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Abstract
Machine learning models, particularly the black-box models, are widely favored for their outstanding predictive ca-

pabilities. However, they often face scrutiny and criticism due to the lack of interpretability. Paradoxically, their strong
predictive capabilities may indicate a deep understanding of the underlying data, implying significant potential for inter-
pretation. Leveraging the emerging concept of knowledge distillation, we introduce the method of knowledge distillation
decision tree (KDDT). This method enables the distillation of knowledge about the data from a black-box model into a
decision tree, thereby facilitating the interpretation of the black-box model. Essential attributes for a good interpretable
model include simplicity, stability, and predictivity. The primary challenge of constructing an interpretable tree lies in
ensuring structural stability under the randomness of the training data. KDDT is developed with the theoretical foun-
dations demonstrating that structure stability can be achieved under mild assumptions. Furthermore, we propose the
hybrid KDDT to achieve both simplicity and predictivity. An efficient algorithm is provided for constructing the hybrid
KDDT. Simulation studies and a real-data analysis validate the hybrid KDDT’s capability to deliver accurate and reliable
interpretations. KDDT is an excellent interpretable model with great potential for practical applications.

keywords and phrases: Knowledge distillation, Decision tree, Machine learning, Model interpretability, Prediction
accuracy, Structural stability.

1. INTRODUCTION
In recent decades, machine learning (ML) has gained

significant popularity in various fields. However, the
widespread adoption of black-box ML models, such as neu-
ral networks and ensemble models, has led to growing con-
cerns about their interpretability. This lack of interpretabil-
ity has triggered skepticism and criticism, particularly in
decision-based applications. For instance, in fields like med-
ical diagnostics or treatment choice, without straightfor-
ward and concise interpretability the model could lead to
erroneous diagnoses and potentially harmful treatment de-
cisions. Knowledge distillation [2, 8, 23, 20, 22, 1] provides a
way to interpret the black-box ML model through a trans-
parent model, following a teacher-student architecture [9].
Knowledge about the data is distilled from the teacher
model (black-box ML model) to train the student model
(transparent model). As a result, the student model (trans-
parent model) inherits the teacher model’s knowledge about
the complex structure of the data and the underlying mech-
anisms of the domain question, enabling it to achieve both
high interpretability and strong predictive performance. [17]
employed several simple models, including linear models and
decision trees, as transparent models. Similarly, [15] utilized
kernel methods and local linear approaches to construct the
transparent model. In this study, we focus on the decision
∗Corresponding author.

tree [11, 6, 4, 14, 21, 5] which emerges as an ideal trans-
parent model for two reasons. First, it is inherently inter-
pretable. Second, it possesses the capacity to capture com-
plex data structures. Several studies have employed decision
tree as transparent model alongside knowledge distillation.
[6] explored the distillation of a neural network into a soft
decision tree. [4] discussed the decision tree model in inter-
preting deep reinforcement model. [19] used decision tree
for explaining data in the field of e-commerce. However,
none of these studies considered the stability of decision
trees constructed through knowledge distillation. The inter-
pretability of decision tree relies heavily on the stability of
its structure, which may be sensitive to the specific datasets
used for training. Interpretations may become questionable
if minor changes in the training data significantly affect the
tree’s structure. Given that the training data is generated
randomly through the knowledge distillation process, en-
suring the stability of the tree’s structure becomes a key
challenge to address. [27] explored tree structure stability in
knowledge distillation, while their study focused on a single
splitting criterion and did not provide conclusive conditions
under which the tree structure (or split) converge.

We refer to the decision tree generated from the knowl-
edge distillation process as the “knowledge distillation de-
cision tree” (KDDT). In this paper, we conduct a compre-
hensive theoretical study for the split stability of KDDT,
demonstrating that split will converge in probability with
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a specific convergence rate, subject to mild assumptions.
Our theoretical findings encompass the most commonly used
splitting criteria and are applicable to both classification and
regression applications. Additionally, we propose and im-
plement algorithms for KDDT induction. Note that KDDT
provides a global approximation to the black-box model,
meaning it approximates the entire black-box model at once
using a single interpretable model. This approach may be
less efficient for interpreting very large and complex black-
box models, such as deep neural networks, compared to the
local approximation models discussed in [26], which approx-
imate the black-box model piecewisely. For local approxi-
mation models, each segment of the black-box model can
be represented by a different local approximation, allowing
for more tailored interpretations. However, large-scale black-
box models have a large number (e.g., millions) of param-
eters and require large training datasets, making them not
suitable for small or medium datasets, such as those with
fewer than or equal to O(103) samples. For these datasets,
the global approximation provided by KDDT can offer more
accurate interpretations for the global effects of covariates
than simple linear models. Through a simulation study, we
validate KDDT’s ability to provide precise interpretations
while maintaining a stable structure. We also include real
data analysis to demonstrate its practical applicability.

The remainder of the paper is organized as follows. In
Section 2, we introduce the concept and stability theory
of KDDT. The algorithms for constructing KDDT are pro-
posed in Section 3. Section 4 presents the simulation study.
In Section 5, we apply KDDT on real datasets. Finally, we
conclude and engage in a discussion in Section 6. Theorems
and proofs are in Appendix A. Supplementary materials can
be found in Appendix B. Additionally, an open-source R im-
plementation of KDDT is accessible on GitHub at https://
github.com/lxtpvt/kddt.git.

2. KNOWLEDGE DISTILLATION DECISION
TREE

A knowledge distillation decision tree is essentially a de-
cision tree. Instead of being constructed from real observa-
tions, it is generated from the knowledge distillation process.

2.1 Knowledge Distillation Process
A typical knowledge distillation process with the teacher-

student architecture is illustrated in Figure 1. The specific
components of this process can be adapted based on appli-
cation requirements. For example, the teacher model can be
a Convolutional Neural Network (CNN) [7, 12] or a Large
Language Model (LLM) [25], while the student model can
be a decision tree [11, 6, 4] or a lightweight neural network
[7, 12]. In this paper, we specify the components as follows:

• Data. D = {Y,X}, where Y is the set of observations
of response variable y, X is the set of observations of co-
variates x = (x1, . . . , xp). Both response and covariates
can be categorical or continuous variables.

• Teacher model. y = f(x), we specify it as a small
scale black-box ML model for the size of data O(103).

• Knowledge distillation. Includes two steps: 1) ran-
dom sampling of covariate values on their support, de-
noted as X ′, and 2) generating the corresponding re-
sponse values Y ′ = f(X ′) through the fitted teacher
model f .

• Knowledge. D′ = {Y ′, X ′}, we call it pseudo-data.
• Student model. A decision tree, we refer to it as

a knowledge distillation decision tree (KDDT). The
KDDT is constructed from the pseudo-data D′ and
keeps a stable structure under the randomness of D′.

The knowledge distillation process can also be viewed
as a model approximation process, as illustrated in Figure
B.12 in Appendix B. The student model, KDDT, is used
to approximate the teacher model through the pseudo-data
D′ = {Y ′, X ′}. Additionally, Figure B.12 also highlights the
differences between the model approximation and general-
ization processes.

2.2 Tree Structure Stability
In this paper, we focus on the second half of the knowl-

edge distillation process, specifically from the knowledge dis-
tillation to the student model. The teacher model and orig-
inal data are fixed. Our task is to handle the randomness
in the pseudo-data D′ and construct a stable KDDT. It is
based on the hypothesis that we can generate arbitrarily
large D′ to achieve the stability of KDDT. In this section,
we will prove this hypothesis.

2.2.1 Prerequisites

It is essential to introduce the key concepts and notations
of decision tree that will be used in the theoretical study.
(1) Splitting criteria

Typically, different criteria are used for regression and
classification trees. In regression, the primary criteria in-
clude minimizing the sum of squared errors (SSE) or the
mean squared error (MSE) after splitting:

min

{
nl∑
i=1

(yli − ȳl)
2 +

nr∑
j=1

(yrj − ȳr)
2

}
,

min

{
1

nl

nl∑
i=1

(yli − ȳl)
2 +

1
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nr∑
j=1

(yrj − ȳr)
2

}
,

(2.1)

where the subscripts l, r represent the left and right nodes
of a stump, nl + nr = n, ȳl = 1

nl

∑nl

i=1 yli and ȳr =
1
nr

∑nr

j=1 yrj .
In classification, the criterion for selecting the best split

is to maximize the reduction of impurity after splitting:

max
{
E − (El + Er)

}
,

where E is the total impurity before splitting, and El and
Er are the left and right child impurities, respectively, af-
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Figure 1: Teacher-student architecture for knowledge distillation.

ter splitting. Since the split does not impact E, the above
criterion can be simplified as follows:

min{El + Er}, (2.2)

The well-known impurity measures include Shannon en-
tropy, gain ratio, and Gini index [16, 3]. [24] proposed the
Tsallis entropy in (2.3) to unify these measures in a single
framework.

