0.15
0.25 0.10 0.35 0.12 0.20 1 3 22 0.77 0.11 0.08 0.11 0.27 0.19
0.15 0.20 0.35 0.16 0.30 0 8 54 0.76 0.08 0.15 0.16 0.42 0.29
0.20 0.20 0.40 0.16 0.30 0 5 30 0.77 0.08 0.16 0.16 0.43 0.30
0.25 0.20 0.45 0.10 0.15 1 4 24 0.81 0.13 0.17 0.06 0.22 0.14
0.15 0.30 0.45 0.11 0.20 1 12 62 0.76 0.14 0.17 0.10 0.28 0.19
0.20 0.30 0.50 0.07 0.20 1 8 40 0.81 0.12 0.19 0.06 0.24 0.15
0.15 0.35 0.50 0.10 0.20 1 13 60 0.76 0.15 0.19 0.09 0.26 0.17
0.20 0.35 0.55 0.10 0.15 1 9 40 0.81 0.13 0.20 0.06 0.23 0.15
0.25 0.35 0.60 0.10 0.20 1 6 24 0.78 0.15 0.18 0.08 0.24 0.16
0.20 0.40 0.60 0.10 0.20 1 10 38 0.76 0.14 0.16 0.10 0.27 0.19
0.25 0.40 0.65 0.16 0.30 0 7 24 0.77 0.07 0.15 0.16 0.43 0.29
0.15 0.50 0.65 0.10 0.15 2 20 70 0.77 0.18 0.19 0.05 0.17 0.11
0.20 0.50 0.70 0.11 0.20 1 12 38 0.77 0.13 0.16 0.10 0.28 0.19
0.15 0.55 0.70 0.13 0.25 0 18 56 0.78 0.09 0.20 0.13 0.36 0.24
0.20 0.55 0.75 0.14 0.30 0 11 32 0.79 0.08 0.19 0.13 0.38 0.26
0.25 0.60 0.85 0.10 0.20 1 7 18 0.77 0.17 0.19 0.06 0.22 0.14
0.20 0.65 0.85 0.10 0.20 1 11 28 0.78 0.15 0.18 0.07 0.24 0.15
0.15 0.70 0.85 0.11 0.25 1 19 48 0.79 0.14 0.19 0.07 0.24 0.16

γmax: design constraint for γ; λmax: design constraint for λ; s: statistical difference boundary; m: clinical relevance boundary; N : total sample
size; π: power; α: type I error; β: type II error; γ: inconclusive probability under Ha; η: inconclusive probability under H0; λ: average inconclusive
probability under H0 and Ha.

3. NUMERICAL STUDIES

3.1 TDR One-Stage Design
Table 1 lists the optimal TDR one-stage 2-by-2 design

parameters with varying differences in response rate, δ =
pE−pC ∈ {0.15, 0.20, 0.25}, under target levels αmax = 0.20,
βmax = 0.20, πmin = 0.80, and c = 0.05. In this table, γmax

and λmax are design parameters corresponding to the opti-
mal sample size, determined using the loss function with a
weight parameter w = 0.50, which equally weighs the im-
portance of sample size and power. For each case of response
rates, we employ a 1:1 randomization. The total sample size
required for the trial is denoted by N with corresponding de-
cision boundaries s and m. To evaluate the proposed design,
we compare the operating characteristics of the TDR design
with the method proposed by [6] (HW) and the method
proposed by [10] (LBR). The comparison evaluates the per-
centage reduction in sample size relative to the conventional
calculation for two-sample proportions under the same set-
tings of type I error αmax, and type II error βmax. The re-
sults are shown in Figure 1. Overall, the TDR design pro-
vides 26.7–51.7% sample size savings as compared to the
conventional approach, while the HW method provides up
to 22.7% sample size savings and the LBR method provides
20.0–42.6% sample size savings. In most of the scenarios,
the proposed method outperforms the HW method and the
LBR method with minimal loss of power. The TDR method