E = Sq(Y ) =
1

1− q

(
C∑
i=1

p(yi)
q − 1

)
, q ∈ R, (2.3)

where Y is a random variable that takes value in
{y1, . . . , yC}, p(yi) is the corresponding probability of yi,
i = 1, . . . , C, and q is an adjustable parameter.
(2) Split search algorithm

The most commonly used split search algorithm is the
greedy search algorithm, which makes a locally optimal
choice at each stage in a heuristic manner, to find the global
optimum. The algorithm involves the steps: (a) for each
split, searching through all covariates and their observed
values; (b) for each candidate pair (covariate, value), calcu-
lating the loss (gain) defined by splitting criterion; and (c)
identifying the best split by minimizing the loss (maximiz-
ing the gain). Although the greedy search algorithm may
not guarantee the global optimum which is theoretically an
NP problem [10], we still choose it for our study due to its
simplicity and popularity in practice.
2.2.2 Split Convergence

As discussed in the introduction, studying the stability of
the entire tree is challenging. A practical approach is to focus
on individual splits. If all splits are stable, the entire tree is
stable naturally. We refer to a split as achieving stability
when it converges to a unique optimal split. The concepts
of optimal split is defined as follows.
Definition 1 (Optimal split). Let Ω be the support of
univariate x, and zli(x) and zri (x) be functions Ω → R,
where i = 1, . . . , C and C is a constant in N

+. Let
g(zt1(x), . . . , z

t
C(x)) be a continuous function RC → R, where

t = l or r. Then, the optimal split xs ∈ Ω is defined as fol-
lows.

xs = argmin
x∈Ω

[
g
(
zl1(x), . . . , z

l
C(x)

)
+ g

(
zr1(x), . . . , z

r
C(x)

)]
.

(2.4)

Definition 1 is somewhat abstract. To clarify, we provide
two examples to illustrate this definition in both regression
and classification contexts.

• Regression: we assume that both y and x are continuous
variables, and that the split criterion is the MSE as
defined in (2.1). The components in Definition 1 are
outlined as follows.

g
(
zl1(x)

)
= zl1(x), g

(
zr1(x)

)
= zr1(x),

zl1(x) =

∫ x

a

(
f(t)− μl(x)

)2
dt,

zr1(x) =

∫ b

x

(
f(t)− μr(x)

)2
dt,

where,

μl(x) =
1

x− a

∫ x

a

f(u) du, μr(x) =
1

b− x

∫ b

x

f(u) du.

• Classification: we assume that y ∈ {y1, . . . , yC} is a
categorical variable with C categories, x is a continu-
ous variable, and the split criterion is defined by (2.2)
using the Tsallis entropy as in (2.3). The components
in Definition 1 are specified as follows.

g
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l
C(x)

)
=
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)
,
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)
,

zli(x) =

∫ x

a

1

x− a
∗ Iyi

(
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)
dt,

zri (x) =

∫ b

x

1

b− x
∗ Iyi

(
f(t)

)
dt,

where Iyi(f(x)) is an indicator function that is equal to
1 at f(x) = yi and 0 elsewhere.

The concept of split convergence can be defined based on
the definition of an optimal split as follows.
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Definition 2 (Split convergence). A split xn
s is estimated via

greedy search algorithm on the sampled data D′ = {Y ′, X ′}
with size n. Let xs be the unique optimal split on Ω. If xn

s

converges to xs in probability as n → ∞, we refer to this
case as split convergence and xn

s as a convergent split.
Our theoretical study demonstrates that split conver-

gence can be guaranteed under three assumptions: (1) the
existence of unique optimal split; (2) the uniform random
sampling of pseudo-data D′ = {Y ′, X ′}; and (3) the greedy
search algorithm. Since continuous and categorical response
variables have different split criteria for regression and clas-
sification, and different types of covariates require distinct
treatments in the proof, we divide the theory into four the-
orems, each corresponding to one of the combinations of
variable types listed in Table 1. The details of all theorems,
lemma, and their proofs can be found in Appendix A.

Table 1. Theorems classified based on the combinations of
variable types.

y
x Continuous Categorical
Continuous Theorem 1 Theorem 2
Categorical Theorem 3 Theorem 4

Fair assumptions help establish a theory with a solid
foundation and broad applicability. Regarding the greedy
search assumption, as discussed in Section 2.2.1, it has the
advantages of simplicity and popularity in practice. The uni-
form random sampling assumption ensures the sampling
space covers the teacher model and simplifies theoretical
proofs. However, it may lead to efficiency issues as the di-
mension of covariates increases. For problems with modest
dimensions (i.e., fewer than 20 continuous variables), uni-
form random sampling works well (see real data analysis in
Section 5). For high-dimensional problems, non-uniform ran-
dom sampling strategies may be more appealing and worth
investigating. As for the unique optimal split assumption,
let us consider its opposite first: assume there are multiple
optimal splits. We can define the concept of split oscilla-
tion in Definition 3. Although split oscillation may occur
in theory, it rarely happens in practice. Let us consider a
scenario where two optimal splits exist. When applying the
greedy search algorithm with real data, the likelihood of two
splits yielding identical numerical results (e.g., impurity re-
duction) will be extremely low. Even if such a rare situation
arises, it is not a significant concern. It simply indicates that
the two splits are equivalent, and selecting either of them is
reasonable.
Definition 3 (Split oscillation). A split xn

s is estimated via
greedy search algorithm on the sampled data D′ = {Y ′, X ′}
with size n. If xn

s has multiple limits as n → ∞, we refer to
this case as split oscillation and the split as an oscillating
split.

Figure 2: Two-level split stability. First-level stability is de-
noted as the pmf of choosing a split variable. Second-level
stability is denoted as either a pdf or a pmf conditioning on
the selected split variable.

2.2.3 Measure of Split Stability
In practice, the pseudo-data must be finite. Therefore, we

need a way to measure the split stability with finite data.
Motivated by the greedy search algorithm, we propose the
two-level split stability (see Figure 2) as follows.

• First-level stability. It is defined as a discrete distri-
bution with the probability mass function p(k), which
quantifies the stability of selecting the k-th covariate
xk, (k = 1, . . . , p) as the splitting variable.

• Second-level stability. It is defined as the conditional
distribution of the splitting value given the covariate
to split on. The second-level stability can be either a
probability density function (e.g., p(x|i)) or a probabil-
ity mass function (e.g., p(x|j)), depending on the type
of selected splitting variable.

Since the two-level stability is difficult to calculate ana-
lytically, we use Monte Carlo simulation for its estimation.

3. ALGORITHMS FOR CONSTRUCTING
KDDT

There are two fundamental distinctions in the construc-
tion of KDDT compared to ordinary decision tree (ODT).
Firstly, ODT is built directly from a limited dataset, whereas
KDDT is constructed using unlimited (in theory) pseudo-
data. Secondly, ODT’s goal is to best fit the dataset, whereas
KDDT’s objective is to best approximate the teacher model.
These distinctions result in a different construction algo-
rithm of KDDT compared to ODT.

3.1 KDDT Induction Algorithm
We first introduce the concept of the sampling region,

which will be utilized in the KDDT induction algorithm.
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Figure 3: Examples of the dependency chain and variance propagation. (a) Two dependency chains in a tree. (b) The cor-
responding variance propagation. Note: Ri denotes sampling region i. R2|(R1, xs1) → xs2 indicates that xs2 is determined
by R2, given R1 and xs1. The variance of xsi is denoted by Δxsi.

Definition 4 (Sampling region). Let S be the bounded space
defined by the observed data. For node i in KDDT, its an-
cestors define a subspace on S. We denote it as Ri and refer
to it as the sampling region of node i. The sampling region
of any inner node is exactly the union of the sampling re-
gions of its two child nodes. (Note: Since the boundary of
observed data is limited, S is bounded.)

As an extension of the sampling region, the concept of
the sampling path will also be used later in this paper.
Definition 5 (Sampling path). A sampling path is a se-
ries of nested sampling regions defined by the nodes in
a KDDT path. The sampling path Pi,j starts from sam-
pling region Ri and ends at sampling region Rj , i.e., Pi,j =
{(Ri, . . . , Rj)|Ri ⊃ · · · ⊃ Rj}. Two sampling paths intersect
if there exists a sampling region in one sampling path that
includes any sampling region in the other sampling path.

The most commonly used induction algorithm for con-
structing an ODT is a top-down recursive approach [18],
referred to as the ODT induction algorithm in this paper. It
starts with the entire input dataset in the root node, where
a locally optimal split is identified using the greedy search
algorithm, and conditional branches based on the split are
created. This process is repeated in the generated nodes un-
til the stopping criterion is met. A naive approach to con-
structing a KDDT is to directly apply the ODT induction
algorithm on a large pseudo-dataset. However, this method
may not perform well in practice. The pseudo-data intro-
duces variation (uncertainty) due to the random sampling
process. This variation propagates in the constructed tree
along dependency chains created by the top-down induction
strategy. For instance, as illustrated in panel (a) of Figure
3, the split xs4 depends on (R2, xs2), which, in turn, de-
pends on (R1, xs1). The propagation of split variance fol-
lows the inverse direction of these dependencies. We denote
the variance of xsi as Δxsi. In panel (b) of Figure 3, the
variance Δxs1 will affect (xs2,Δxs2) and (xs3,Δxs3), and
subsequently, Δxs2 will impact (xs4,Δxs4). This results in
rapid inflation of variance as it propagates to deeper levels.

Algorithm 1: Steps of KDDT induction algorithm.

Data: pseudo-data
Result: A knowledge distillation decision tree
Starting from the root node, set i = 1, and create an
empty set Xs to store splits.

while the stopping criterion is not met, do
1. For node i, repeat the following processes Ni times.

(1) Generate pseudo-data, which includes ni

samples from the sampling region Ri

corresponding to node i.
(2) Fit a stump on the pseudo-data and store the

split of the stump into Xs.

2. Compute two-level stability with Xs to identify the
best split x∗

s (the mode of the second-level stability).
3. Apply x∗

s to create child nodes and set their id as
2i, 2i+ 1, respectively.

4. Move to the next node that needs to be split.
end

For example, a small Δxs1 may lead to a substantial Δxs4

or even a change in the split variable.
Incorporating the two-level stability, we proposed a

KDDT induction algorithm to avoid the variation infla-
tion issue in the ODT algorithm. As shown in the steps of
KDDT induction algorithm, for a given node i, we measure
its split Ni times. Utilizing these repeated measurements
represented as Xs, we can calculate the two-level stability
and choose a split value with the lowest variance. The first-
level stability aids in reducing the variance when selecting
the split variable, while the second-level stability assists in
reducing the variance when identifying the split value. For
example, if the split variable is continuous, considering the
mean of all fitted split values x̄s, by central limit theorem,
the variance of x̄s will reduce at a rate of N−1

i . Instead of
using the mean of all fitted split values, the two-level stabil-
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ity approach choose the mode, which not only reduces vari-
ance but also mitigates the influence of outliers. Addition-
ally, choosing the mode aligns with the likelihood principle,
as it corresponds to selecting the value with the maximal
likelihood, given that two-level stability is defined by prob-
ability mass/density function. By repeating this process at
each split, we can construct a KDDT with a stable struc-
ture. In practice, it is common to choose a reasonably large
value for Ni (Ni = 100 works well for our study). The sam-
ple size of the pseudo data ni can be estimated by using
(proportional to) the potential explanation index (see Def-
inition 6). In practice, if the number of nodes is small (see
interpretable nodes in Section 3.2), we can simply set all ni

to be the same at the same tree level and assign their values
equal to 90% of the corresponding value in the preceding
upper level. We select 90% to maintain a large number of
pseudo-data, ensuring a stable estimation of the split value.
We determine the value of x∗

s by selecting the mode of the
second-level stability (pmf/pdf). The stopping criterion can
be defined as the ratio of prediction accuracy (e.g., MSE
or C-Index) between the teacher model and KDDT on the
observed data, evaluated through cross-validation.

3.2 Hybrid Induction Algorithm and Hybrid
KDDT

We assume that the teacher model is well-defined, mean-
ing it is well-fitted to the observed data without overfitting.
Since KDDT aims to optimize its approximation to the
teacher model, we can ignore any overfitting concerns for
KDDT in relation to the observed data. Thus, we can
focus solely on achieving a balance between the degree
of approximation and computational efficiency during
KDDT construction. KDDT induction algorithm requires
repetitive sampling and fitting, performed Ni times to
identify the best split. Each time, the pseudo-data need to
have a sufficient size, leading to high computational load.
Furthermore, to achieve a high-quality approximation, the
tree needs to grow to a large size. Consequently, growing a
large tree solely using KDDT induction algorithm is often
computationally infeasible.

Typically, in most real-world applications, only a small
set of splits is needed for interpretation purposes. We re-
fer to these splits as interpretable nodes (splits), while
all other nodes, i.e., terminal nodes, are named predic-
tive nodes. Since the ODT induction algorithm is much
more efficient in constructing large trees than KDDT’s,
it is reasonable to combine these two algorithms to a hy-
brid induction algorithm. Specifically, we apply the KDDT
induction algorithm to the interpretable nodes, ensuring
their two-level stability, which is crucial for interpretation.
Then, we employ the ODT induction algorithm to con-
struct large sub-trees at the predictive nodes, maintaining
a good approximation to the teacher model and increas-
ing the computation efficiency. We refer to this tree as a
hybrid KDDT. For instance, in Figure 4, the interpretable
nodes are {1, 2, 3, 4, 7, 14}. We use the KDDT induction al-

Figure 4: An example of the hybrid knowledge distillation
decision tree: the nodes {1, 2, 3, 4, 7, 14} are interpretable
nodes, while all other nodes are predictive nodes.

gorithm to identify the stable splits for these nodes. Then,
we employ the ODT induction algorithm to grow the large
sub-trees {T5, T6, T8, T9, T15, T28, T29} at the respective pre-
dictive nodes.

The small set of interpretable nodes enhances the simplic-
ity of model interpretation. Meanwhile, the complexity nec-
essary to ensure a prediction accuracy comparable to that
of the teacher model is achieved through the construction
of large sub-trees at the predictive nodes. This decoupling
between interpretability and complexity offers the potential
for hybrid KDDT to strike a balance between prediction ac-
curacy and interpretability. For the sake of simplicity, we
use the term “KDDT” to refer to hybrid KDDT in the re-
mainder of this paper.

The informativeness of the interpretation can vary across
different interpretable nodes. Measuring and reporting these
differences is crucial for the interpretation according to these
nodes. To address this issue, we introduce the concept of
explanation index (XI). A similar index is calculated and
referred to as the potential explanation index (PXI) for the
predictive nodes.
Definition 6 (Explanation Index and Potential Explanation
Index). The explanation index of interpretable node (split)
i, denoted as XIi, and the potential explanation index of
predictive node j, denoted as PXIj , are defined as follows:

XIi =
ni

n ∗ΔSi

ΔKDDT
∗ 100%, PXIj =

nj

n ∗ΔTj

ΔKDDT
∗ 100% (3.1)

where ni, nj , and n denote the number of observations in
node i, j, and the entire dataset. ΔSi and ΔTj represent the
change in the measure defined by the split criterion (e.g., im-
purity or MSE reduction) after fitting split i or the subtree
at node j, respectively. ΔKDDT =

∑
i
ni

n ∗ΔSi+
∑

j
nj

n ∗ΔTj .
Based on Definition 6, it is straightforward to verify that∑
i XIi +

∑
j PXIj = 1. XIi and PXIj can be considered

as information contained in the interpretable node i and
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Figure 5: The effectiveness of KDDT in revealing and explaining complex data structures. (a) The true function y =
f(x1, x2) and its partition with 9 splits. (b) 50 random samples from the true function. (c) The tree structure and splits
for defining the partitions in (a), (d), and (f). (d) ODT is fitted based on 50 samples. (e) RF is fitted based on the 50
samples. (f) KDDT is constructed based on the RF.

predictive node j, respectively. Furthermore, we can extend
the concept of XI to apply to a path in KDDT as follows.
Definition 7 (Path Explanation Index).

XIij =
∑
k∈Sij

XIk (3.2)

where node i is an interpretable node, node j is a descendant
of node i, and Sij is a set of node IDs that includes the nodes
in the path from node i to the parent of node j.

With the above indices, we can identify the desired hy-
brid KDDT with an appropriate number of interpretable
nodes. For instance, if we want to achieve more than 70%
of the information in the data explained by the inter-
pretable nodes, the stopping criterion is

∑
i XIi > 70%,

i.e.,
∑

j PXIj < 30%. Examples demonstrating their ap-
plications can be found in Section 5. The process of con-
structing a desired hybrid KDDT with appropriate number
of interpretable nodes is illustrated by an example shown in
the Figure B.14 in Appendix B. The potential explanation
index of a predictive node can also be used to determine the
size of the pseudo data in its sampling region which could
be proportional to its PXI. Because, a higher PXI indicates
greater unexplained information, requiring a larger pseudo
data size.

4. SIMULATION STUDY
The simulation study has three primary objectives: (1) to

demonstrate the effectiveness of KDDT in revealing intricate
structures of the data, (2) to validate the interpretability of
KDDT, and (3) to illustrate the stability of interpretable
splits (nodes).

To facilitate a clear and intuitive discussion, we intro-
duce a two-dimensional function y = f(x1, x2), consisting
of 2601 generated data points, as illustrated in panel (a) of
Figure 5. This function exhibits high non-linearity and in-
tricate interactions, making it well-suited for our purposes.
Let us assume that y = f(x1, x2) is unknown. We can gain
insights about it by analyzing the sampled observations. In
panel (b), we have 50 observations randomly sampled from
the true function. We want to compare KDDT with other
interpretable models. The well-known ones include linear re-
gression and decision tree (ODT). As linear regression is not
suitable for this data, we opt for ODT. The ODT fitted from
50 observations is presented in panel (d). In comparison to
the true function, the ODT estimation is coarse and unable
to capture the interaction structure within the area marked
by the green rectangle. In contrast, the random forest model
provides a refined and precise estimation, as shown in panel
(e). The KDDT presented in panel (f), as a close approxi-
mation of its teacher, maintains a high-quality (resolution)
estimation. This highlights the ability of the KDDT to re-
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Figure 6: The comparison of interpretations and simulation result. (a) The true partition is obtained from the ODT that
is fitted based on the entire data of the true function. (b-1) The ODT is fitted based on 50 samples. (b-2) The result of
|Ŷtrue− ŶODT |. (c-1) The KDDT is built from RF. (c-2) The result of |Ŷtrue− ŶKDDT |. (d) MSE comparison of ODT and
KDDT with 100 times simulations.