generally yields higher power than the HW method and pro-
vides more sample size savings in all cases. Compared to the
LBR method, the TDR method provides superior or compa-
rable sample size reduction up to 13.8% except in one case.
TDR achieved 0.3–12.3% type II error reduction at the cost
of up to 6.3% power loss and gained 1.0% power in one case.
In terms of the type I error, all three methods are compa-
rable and are constrained below 0.20. In the one case where
the TDR method does not show sample size saving com-
pared to the LBR method, the type II error is 7.5% lower
and the power is 1.1% higher at response rates of (0.30,
0.50). In four of the twenty cases, the HW method does not
exhibit substantial sample size saving and is therefore not
displayed.

Under more stringent requirements on type I and type II
errors, i.e., αmax = 0.10, βmax0.10, πmin = 0.80, and
c = 0.05, superior performances of the proposed method
are observed in most cases. Table 2 provides details of the
optimal trial design parameters. Comparisons of sample size
reduction, as well as operating characteristics, are shown in
Figure 2. Overall, the TDR design achieves 37.2–57.0% sam-
ple size reduction, the HW design achieves up to 34.0% sam-
ple size reduction, and the LBR design achieves 37.2–49.1%
sample size reduction. The TDR method provides addi-
tional 2.9–18.0% sample size savings as compared to the
LBR method in 18 of the 20 cases. In two cases where equal
sample sizes are calculated, TDR provides 3.1% and 1.2%
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Figure 1: Comparison of TDR one-stage 2-by-2 with the
HW method [6] and LBR method [10] under αmax = 0.20,
βmax = 0.20, πmin = 0.80, and c = 0.05. (A) Sample size
reduction with respect to the conventional sample size cal-
culation for two-sample proportions; (B) Comparison of op-
erating characteristics power π, type I error α, and type II
error β.

reduction in type II errors at response rates of (0.20, 0.45)
and (0.65, 0.85), respectively.

3.2 TDR Two-Stage Design
Extending the method to a two-stage design, we provide

details of the TDR two-stage 2-by-2 design in Table 3. In
addition, given the established sample size saving perfor-

Figure 2: Comparison of TDR one-stage 2-by-2 with the
HW method [6] and LBR method [10] under αmax = 0.10,
βmax = 0.10, πmin = 0.90, and c = 0.05. (A) Sample size
reduction with respect to the conventional sample size cal-
culation for two-sample proportions; (B) Comparison of op-
erating characteristics power π, type I error α, and type II
error β.

mance of the LBR method proposed by [10], we use it as
a reference to benchmark the proposed method in terms of
expected sample size (EN) and maximum sample size as
shown in Figure 3. The total sample sizes required for stage
1 and stage 2 of the trial are denoted by N1 and N2, re-
spectively, with corresponding decision boundaries s1 and
m1 for stage 1, and s2 and m2 for stage 2.



TDR Phase II Design 7

Table 2. Optimal design parameters of the TDR one-stage 2-by-2 design with αmax = 0.10, βmax = 0.10, πmin = 0.90, and
c = 0.05.