veal intricate structures in the data.
For the function y = f(x1, x2), effective interpretation is

visually demonstrated through a suitable partition of the re-
sponse values y based on the covariates x1 and x2, as shown
in panel (a) of Figure 5. This partition comprises nine splits
generated by the ODT in panel (c), which is fitted using
the entire dataset of 2601 data points. We refer to this par-
tition as the true partition, representing the optimal inter-
pretation. Although the random forest model provides an
accurate estimation of the true function, it cannot gener-
ate a partition for interpretation. The ODT (fitted with 50
samples) is interpretable, but its interpretation (partition) is
not accurate. In contrast, the KDDT’s interpretation closely
approximates the optimal one (true partition), which is bet-
ter than the ODT’s. This claim relies on visual inspection,
which is a qualitative approach. Figure 6 presents a quan-
titative method for comparing the quality of interpretation
between ODT and KDDT. Panel (a) displays the true par-
tition (optimal interpretation). The partitions of ODT and
KDDT are depicted in panels (b-1) and (c-1), respectively.
Panels (b-2) and (c-2) illustrate the absolute errors of ODT
and KDDT compared to the truth. Clearly, visual inspec-
tion still leads to the same conclusion that KDDT’s interpre-
tation (partition) is superior to ODT’s. More importantly,
we can quantify this difference using MSE. In this exam-
ple, KDDT’s MSE is 6.95, significantly smaller than ODT’s

MSE of 14.56. Furthermore, we repeat this comparison 100
times. The result in panel (d) demonstrates that, in gen-
eral, KDDT outperforms ODT in terms of interpretation
quality measured by MSE. Note that the medians of MSE
are 20.32 and 12.14 for ODT and KDDT, respectively. The
corresponding means of MSE are 22.39 and 12.17. KDDT
results in a 40.3% reduction in the median and a 45.6% re-
duction in the mean compared to ODT. The maximum MSE
of KDDT is 20.93, corresponding to 53 percentile of ODT’s.
The maximum MSE of ODT is 54.06, which is more than
2.5 times higher than the KDDT’s.

To examine the KDDT in panel (c) of Figure 5 in more
detail, it contains nine interpretable nodes (splits). The first-
level and second-level stability can be found in Figure 7. Ex-
cept for split 12, which maintains a still impressive first-level
stability of 97%, all other splits exhibit a first-level stability
of 100%. Regarding second-level stability, each density func-
tion is tightly concentrated within a narrow interval and dis-
plays a sharp peak. Consequently, we can confidently assert
that the interpretable splits within the KDDT are stable.

5. APPLICATIONS
When should we use KDDT? Two fundamental condi-

tions should be met.
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Figure 7: The two-level stability of interpretable splits in panel (f) of Figure 5.

• Demands for understanding or explanation: We
need to understand or explain the data, either to gain
personal insight or to communicate findings to others.

• Possess good prediction accuracy: The black-box
ML model, which KDDT aims to approximate, should
outperform simple interpretable models, such as linear
regression or ODT, in predicting the data. This sug-
gests that the black-box model may have a better un-
derstanding of the data and the potential to offer a more
accurate interpretation compared to the simple models.

Considering these conditions, we discuss two real appli-
cations of KDDT in this section.

5.1 Example for Model Interpretation
In the application of model interpretation, we use the

Boston Housing dataset, which comprises a total of 506 ob-
servations with 14 variables. The description of variables
can be found in Table B.2 in Appendix B. Our goal is to
understand the effects of covariates on the price of houses
in Boston (in 1970). To check the second condition, we se-
lect the linear regression model (LM) and ODT as simple
interpretable models while choosing the random forest (RF)
and SVM as two candidate black-box models. A five-fold

cross-validation was conducted to compare their prediction
accuracy. The MSE (mean square error) on testing data are
LM: 23.2, ODT: 24.9, RF: 10.9, SVM: 13.4, and KDDT(RF):
14.9. More details of comparison can be found in Figure
B.13 in Appendix B. From the results, the ML models out-
perform the simple interpretable models, and RF performs
better than SVM. Hence, we can choose RF as the teacher
model. The student model KDDT(RF) outperforms the sim-
ple interpretable models and exhibits similar performance to
SVM. It indicates that KDDT(RF) may offer a more accu-
rate interpretation than the simple interpretable models.

The panel (a) of Figure 8 illustrates the interpretations
of KDDT(RF) for its teacher model RF. Since KDDT(RF)
is essentially a decision tree, identifying the variables of
importance is straightforward. The three most important
variables are lstat, rm, and nox, related to social status,
house size, and the natural environment, respectively. This
is consistent with the corresponding results of the teacher
model RF (see Figure B.15 in Appendix B), which is evi-
dence that KDDT(RF) can provide accurate interpretation
for its teacher model. More detailed and specific interpreta-
tions can be obtained by examining the interpretable splits
(nodes) featured in panel (a). For example, if a house has
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Figure 8: Model interpretation through KDDT. (a) The interpretation of RF using KDDT(RF). (b) The interpretation
of SVM using KDDT(SVM). Note that the left node (yes) and the right node (no) indicate whether the split condition
is met or not, respectively. Note: the process of constructing KDDT(RF) in panel (a) can be found in the Figure B.14 in
Appendix B.

seven or more rooms and is situated in an affluent com-
munity where the percentage of the population with lower
social status (lstat) is less than 4.71%, it is likely to have
a high value, averaging $36,600. Additionally, for potential
buyers, an intriguing insight emerges: they might acquire a
larger house with seven or more rooms in a less affluent com-
munity with lstat ≥ 9.8%, priced around $25,500, which is
cheaper than a smaller house that could cost around $26,300
in a community with lstat ≤ 9.7%. These specific insights
are exemplified by nodes 5 and 6 in the tree. The stability of
the interpretable splits shown in Figure B.16 in Appendix B
ensures the credibility of interpretations.

In panel (a) of Figure 8, the XI and PXI associated
with the interpretable and predictive nodes provide the rel-
ative importance information for their interpretation. For
instance, XI1 = 29.8% for the split rm<6.97 indicates
whether a house has seven or more rooms is crucial for
assessing its value. Moreover, these indices could serve as
stop criterion for identifying the interpretable nodes set.

For example, we can identify the KDDT(RF) interpretable
nodes by the criterion that the sum of PXI is less than 30%.
This criterion ensures that predictive nodes do not contain
substantial information. Furthermore, we can interpret any
prediction of KDDT by using the concept of the path ex-
planation index in Definition 7. For example, if a predic-
tion is made through the predictive node 9 (see panel (a)),
its XI can be calculated as XI1,9 = XI1 + XI2 + XI4 =
51.7%. Then, with the PXI9 = 3.9%, we can obtain that
(

XI1,9
XI1,9+PXI9

, PXI9
XI1,9+PXI9

) = (93%, 7%). It indicates that the
prediction can be interpreted with a degree of 93% using the
chain of decision rules {rm < 6.97 −→ lstat ≥ 9.75 −→ nox ≥
0.669}.

Last but not least, the percentage of observed data of
each node also plays a pivotal role in comprehending the
interpretation of KDDT. This percentage serves as crucial
evidence of how strongly the interpretation of a particular
node is supported by the observed data. Given that KDDT
is not a direct interpretation of the observed data but rather
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Figure 9: The interpretation of super learner through KDDT. (a) The framework of super learner algorithm/model. The
number 1, ..., K refer to different cross-validation folds. The gray folds refers testing data. (b) The estimated weights
and super learner. (c) The comparison of prediction accuracy between super learner and base models. (d) The variable
importance of KDDT(SL). (e) The tree structure of KDDT(SL).
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of the teacher model, the support from the observed data is
pivotal for the interpretation’s practical significance. Even
a node (split) with a high XI may lack practical relevance
if the percentage of observed data associated with it (or
its children) is exceedingly low. For instance, consider node
6 (split 3). Although it has XI1,6 = XI1 + XI3 = 48.7%
(XI3 = 18.9%), it (left child) comprises a mere 1.2% of ob-
served data. This suggests that the interpretation of this
node (split) might not carry much practical importance. In
other words, the chance of purchasing a larger house at a
lower price is not zero, but it is very low in practice. Con-
sequently, it is imperative to take into account both the
XI and the percentage of observed data when interpreting
KDDT. As an example, we are confident in the interpreta-
tion of predictions made through node 9. Because this node
not only has a high path XI of XI1,9 = 51.7% that can
be interpreted with a degree of 93% but also enjoys strong
practical support from a large number (38.1%) of observed
data.

As demonstrated in panel (b) of Figure 8, KDDT can also
provide an interpretation for SVM, which differs from the
one for RF. In KDDT(SVM), the top three important vari-
ables are lstat, crim, and rm, related to social status, secu-
rity, and house size, respectively. It indicates that, except for
social status and house size, the SVM’s explanation focuses
on security, in contrast to RF emphasis on natural environ-
ment. Regarding the interpretable splits, the sum of their
XIs in KDDT(SVM) is 26.3%, which is smaller than the
74.5% in KDDT(RF). This suggests that the interpretable
nodes set of KDDT(SVM) has less interpretability com-
pared to its counterpart in KDDT(RF). Their comparison
shown at the bottom of Figure 8 provides an intuitive illus-
tration supporting this assertion, demonstrating that more
variation in the data is explained by KDDT(RF) than by
KDDT(SVM). Another issue of KDDT(SVM) is that splits
3 and 7 have child nodes 6 and 14, respectively, which do
not include any observed data. To address this, we can omit
these two branches (red dashed lines) and focus solely on
node 15. The path explanation index from node 1 to 15 can
then be calculated as XI1,15 = XI1 +XI3 +XI7 = 18.8%.
In sum, through KDDT, SVM can offer a different inter-
pretation compared to RF. But, the interpretable splits in
KDDT(SVM) do not perform as effectively as their coun-
terparts in KDDT(RF).