Setting Design Parameter
δ pC pE γmax λmax s m N π β α γ η λ

0.15 0.10 0.25 0.10 0.25 1 7 76 0.86 0.05 0.08 0.09 0.35 0.22
0.20 0.10 0.30 0.10 0.20 1 5 48 0.87 0.05 0.08 0.07 0.32 0.20
0.25 0.10 0.35 0.10 0.20 1 4 34 0.88 0.05 0.08 0.07 0.31 0.19
0.15 0.20 0.35 0.10 0.25 1 15 106 0.86 0.05 0.09 0.09 0.36 0.23
0.20 0.20 0.40 0.11 0.25 1 10 64 0.87 0.05 0.08 0.08 0.35 0.22
0.25 0.20 0.45 0.10 0.15 2 9 54 0.90 0.06 0.07 0.05 0.24 0.14
0.15 0.30 0.45 0.10 0.25 1 23 120 0.86 0.05 0.10 0.09 0.36 0.22
0.20 0.30 0.50 0.10 0.25 1 15 72 0.86 0.05 0.09 0.09 0.36 0.23
0.15 0.35 0.50 0.10 0.25 1 27 124 0.86 0.05 0.10 0.09 0.37 0.23
0.20 0.35 0.55 0.11 0.30 0 16 68 0.86 0.04 0.10 0.11 0.45 0.28
0.25 0.35 0.60 0.10 0.25 1 11 44 0.86 0.06 0.10 0.08 0.34 0.21
0.20 0.40 0.60 0.10 0.20 2 20 78 0.86 0.07 0.09 0.06 0.27 0.17
0.25 0.40 0.65 0.10 0.15 2 13 48 0.86 0.09 0.10 0.05 0.23 0.14
0.15 0.50 0.65 0.10 0.25 1 37 126 0.86 0.05 0.10 0.09 0.37 0.23
0.20 0.50 0.70 0.12 0.30 0 22 70 0.86 0.03 0.09 0.11 0.46 0.29
0.15 0.55 0.70 0.12 0.30 1 39 122 0.86 0.05 0.09 0.09 0.37 0.23
0.20 0.55 0.75 0.10 0.25 1 23 68 0.86 0.05 0.09 0.09 0.36 0.23
0.25 0.60 0.85 0.10 0.20 2 16 42 0.86 0.09 0.08 0.05 0.24 0.14
0.20 0.65 0.85 0.10 0.20 2 24 62 0.87 0.08 0.09 0.05 0.26 0.15
0.15 0.70 0.85 0.10 0.25 2 38 96 0.86 0.08 0.09 0.06 0.28 0.17

γmax: design constraint for γ; λmax: design constraint for λ; s: statistical difference boundary; m: clinical relevance boundary; N : total sample
size; π: power; α: type I error; β: type II error; γ: inconclusive probability under Ha; η: inconclusive probability under H0; λ: average inconclusive
probability under H0 and Ha.

Table 3. Optimal design parameters of the TDR two-stage 2-by-2 design with αmax = 0.20, βmax = 0.20, πmin = 0.80, and
c = 0.05.

Setting Design Parameter
pC pE γmax λmax s1 m1 s2 m2 EN N1 N2 π β α γ η λ

0.10 0.25 0.10 0.07 −4 3 1 4 47.63 46 50 0.85 0.07 0.19 0.03 0.09 0.06
0.10 0.30 0.10 0.07 −3 2 1 3 29.65 28 32 0.85 0.07 0.17 0.03 0.11 0.07
0.10 0.35 0.10 0.07 −2 2 1 3 25.34 24 28 0.88 0.05 0.14 0.03 0.11 0.07
0.20 0.35 0.06 0.15 −4 6 1 9 60.90 56 66 0.82 0.13 0.17 0.06 0.16 0.11
0.20 0.40 0.10 0.10 −4 4 1 6 36.69 34 40 0.83 0.15 0.17 0.05 0.14 0.09
0.20 0.45 0.10 0.14 −3 3 1 5 25.75 24 28 0.80 0.08 0.12 0.08 0.18 0.13
0.30 0.45 0.06 0.15 −4 10 1 13 66.93 64 70 0.81 0.14 0.19 0.06 0.15 0.10
0.30 0.50 0.10 0.09 −5 6 1 8 37.86 36 40 0.81 0.09 0.19 0.05 0.13 0.09
0.35 0.50 0.10 0.13 −7 11 1 14 61.97 60 64 0.76 0.10 0.17 0.09 0.17 0.13
0.35 0.55 0.10 0.16 −3 7 1 10 39.98 38 42 0.77 0.09 0.14 0.09 0.20 0.15
0.35 0.60 0.10 0.15 −2 5 1 8 28.78 26 32 0.82 0.14 0.14 0.07 0.18 0.13
0.40 0.60 0.10 0.14 −3 8 1 11 39.96 38 42 0.78 0.09 0.15 0.09 0.19 0.14
0.40 0.65 0.10 0.09 −4 6 1 8 27.70 26 30 0.83 0.08 0.18 0.04 0.11 0.08
0.50 0.65 0.10 0.15 −6 15 1 21 64.97 58 72 0.79 0.14 0.18 0.07 0.16 0.11
0.50 0.70 0.16 0.25 −3 9 1 12 35.93 34 38 0.77 0.18 0.16 0.09 0.18 0.13
0.55 0.70 0.10 0.11 −6 16 1 19 57.94 56 60 0.78 0.11 0.20 0.06 0.14 0.10
0.55 0.75 0.15 0.20 −3 10 1 13 35.84 34 38 0.78 0.17 0.15 0.08 0.17 0.13
0.60 0.85 0.10 0.08 −2 6 1 9 20.78 18 24 0.84 0.09 0.19 0.03 0.12 0.08
0.65 0.85 0.15 0.25 −3 9 0 12 27.97 26 30 0.80 0.11 0.17 0.11 0.24 0.18
0.70 0.85 0.10 0.15 −3 16 1 19 45.91 44 48 0.79 0.19 0.19 0.06 0.14 0.10