KDDT can also be valuable in interpreting the model that
is ensembled from other models. One typical example is the
Super Learner introduced by [13]. As depicted in panel (a)
of Figure 9, the Super Learner employs cross-validation to
estimate the performance of multiple base models. Subse-
quently, it constructs an optimal weighted average of these
models based on their testing performance. This approach
has been proven to yield predictions that are asymptotically
as good as or even better than any single model within the
ensemble. In this example, we introduced eight base models
and estimated their weights in the Super Learner, as shown

in panel (b). Evaluated through a 10-fold cross-validation,
the result presented in panel (c) demonstrates that the Su-
per Learner outperforms all its base models in terms of pre-
diction accuracy, which satisfies the second condition for
applying KDDT.

Compared to the base models, the ensemble nature of the
Super Learner renders it a more opaque black-box model,
which makes the interpretation more challenging. KDDT
can provide a solution. Panel (d) of Figure 9 presents the
variable importance of KDDT(SL), which remarkably re-
semble those of the RF model shown in panel (a) of Figure
8. In panel (e) of Figure 9, interpretable splits (nodes) were
selected based on the criterion that the sum of PXI is less
than 30%. The sum of XIs is 75.2%, indicating that the
interpretable nodes of KDDT(SL) offer substantial inter-
pretability. An interesting observation emerges when com-
paring KDDT(RF) and KDDT(SL): the predictions and in-
terpretations of nodes 4 and 5 in KDDT(RF) closely re-
semble those of nodes 4 and 6 in KDDT(SL). In panel (a) of
Figure 8 and panel (e) of Figure 9, these corresponding paths
are highlighted in green and purple, respectively. Notably,
all of the paths exhibit both high path XI and substantial
percentages of observed data. This suggests a strong simi-
larity in interpretation between RF and the Super Learner.

We have three KDDT interpretations associated with RF,
SVM, and Super Learner. It is important to be aware that
all of these interpretations are reasonable and valid. All
roads lead to Rome. Choosing which one depends on the
application requirements. For example, consider a real es-
tate consultant whose client is interested in the natural en-
vironment of the house, KDDT(RF)’s explanation would be
a good choice. If the client’s main concern is the safety of
the neighborhood, KDDT(SVM)’s interpretation may be a
better choice. Furthermore, if significant splits or paths con-
sistently appear in different KDDT interpretations, it serves
as an indicator of their critical roles in the data. These in-
terpretations have the potential to provide valuable insights
or knowledge about the data or application. For example, as
discussed in the comparison of KDDT(RF) and KDDT(SL),
we can derive the valuable insight that 10% lower status of
the population and 7 rooms are two critical thresholds shap-
ing people’s evaluations of house prices in Boston.

5.2 Example for Subgroup Discovery
With the ability to uncover patterns in complex data

and explore non-linear relationships, ML models have gained
popularity in data-driven precision medicine, fueled by the
rapid expansion in the availability of a wide variety of pa-
tient data. In precision medicine, identifying heterogeneity
plays a central role, where subgroups of patients are de-
fined based on baseline values of demographic, clinical, ge-
nomic, and other covariates, known as biomarkers. Under-
standing the effects of biomarkers in data analysis models
is crucial for subgroup discovery. KDDT can bridge the gap
between understanding the role of biomarkers and the lack
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Figure 10: Subgroup discovery and optimal cutoff identification. (a) Variable importance provides information for selecting
split variables. (b) Interpretable splits for identifying optimal cutoff and subgroups. (c) The two-level stability of split
2. (d) Log10(p-value) of log-rank tests for validating the optimality of cutoff value. (e) The Kaplan-Meier plot for the
identified subgroups. (f) Contingency table depicts the association between age and chf.

of interpretability in black-box ML data analysis models.
Particularly, as a tree-based approach, KDDT can incorpo-
rate information on higher-order interaction effects and be
applied to define subgroups based on multiple biomarkers.
Moreover, cutoff values do not need to be pre-specified for
continuous/ordinal biomarkers. They are automatically es-
timated from the process of constructing KDDT.

In this example, we select the time-to-event dataset
WHAS (Worcester Heart Attack Study), whose aim is to
describe factors associated with trends in incidence and sur-
vival over time after admission for acute myocardial infarc-
tion. This dataset is available in the R package “mlr3proba”,
and includes 481 observations and 14 variables. Four vari-
ables, id (Patient ID), year (Cohort year), yrgrp (Grouped
cohort year), and dstat (Discharge status from the hospital:
1 = Dead, 0 = Alive), were excluded as they were not perti-
nent to the goal of study. The description of the remaining

variables can be found in Table B.3 in Appendix B. We
choose Cox Proportional Hazard (CoxPH) model as the in-
terpretable model and Random Survival Forest (RSF) as the
black-box teacher model. Similar to Section 5.1, the compar-
ison of prediction accuracy was conducted with a five-fold
cross-validation. Instead of MSE, the C-index serves as the
criterion, with higher C-index indicating higher accuracy.
The result on testing data is CoxPH: 0.766, RSF: 0.797, and
KDDT(RSF): 0.797. More details of the comparison can be
found in Figure B.17 in Appendix B. This result demon-
strates the superiority of RSF in prediction and suggests
that it is worth trying to take advantage of KDDT(RSF) in
the application of subgroup discovery.

The structure of KDDT(RSF) is depicted in panel (b)
of Figure 10. As the first split, sho=0, XI1 = 84.1% sug-
gests a great practical significance for the identified sub-
groups. Actually, it is widely recognized that cardiogenic
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shock is positively associated with an increased risk of death.
It is not a surprising discovery. The researcher’s interest
may lie more in the subgroups identified from the patients
who didn’t experience cardiogenic shock. The second split,
age< 67.02, reveals two subgroups. Although XI2 = 3.9%
is not high compared to XI1 = 84.1%, it is relatively high
in the rest of interpretable nodes, XI2

XI2+XI4+XI5+XI10
=

3.9%
3.9%+2.9%+1.5%+1.1% = 41.5%. Moreover, the observed data
in its child nodes are substantial and well-balanced, indicat-
ing strong support from the observed data. They are evi-
dence that indicates the importance of the subgroups iden-
tified by the second split. The split stability of the optimal
cutoff value is displayed in panel (c). The greedy search al-
gorithm ensures its optimality which is substantiated by the
p-values from log-rank tests across different values in panel
(d). Consequently, there is no need to explore multiple cut-
off values, thus alleviating the multiplicity issues. Panel (e)
displays the Kaplan-Meier plot for the two subgroups, il-
lustrating the varying risks associated with each subgroup.
Finer subgroups and covariates interactions can be explored
by considering deeper splits. Since node 11 just contains
4 observations (0.83% of the data), we can remove it and
its parent node 5 (see the red dashed line). This can be
achieved by redistributing these 4 observations to nodes 20
and 21 based on their chf values. As a result, four subgroups
with the number of patients can be identified in the table
in panel (f). Analyzing this table reveals a clear interaction
(dependency) between the risk of left heart failure (chf=1)
and the age of patients. This relationship can be statisti-
cally confirmed through a χ2 test, which yields a p-value of
2.655e-10.

6. DISCUSSION
KDDT offers a general method for interpreting black-

box ML models, enabling the exploration of intricate data
structures captured by these models for more precise and
detailed interpretations. Essential attributes for good inter-
pretable models include simplicity, stability, and predictiv-
ity. Stability is the central focus of this study. The primary
challenge lies in constructing a stable KDDT while handling
the randomness of the pseudo-data (knowledge) sampled in
the knowledge distillation process. We propose a compre-
hensive theory for split stability and develop efficient algo-
rithms for constructing stable KDDTs. To ensure simplic-
ity, KDDT efficiently decouples the tasks of interpretation
and prediction, maintaining a concise set of interpretable
nodes for the purpose of interpretation. Regarding predic-
tivity, KDDT, as a closed approximation of black-box ML
models, retains strong predictive performance comparable to
the original black-box models. In conclusion, KDDT is an
excellent interpretable model with great potential for prac-
tical applications.

In our theory and algorithms, we employed the random
sampling method to generate pseudo-data for constructing

KDDT. This approach performed well in simulation and real
data studies. Specifically, when the sample size is less than
60000, the time required to fit an interpretable node was
under one minute. In general, for cases where the number
of continuous covariates (ncon) is relatively small, typically
less than 20, the sample size of 60000 is sufficient. However,
when dealing with larger ncon, a larger sample size is nec-
essary. In such cases, random sampling will be less efficient,
and non-uniform random sampling strategies may be more
attractive. Two promising strategies are MCMC sampling,
which leverages information from the teacher model to en-
hance sampling efficiency, and PCA sampling, which uses
dimension reduction to improve sampling efficiency. They
are interesting directions for future study.

APPENDIX A. THEOREMS AND PROOFS
Although the teacher model f(x) may have p-dimensional

covariates x = (x1, . . . xp), only one covariate is used at
each split. Therefore, we need to marginalize over all other
covariates to eliminate their influence. The result is a unary
function f(x) defined as follows.

f(x) = fk(xk) =

∫
...

∫
f(x) dx−k, k = 1, . . . , p, (A.1)

where dx−k =
∏

i �=k dxi. If xj is categorical variables
takes values in {1, . . . , C}, we set

∫
f(x−j , xj) dxj =∑C

l=1 f(x−j , xj)I(xj = l), where x−j is the vector {xi}i �=j ,
I(·) is an indicator function. We don’t need to explicitly
perform the integral for the univariate projection. It is im-
plicitly handled in the greedy search algorithm by assessing
the relationship between the univariate x and the response
y at each split.

Lemma 1. Assume x ∈ [a, b], where a, b ∈ R, be a continu-
ous variable in the teacher model y = f(x), and y can be a
continuous or categorical variable. Let zlc(x) =

∫ x

a
hl
c(t) dt,

zrc (x) =
∫ b

x
hr
c(t) dt, where hl

c(·) and hr
c(·) are integrable

functions in [a, b], c ∈ {1, . . . , C} and C ∈ N
+. The func-

tion g(·) : RC → R is defined in Definition 1. Let xs be the
unique optimal split in (a, b) that is defined by (2.4).

Consider {x1, . . . , xn−1} as n−1 points drawn uniformly
at random from the interval (a, b), and arrange them in
ascending order. Let x0 = a and xn = b, and include them
in {x1, . . . , xn−1} to form the set {x0, x1, . . . , xn−1, xn}.
Utilizing the teacher model, we can generate pseudo-data as
{(x0, f(x0)), (x1, f(x1)), . . . , (xn−1, f(xn−1)), (xn, f(xn))}.
Subsequently, we can fit a stump to the pseudo-data by
employing the greedy split search algorithm. The split
criterion is defined as follows.

xn
s = argmin

xk,k∈{1,...,n−1}

[
g
(
z
l(n)
1 (xk), . . . , z

l(n)
C (xk)

)
+

g
(
z
r(n)
1 (xk+1), . . . , z

r(n)
C (xk+1)

)]
,

(A.2)
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where, z
l(n)
c (xk) =

∑k
i=1 h

l
c(xi) ∗ Δi, z

r(n)
j (xk+1) =∑n

j=k+1 h
r
c(xj) ∗Δj and Δi = xi − xi−1, i = 1, . . . , n.

Let kns denote the optimal integer k that minimized (A.2),
in other worlds, xn

s = xkn
s
. Then, the following holds:

xn
s

p→ xs, as n → ∞.

The rate of convergence is O(n−1).

Proof. There must exist a point xm such that,

|xs − xm| = min{|xs − xi|}, i = 1, . . . , n− 1.

Because xi, i = 1, . . . , n− 1 are uniformly distributed in
(a, b). For a constant ε, 0 < ε < b − a, by the theory of
order statistics, it is easy to prove the following:

P

(
|xs − xm| > ε

2

)
=

(
1− ε

b− a

)n−1

. (A.3)

For any ε, 0 < ε < b− a,

lim
n→∞

P

(
|xs−xm| > ε

2

)
= lim

n→∞

(
1− ε

b− a

)n−1

= 0. (A.4)

In other words, xm
p→ xs as n → ∞.

For any two consecutive points xi−1 and xi, i = 1, . . . , n,
it is easy to know

|xi − xi−1| =min{|x0 − xi|, . . . , |xi−2 − xi|,
|xi−1 − xi|, |xi−1 − xi+1|, . . . , |xi−1 − xn|}.

Thus, for a constant ε, 0 < ε < b−a, by the theory of order
statistics, we have that

P

(
|xi − xi−1| >

ε

2

)
=

(
1− ε

b− a

)n−1

, i = 1, . . . , n.

Let Δi = |xi − xi−1|. Similar to (A.4), we can prove that
Δi

p→ 0 as n → ∞ for i = 1, . . . , n.
Because h(·) is integrable in [a, b] and xm

p→ xs, Δi
p→ 0,

as n → ∞, we can get that

lim
n→∞

zl(n)c (xm)

= lim
n→∞

m∑
i=1

hl
c(xi) ∗Δi

p→
∫ xs

a

hl
c(u) du

= zlc(xs).

(A.5)

Similarly, by xm+1
p→ xs as n → ∞ (because Δm+1

p→ 0 as
n → ∞), we can prove that,

lim
n→∞

zr(n)c (xm+1)
p→ zrc (xs).

Then, by the continuity of function g, we can obtain that

lim
n→∞

[
g
(
z
l(n)
1 (xm), . . . , z

l(n)
C (xm)

)
+ g

(
z
r(n)
1 (xm+1), . . . , z

r(n)
C (xm+1)

)]
p→ g

(
zl1(xs), . . . , z

l
C(xs)

)
+ g

(
zr1(xs), . . . , z

r
C(xs)

)
.

(A.6)

Because of Δi = |xi − xi−1|
p→ 0 as n → ∞, for any

two consecutive points, we have |xkn
s
− xkn

s +1|
p→ 0. There-

fore, there must exist a point x∗
s , such that xkn

s

p→ x∗
s and

xkn
s +1

p→ x∗
s . Consequently, recall equation (A.2), we have

xkn
s
= xn

s
p→ x∗

s as n → ∞. Now, let us assume that the
sequence {xn

s } does not converge solely to x∗
s . This would

imply the existence of at least two distinct values, say x∗
s1

and x∗
s2 (with x∗

s1 	= x∗
s2), such that both xn

s
p→ x∗

s1 and
xn
s

p→ x∗
s2 hold. This means that both x∗

s1 and x∗
s2 satisfied

equation (A.2), which is equivalent to the definition of an
optimal split in equation (2.4). This implies the existence of
two optimal splits, contradicting the assumption of a unique
optimal split. So, we have

xn
s

p→ x∗
s , as n → ∞.

Because xn
s = xkn

s
and xkn

s +1
p→ xn

s as n → ∞, we know

xkn
s

p→ x∗
s , xkn

s +1
p→ x∗

s .

Using the integrability of h(·) and the same proof proce-
dures of (A.5) and (A.6), we can obtain the following:

lim
n→∞

[
g
(
z
l(n)
1 (xkn

s
), . . . , z

l(n)
C (xkn

s
)
)

+ g
(
z
r(n)
1 (xkn

s +1), . . . , z
r(n)
C (xkn

s +1)
)]

p→ g
(
zl1
(
x∗
s

)
, . . . , zlC

(
x∗
s

))
+ g

(
zr1
(
x∗
s

)
, . . . , zrC

(
x∗
s

))
.

(A.7)

According to the greedy search algorithm and split crite-
rion in (A.2), for all n ∈ N, we know that

g
(
z
l(n)
1 (xm), . . . , z

l(n)
C (xm)

)
+ g

(
z
r(n)
1 (xm+1), . . . , z

r(n)
C (xm+1)

)
≥ g

(
z
l(n)
1 (xkn

s
), . . . , z

l(n)
C (xkn

s
)
)

+ g
(
z
r(n)
1 (xkn

s +1), . . . , z
r(n)
C (xkn

s +1)
)
.

(A.8)

The equal sign holds if and only if m = kns .
From (A.6), (A.7), and (A.8) we can get,

g
(
zl1(xs), . . . , z

l
C(xs)

)
+ g

(
zr1(xs), . . . , z

r
C(xs)

)
≥ g

(
zl1
(
x∗
s

)
, . . . , zlC

(
x∗
s

))
+ g

(
zr1
(
x∗
s

)
, . . . , zrC

(
x∗
s

))
.

Since xs is the unique and optimal split that satisfies the
split criterion (2.4), the following must hold:

g
(
zl1(xs), . . . , z

l
C(xs)

)
+ g

(
zr1(xs), . . . , z

r
C(xs)

)
≤ g

(
zl1
(
x∗
s

)
, . . . , zlC

(
x∗
s

))
+ g

(
zr1
(
x∗
s

)
, . . . , zrC

(
x∗
s

))
.
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So,

g
(
zl1(xs), . . . , z

l
C(xs)

)
+ g

(
zr1(xs), . . . , z

r
C(xs)

)
= g

(
zl1
(
x∗
s

)
, . . . , zlC

(
x∗
s

))
+ g

(
zr1
(
x∗
s

)
, . . . , zrC

(
x∗
s

))
,

and

xn
s

p→ x∗
s = xs, as n → ∞.

For the rate of convergence, let us recall (A.4) and change
ε to ε′

n , where ε′ is a constant in (0, b− a).

lim
n→∞

P

(
|xs − xm| > ε′

2n

)

= lim
n→∞

(
1 +

−ε′/(b− a)

n

)n

= e−ε′/(b−a)

Because e−ε′/(b−a) is a constant, the convergence rate of
xm is O(n−1).

Since |xs − xn
s | ≥ |xs − xm| always holds xn

s converges to
xs slower or equal to xm. However, by (A.8), we know that

g
(
z
l(n)
1 (xkn

s
), . . . , z

l(n)
C (xkn

s
)
)

+ g
(
z
r(n)
1 (xkn

s +1), . . . , z
r(n)
C (xkn

s +1)
)

converges to

g
(
zl1(xs), . . . , z

l
C(xs)

)
+ g

(
zr1(xs), . . . , z

r
C(xs)

)
faster or equal than

g
(
z
l(n)
1 (xm), . . . , z

l(n)
C (xm)

)
+g

(
z
r(n)
1 (xm+1), . . . , z

r(n)
C (xm+1)

)
in all instances. This implies xn

s converges to xs faster or
equal than xm.

So, the convergence rate of xn
s is exactly the same as xm,

and it is at the level O(n−1) too.