γmax: design constraint for γ; λmax: design constraint for λ; s1: statistical difference boundary in stage 1; m1: clinical relevance boundary in
stage 1; s2: statistical difference boundary in stage 2; m2: clinical relevance boundary in stage 2; EN : expected total sample size; N1: total
sample size in stage 1; N2: total sample size in stage 2; π: power; α: type I error; β: type II error; γ: inconclusive probability under Ha; η:
inconclusive probability under H0; λ: average inconclusive probability under H0 and Ha.
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Figure 3: Comparison of TDR two-stage 2-by-2 with the
LBR method [10] under αmax = 0.20, βmax = 0.20, πmin =
0.80, and c = 0.05. (A) Expected sample size reduction and
maximum sample size reduction with respect to the LBR
method; (B) Comparison of operating characteristics power
π, type I error α, and type II error β.

In a two-stage TDR design, the inconclusive region is con-
sidered only in stage 2. As a result, if the sample size in stage
1 is much larger than in stage 2, the potential for sample size
savings will be limited. In 11 of the 20 cases, our proposed
method provides a 2.8–8.7% reduction in expected sample
size and a 5.4–15.8% reduction in maximum sample size as
compared to the LBR method. In all cases, the proposed
method shows reductions in type II errors compared to the

LBR method. In the nine cases of no sample size reduction,
we observe reductions in type II errors except for minimal
type II error inflation in two cases (0.02 and 0.003 at the re-
sponse rates (0.20, 0.40) and (0.35 and 0.60), respectively).
This could be due to over-constraining design parameters,
which could be remedied by a more granular search of γmax

and λmax in regions around the current constraints, adjust-
ing the loss function weight parameter w, or inspecting the
sculpting boundaries. For example, at pC = 0.35, pE = 0.60,
by decreasing the statistical difference boundary, s2, one
could reduce the total sample size by two in the second
stage with a 1.8% reduction in type I error with a power
still higher than 0.75.

3.3 Sensitivity Analysis
As previously shown, the TDR design can be applied to

more stringent requirements on type I and type II errors.
To account for the effect of variation in control response
rates, we apply the type I error constraints to the maximum
of type I errors yielded from a confidence interval of pC .
A confidence interval of 30% is chosen for demonstration
purposes, as with historical data, there could be a fairly
informed estimation of control response rates. In general,
the proposed design shows superior performance to the HW
design, the LBR design, as well as the conventional design.
The details can be found in Table S2 and Figure S2 of the
Supplementary Materials.

We also conducted a comparison between the proposed
2-by-2 design and the 3-by-2 design. Further details can be
found in Table S3 and Figure S3 in the Supplementary Ma-
terials. Overall, with more granular control of the inconclu-
sive region, the 3-by-2 TDR design provides a reduction in
type II error, which is an advantage of using the 3-by-2 de-
sign. Depending on true response rates, the 3-by-2 design
may provide sample size savings in some cases. However,
one should also take note of the increased design complex-
ity when choosing between 2-by-2 and 3-by-2 designs.