Corollary 1. Let d = 3(b−a)
2(n−1) . The interval [xn

s − d, xn
s +

d] approximates to the 95% confidence interval of the true
optimal split xs for large n.

Proof. According to the proof of Lemma 1, for a constant
d ∈ (0, b−a

2 ], P (|xs − xm| > d) represents the probability
that all random samples in {x1, . . . , xn−1} fall outside the
interval [xs − d, xs + d]. Similar to equation (A.3), we have

P (|xs − xm| > d) =

(
1− 2d

b− a

)n−1

.

Thus, P (|xs−xm| ≤ d) = 1−(1− 2d
b−a )

n−1 is the probability
that the true optimal split xs lies within the interval [xm −
d, xm+d]. In other words, [xm−d, xm+d] is the confidence
interval of the true optimal split xs at a significance level of
1− α = 1− (1− 2d

b−a )
n−1.

Because neither xs nor xm are known. Let us recall the
proof of Lemma 1, where we know that xn

s
p→ xs and xm

p→

xs as n → ∞, and both xm and xn
s converge to xs at the

same rate. Therefore, we have (xn
s±d)

p→ (xs±d), (xm±d)
p→

(xs ± d), and |xs − xn
s |

p→ |xs − xm| as n → ∞. Such that

lim
n→∞

P
(
|xs − xn

s | ≤ d
)

= lim
n→∞

P (|xs − xm| ≤ d)

= lim
n→∞

[
1−

(
1− 2d

b− a

)n−1]

= lim
n→∞

[
1−

(
1 +

−3

n− 1

)n−1]
, by d =

3(b− a)

2(n− 1)

=1− e−3 ≈ 0.950.

So, the interval

[
xn
s − d, xn

s + d
]
≡

[
xn
s − 3(b− a)

2(n− 1)
, xn

s +
3(b− a)

2(n− 1)

]
(A.9)

is a good approximation of the 95% confidence interval of
the true optimal split xs for large n.

To empirically validate the theoretical results about the
confidence interval (A.9), we conducted an experiment using
a step function, denoted as f(x), with a single optimal split
at x = 1, as illustrated in panel (a) of Figure A.11. The
experiment proceeded as follows:
(1) At each sample size, we performed the following steps

1000 times:
– Calculated the theoretical 95% confidence interval

using (A.9).
– Determined whether the true optimal split x = 1

falls within this interval.
We then calculated the coverage rate, which is the pro-
portion of times the true optimal split was covered by
the confidence interval.

(2) We repeated step (1) a total of 100 times to obtain the
empirical distribution of the coverage rate.

The results of this experiment are presented in panel (b)
of Figure A.11. Notably, the empirical expectation of the
coverage rate is approximately 95% when the sample size
is 500 or larger. This empirical finding aligns well with the
theoretical 95% confidence interval and supports the valid-
ity of confidence interval (A.9) and Lemma 1 in a practical
context.
Theorem 1 (Continuous split convergence under the crite-
rion of SSE). Let X be a continuous random variable that
takes values in [a, b], where a, b ∈ R. The teacher model
f(x) is integrable in [a, b]. We assume the existence of an
unknown unique optimal split xs in (a, b), which is defined
as follows:

xs = argmin
x∈(a,b)

[∫ x

a

(
f(t)−μl(x)

)2
dt+

∫ b

x

(
f(t)−μr(x)

)2
dt

]
,

(A.10)
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Figure A.11: (a) The true optimal split x = 1. (b) The coverage rate of 95% confidence intervals converges to the theoretical
value (95%).

where,

μl(x) =
1

x− a

∫ x

a

f(u) du , μr(x) =
1

b− x

∫ b

x

f(u) du.

Consider {x1, . . . , xn−1} as n−1 points drawn uniformly
at random from the interval (a, b), and arrange them in
ascending order. Let x0 = a and xn = b, and include them
in {x1, . . . , xn−1} to form the set {x0, x1, . . . , xn−1, xn}.
Utilizing the teacher model, we can generate pseudo-data as
{(x0, f(x0)), (x1, f(x1)), . . . , (xn−1, f(xn−1)), (xn, f(xn))}.
Subsequently, we can fit a stump to the pseudo-data by
employing the greedy split search algorithm and splitting
criterion SSE in (2.1). Let xn

s denote the split of the stump.
Then, 1) xn

s converges to xs in probability as n → ∞.
2) The values of two fitted nodes converge to μl(xs) and
μr(xs) in probability respectively as n → ∞. 3) The rate of
convergence is O(n−1).

Proof. Construct

g
(
zl1(x)

)
= zl1(x), g

(
zr1(x)

)
= zr1(x),

zl1(x) =

∫ x

a

hl(t) dt, zr1(x) =

∫ b

x

hr(t) dt,

hl(t) =
(
f(t)− μl(x)

)2
, hr(t) =

(
f(t)− μr(x)

)2
,

z
l(n)
1 (xk) =

k∑
i=1

hl(xi)∗Δi , z
r(n)
1 (xk+1) =

n∑
j=k+1

hr(xj)∗Δj ,

where Δi = xi − xi−1, i = 1, . . . , n.
Under this construction, the optimal split xs defined in

(A.10) follows (2.4) in Definition 1. Obviously, hl(·) and
hr(·) are integrable in [a, b], because f(·) is integrable. So,
by applying Lemma 1, xn

s converges to xs in probability and
the rate of convergence is O(n−1).

Since f(·) is integrable in [a, b] and xkn
s
= xn

s , xkn
s +1

p→
xn
s , xn

s
p→ xs, as n → ∞, we can prove that

lim
n→∞

1

xkn
s
− a

kn
s∑

i=1

f(xi)Δi
p→ 1

xs − a

∫ xs

a

f(u) du

= μl(xs),

lim
n→∞

1

b− xkn
s +1

n∑
j=kn

s +1

f(xj)Δj
p→ 1

b− xs

∫ b

xs

f(u) du

= μr(xs),

and the rate of convergence is O(n−1).

Theorem 2 (Continuous split convergence under the Tsal-
lis entropy criterion). Let X be a continuous random vari-
able that takes values in [a, b], where a, b ∈ R. y = f(x)
is the teacher model. Y = f(X) is a discrete random vari-
able taking values y ∈ {y1, . . . , yC}, where C ∈ N

+. Let
Si = {x|f(x) = yi, x ∈ [a, b]}, i = 1, . . . , C. The probability
mass function of Y in [a, b] is that:

p(yi) =

∫
Si

1

b− a
dx, i = 1, . . . , C.

And, the probability mass function of Y in [a, x] is that:

p[a,x](yi) =

∫
Si∩[a,x]

1

x− a
dt.

Then, a Tsallis entropy can be calculated in [a, x],

Sq

(
[a, x]

)
=

1

1− q

(
C∑
i=1

p[a,x](yi)
q − 1

)
, q ∈ R.
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Assume the existence of an unknown unique optimal split xs

in (a, b), which is defined as follows:

xs = argmin
x∈(a,b)

[
Sq

(
[a, x]

)
+ Sq

(
[x, b]

)]
. (A.11)

Consider {x1, . . . , xn−1} as n−1 points drawn uniformly
at random from the interval (a, b), and arrange them in
ascending order. Let x0 = a and xn = b, and include them
in {x1, . . . , xn−1} to form the set {x0, x1, . . . , xn−1, xn}.
Utilizing the teacher model, we can generate pseudo-data as
{(x0, f(x0)), (x1, f(x1)), . . . , (xn−1, f(xn−1)), (xn, f(xn))}.
Subsequently, we can fit a stump to the pseudo-data by
employing the greedy split search algorithm and Tsallis
entropy splitting criterion in (2.2) and (2.3). xn

s denotes
the split of the stump.

Then, 1) xn
s converges to xs in probability as n → ∞. 2)

The rate of convergence is O(n−1).

Proof. Construct

g
(
zl1(x), . . . , z

l
C(x)

)
=

1

1− q

(
C∑

c=1

zlc(x)
q − 1

)
,

g
(
zr1(x), . . . , z

r
C(x)

)
=

1

1− q

(
C∑

c=1

zrc (x)
q − 1

)
,

zlc(x) =

∫ x

a

hl
c(t) dt

=

∫ x

a

1

x− a
∗ Iyc

(
f(t)

)
dt

=

∫
Si∩[a,x]

1

x− a
dt = p[a,x](yc),

zrc (x) =

∫ b

x

hr
c(t) dt

=

∫ b

x

1

b− x
∗ Iyc

(
f(t)

)
dt

=

∫
Si∩[x,b]

1

b− x
dt = p[x,b](yc),

hl
c(t) =

1

x− a
∗ Iyc

(
f(t)

)
, hr

c(t) =
1

b− x
∗ Iyc

(
f(t)

)
,

zl(n)c (xk) =

k∑
i=1

hl
c(xi) ∗Δi =

1

x− a

k∑
i=1

Δi ∗ Iyc

(
f(xi)

)
,

zr(n)c (xk+1) =

n∑
j=k+1

hr
c(xj)∗Δj =

1

b− x

n∑
j=k+1

Δj∗Iyc

(
f(xj)

)
,

where c = 1, . . . , C, Δi = xi − xi−1, i = 1, . . . , n and
Iyc(f(x)) is an indicator function that is equal to 1 at
f(x) = yc and 0 elsewhere.

Under this construction, the optimal split xs defined in
(A.11) follows (2.4) in Definition 1. Obviously, hl

c(·) and
hr
c(·) are integrable in [a, b]. So, by applying Lemma 1, xn

s

converges to xs in probability and the rate of convergence
is O(n−1).

Theorem 3 (Categorical split convergence under MSE
criterion). X is a discrete random variable taking values
x ∈ {1, . . . , Cx}, where Cx ∈ N

+. Y is a continuous random
variable taking values y ∈ [c, d], where c, d ∈ R. Y has a
finite mean μ. The conditional distribution of Y |X = k is
defined through the teacher model y = f(k). The expectation
of Y |X = k is given by:

E(Y |X = k) = μk, μ =
1

Cx

Cx∑
k=1

μk

k = 1, . . . , Cx.

(A.12)

Let us randomly sample n instances of X, denoted
as {x1, . . . , xn}, from {1, . . . , Cx}. Corresponding samples
of Y , denoted as {y1, . . . , yn}, are generated through the
conditional distribution of Y |X = k. The uniform sam-
pling assumption indicates limn→∞

nk

n = 1
Cx

, where nk =∑n
i=1 I(xi = k), k = 1, . . . , Cx.
Assume the existence of an unknown unique optimal split

xs in {1, . . . , Cx}, which is defined as follows:

xs = argmin
k∈{1,...,Cx}

lim
n→∞

1

n

[
nk∑
i=1

(yki − μk)
2

+
∑
l �=k

(
nl∑
j=1

(ylj − μ−k)
2

)]
,

(A.13)

where μ−k = E(Y |X 	= k).
A stump can be fitted on the pseudo-data

{(x1, y1), . . . , (xn, yn)} by using the greedy search algo-
rithm and splitting MSE criterion in (2.1). Let xn

s denote
the split of the stump.

Then, 1) xn
s converges to xs in probability as n → ∞. 2)

The rate of convergence is O(n−1).

Proof. Let us construct

lim
n→∞

1

n

nk∑
i=1

(yki − μk)
2 = zl(k),

lim
n→∞

∑
l �=k

(
nl∑
j=1

(ylj − μ−k)
2

)
= zr(k),

g(z) = z.

Obviously, (A.13) follows (2.4), so xs follows Definition 1.
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By the splitting criterion (2.1), the optimal split of the
stump can be found that

xn
s = argmin

k∈{1,...,Cx}

1

n

[
nk∑
i=1

(yki − ȳk)
2 +

∑
l �=k

(
nl∑
j=1

(ylj − ȳ−k)
2

)]
,

where

ȳk =
1

nk

nk∑
i=1

yki and ȳ−k =
1∑

l �=k nl

∑
l �=k

nl∑
j=1

ylj .

Since we know that nk = 1
Cx

n, k = 1, . . . , Cx. By the
weak law of large numbers, we can prove that

ȳk
p→ μk, ȳ−k

p→ μ−k as n → ∞.

So, with probability one,

lim
n→∞

xn
s = argmin

k∈{1,...,Cx}
lim

n→∞

1

n

[
nk∑
i=1

(yki − ȳk)
2

+
∑
l �=k

(
nl∑
j=1

(ylj − ȳ−k)
2

)]

p→ argmin
k∈{1,...,Cx}

lim
n→∞

1

n

[
nk∑
i=1

(yki − μk)
2

+
∑
l �=k

(
nl∑
j=1

(ylj − μ−k)
2

)]
= xs.

xn
s converges to xs in probability and the rate of conver-

gence is O(n−1).

Theorem 4 (Categorical split convergence under Tsallis
entropy criterion). X is a discrete random variable taking
values x ∈ {1, . . . , Cx}, where Cx ∈ N

+. Y is a discrete
random variable taking values y ∈ {1, . . . , Cy}, where Cy ∈
N

+. A joint distribution (X,Y ) can be defined through the
teacher model y = f(x). Its probability mass function can be
denoted as p(x = i, y = j) = pij, where i = 1, . . . , Cx, j =
1, . . . , Cy.

Let us randomly sample n instances of X, denoted as
{x1, . . . , xn}, from {1, . . . , Cx}. Corresponding samples of
Y , denoted as {y1, . . . , yn}, are generated through the joint
distribution (X,Y ). The uniform sampling assumption in-
dicates limn→∞

nk

n = 1
Cx

, where nk =
∑n

i=1 I(xi = k),
k = 1, . . . , Cx.

Assume the existence of an unknown unique optimal split
xs in {1, . . . , Cx}, which is defined as follows:

xs = argmin
k∈{1,...,Cx}

[
Sq(k) + Sq(−k)

]
, (A.14)

where, Sq(·) is the Tsallis entropy,

Sq(k) =
1

1− q

(
Cy∑
j=1

(pkj)
q − 1

)
,

Sq(−k) =
1

1− q

(
Cy∑
j=1

(∑
i �=k

pij

)q

− 1

)
,

k, i ∈ {1, . . . , Cx}, q ∈ R.

A stump can be fitted with the pseudo-data
{(x1, y1), . . . , (xn, yn)} by using the greedy search algo-
rithm and the Tsallis entropy splitting criterion in (2.2)
and (2.3). Let xn

s denote the split of the stump.
Then, 1) xn

s converges to xs in probability as n → ∞. 2)
The rate of convergence is O(n−1).

Proof. Let us construct

pkj = zl(k),
∑
i �=k

pij = zr(k) and g
(
z(k)

)
= Sq(k).

Obviously, (A.14) follows (2.4), so xs follows Definition 1.
By the splitting criterion (2.2), the optimal split of the

stump can be found that

xn
s = argmin

k∈{1,...,Cx}

[
Sn
q (k) + Sn

q (−k)
]
,

where

Sn
q (k) =

1

1− q

(
Cy∑
j=1

(
1

nk

nk∑
l=1

I(yl = j)

)q

− 1

)
,

Sn
q (−k) =

1

1− q

(
Cy∑
j=1

(∑
i �=k

(
1

ni

ni∑
m=1

I(ym = j)

))q

− 1

)
,

i ∈ {1, . . . , Cx}, q ∈ R.

Since we know that nk = 1
Cx

n, k = 1, . . . , Cx. By
Borel’s law of large numbers, with probability one,

lim
n→∞

1

nk

nk∑
m=1

I(ym = j) = pkj , k = 1, . . . , Cx, j = 1, . . . , Cy.

So, with probability one,

lim
n→∞

xn
s = argmin

k∈{1,...,Cx}
lim

n→∞

[
Sn
q (k) + Sn

q (−k)
]

= argmin
k∈{1,...,Cx}

[
Sq(k) + Sq(−k)

]
= xs.

xn
s converges to xs in probability and the rate of conver-

gence is O(n−1).
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APPENDIX B. SUPPLEMENTARY MATERIALS

Figure B.12: The teacher model approximation and generalization process. The model generalization process may encounter
the challenge of distribution shift, whereas the approximation process does not.

Table B.2. Variables and short descriptions.
Variable Short descriptions
medv median value of owner-occupied homes in USD 1000’s.
crim per capita crime rate by town.
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town.
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
nox nitric oxides concentration (parts per 10 million).
rm average number of rooms per dwelling.
age proportion of owner-occupied units built prior to 1940.
dis weighted distances to five Boston employment centers.
rad index of accessibility to radial highways.
tax full-value property-tax rate per USD 10,000.
ptratio pupil-teacher ratio by town.
b 1000(B − 0.63)2 where B is the proportion of blacks by town.
lstat percentage of lower status of the population.

Figure B.13: Comparison of prediction accuracy among ODT, LM, SVM, RF, and KDDT(RF) on the training dataset
(left) and testing dataset (right). Note that RF is the teacher model and KDDT(RF) is the student model. We included
SVM to demonstrate that any black-box ML model can serve as the teacher model, and we opted for the one with higher
prediction accuracy.
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Figure B.14: An example to find the desired hybrid KDDT under the criterion of
∑

i XIi > 70% (or
∑

j PXIj < 30%).
The final hybrid KDDT in panel (c) is same with the one in the panel (a) of Figure 8.
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Figure B.15: Comparison of variable importance between the teacher Random Forest and the student KDDT(RF).

Table B.3. Variables and short descriptions.
Variable Short descriptions
age Age (per chart) (years).
sex Sex. 0 = Male. 1 = Female.
cpk Peak cardiac enzyme (iu).
sho Cardiogenic shock complications. 1 = Yes. 0 = No.
chf Left heart failure complications. 1 = Yes. 0 = No.
miord MI Order. 1 = Recurrent. 0 = First.
mitype MI Type. 1 = Q-wave. 2 = Not Q-wave. 3 = Indeterminate.
lenstay Days in hospital.
lenfol Total length of follow-up from hospital admission (days).
fstat Status as of last follow-up. 1 = Dead. 0 = Alive.
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Figure B.16: Two-level stability of the interpretable splits in KDDT(RF), KDDT(SVM) and KDDT(SL).

Figure B.17: Comparison of prediction accuracy among CoxPH, RSF, and KDDT(RSF) on the training dataset (left)
and testing dataset (right). Note that RSF is the teacher model and KDDT(RF) is the student model. A higher C-index
indicates superior performance in prediction. Notably, KDDT(RSF) surpasses its teacher model RSF on the first and third
folds of the testing data. This is because KDDT(RSF), being an approximation of RSF, might relieve overfitting on the
testing data.
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