4. TRIAL APPLICATION
Defachelles et al. [3] conducted a randomized two-parallel

group phase II trial to evaluate the efficacy and safety of the
vincristine-irinotecan combination with and without temo-
zolomide (VIT and VI, respectively) among patients with
relapsed or refractory rhabdomyosarcoma. In this study, a
total of 120 patients were randomized 1:1 to receive 21-day
cycles of VI or VIT, with 60 patients per arm. The primary
endpoint is the objective response rate (ORR) after two cy-
cles. Originally designed as a non-comparative randomized
phase II trial, the trial performed Simon’s two-stage design
[19] in each arm to define the sample size. The design pa-
rameters are set as p0 = 0.35 under the null hypothesis and
p1 = 0.55 under the alternative hypothesis for each arm.
A dropout rate of 8% was considered in this trial. The ORR
after two cycles in the whole population was 44% in the VIT
arm and 31% in the VI arm (i.e., p̂E = 0.44 and p̂C = 0.31).
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Table 4. Application of the TDR two-stage design and the
LBR method to the VIT-0910 trial.

N α β π

VIT-0910 128 0.10 0.10 0.90
TDR 102 0.09 0.02 0.90
LBR 102 0.09 0.05 0.90

N : total sample size; π: power; α: type I error; β: type II error. An 8%
dropout rate is considered in the total sample size.

The TDR two-stage design, as detailed in Section 2.2, is
performed to re-calculate the sample size in the VIT-0910
trial. In adherence to the above trial configurations, we set
pC = 0.35 and pE = 0.55 in our design. We search for the
sample size under a specified type I error of αmax = 0.10 and
seek to achieve a power of 0.90. The selection of the optimal
sample size is based on minimizing the loss score across all
potential candidates. As a comparison, we also compute the
sample size using the LBR design. The summarized sam-
ple sizes and design parameters are shown in Table 4. Both
our TDR design and the LBR design exhibit a substantial
decrease in the required sample size for the same trial.

5. DISCUSSIONS
In this paper, we propose a three-outcome dual-criterion

randomized phase II design that utilizes inconclusive region
sculpting to reduce sample size and type II error. The pro-
posed TDR trial design shows sample size saving and reduc-
tion in type II error compared to existing methods. When
the requirements for type I and type II error control be-
come more stringent, such as controlling α and β to be
within 10% instead of 20%, the proposed method demon-
strates even greater sample size savings. While the benefit
of sample savings and type II error reduction is evident in
most cases, a limitation of the proposed design is a slight
reduction in power. However, this can be controlled by spec-
ifying an acceptable power threshold and adjusting design
parameters accordingly. It should also be noted that as the
trials of interest for this design consider binary outcomes,
the discreteness of responses may lead to fluctuations in
type I and type II errors, as well as power, when automati-
cally searching design parameters over a range of values for
(γmax, λmax). This can be mitigated by manually adjusting
the sample size or design parameters, and the loss function
can assist in such an adjustment process by systematically
evaluating the trade-off between power and sample size.

The TDR design provides flexibility for an extension to
a two-stage setting, particularly when early stopping due to
lack of efficacy is an ethical consideration. Additionally, the
inconclusive region can be more finely sculpted using a 3-
by-2 TDR design, further reducing type II error. To align
with specific study objectives, parameters and loss function
settings can be adjusted to control type I and type II errors,
inconclusive probabilities, randomization ratio, confidence

interval of pC for robustness, and early stopping probabili-
ties. Moreover, given the flexibility of the design, the dual
criteria on clinical relevance could potentially be extended
to a three-region decision framework to further control the
inconclusive probabilities.

SUPPLEMENTARY MATERIAL
Supplementary Material for Three-Outcome Dual-

Criterion Randomized Phase II Clinical Trial Design.
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