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Abstract
Conventional methods for analyzing composite endpoints in clinical trials often only focus on the time to the first

occurrence of all events in the composite. Therefore, they have inherent limitations because the individual patients’ first
event can be the outcome of lesser clinical importance. To overcome this limitation, the concept of the win ratio (WR),
which accounts for the relative priorities of the components and gives appropriate priority to the more clinically important
event, was examined. For example, because mortality has a higher priority than hospitalization, it is reasonable to give
a higher priority when obtaining the WR. In this paper, we evaluate three innovative WR methods (stratified matched,
stratified unmatched, and unstratified unmatched) for two and multiple components under binary and survival composite
endpoints. We compare these methods to traditional ones, including the Cox regression, O’Brien’s rank-sum-type test,
and the contingency table for controlling study Type I error rate. We also incorporate these approaches into two-stage
enrichment designs with the possibility of sample size adaptations to gain efficiency for rare disease studies.
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1. INTRODUCTION
In the United States, according to the “Rare Diseases Act

of 2002”, there are more than 6,000 rare diseases [18, 8].
A rare disease is defined as a condition that affects fewer
than 200,000 individuals, or 1 in 1,500 people. The devel-
opment of efficient approaches to utilizing individual pa-
tient data, e.g. improved study designs and sound statisti-
cal methods, is instrumental in bringing breakthrough ther-
apies to the market early [21, 9, 20]. Examples of treat-
ing rare diseases include but not limit to Gaucher dis-
ease and Neuronal ceroid lipofuscinosis, where trial spon-
sors had been recommended to use innovative designs, in-
cluding umbrella designs and single-arm historical controlled
designs [7, 17]. In the nonmalignant hematology disease
area, there are also many rare disease clinical trials that
require the careful identification of endpoints to assess the
efficacy of drugs (e.g. WHIM syndrome and immune throm-
bocytopenia). In addition, it is not possible with many dis-
eases to conduct well-controlled, adequately powered clini-
cal trials for pediatric populations because of ethical con-
cerns.

Given the concern over lacking adequate study power in
conducting small-sized clinical trials, innovative designs uti-
lizing different types of efficacy endpoints with proper sta-
tistical analyses and study-wise type I error control need to
be considered. Patients are likely to be heterogeneous in rare
disease clinical trials. When conducting such trials, compos-
ite endpoints can be created by combining multiple compo-
∗Corresponding author.

nents, either requiring all components or a certain number
of components or winning on multiple endpoints (e.g., 3 out
of 5). Doing so can be beneficial and should be considered
[14]. Furthermore, valid statistical methods are imperative
to efficiently handle these types of endpoints to increase the
chances of detecting treatment effect.

In this paper, we examine statistical methods utilizing
win ratio methods (WR) based on both matched and un-
matched pairs [5, 16]. We cover different types of endpoints
(i.e., survival, binary, and continuous) as described in Sec-
tion 3. A closed-form sample size formula is also provided.
The sequential enriched design is introduced in Section 4.

To demonstrate the pros and cons of the WR methods,
we consider different winning criteria, and results are illus-
trated by comparing WR methods with those via O’Brien’s
rank-sum-type test and the contingency table. We follow
Section 5 to generate different types of data. Section 6 shows
our simulation results and findings. Besides examining the
WR methods mainly applied in the single parallel design,
covariates stratification and innovative designs such as two-
stage designs, including sequential parallel comparison de-
signs and sequential enriched design, are used to provide
further efficiency [4, 20, 22].

2. WIN RATIO METHODS AND
NOTATIONS

For simplicity, we consider two treatment groups: one for
the study drug and the other for the control, which can be a
placebo. We are interested in assessing the treatment effect
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that can come from any component of a composite end-
point. In our evaluation, we examine the WR performance
on the continuous or survival endpoint with multiple com-
ponents. For example, the test hypotheses for a composite
endpoint with two binary components of equal importance
are H0 : pj,t = pj,p for ∀j = 1, 2, and H1 : p1,t �= p1,p or
p2,t �= p2,p, where pj,t and pj,p are the survival probabil-
ity of component j (j = 1, 2) in the treatment group and
placebo group, respectively. Similarly, the test hypotheses
for a composite endpoint with three equally important con-
tinuous components are: H0 : Ep,j = Et,j for ∀j = 1, 2, 3,
and H1 : Ep,1 �= Et,1 or Ep,2 �= Et,2 or Ep,3 �= Et,3, where
Ep,j and Et,j as the time to component j’s improvement
in the placebo group and the treatment group, respectively.
Later, we also take the priority of the components’ impor-
tance into consideration.

2.1 Motivation with Toy Example
The composite endpoints have been used in many clinical

trials to increase the chances of collecting more data from
many domains of a disease to increase the study power. Al-
though this idea sounds feasible and can be useful, having
a clear understanding of when a composite endpoint should
be considered and how to use it properly is very important.
We use Figure 1 as a toy example to illustrate that if a com-
posite endpoint is not constructed wisely, the results can be
misleading.

Figure 1 displays a composite endpoint with two com-
ponents. We assume that all the eight patients in the drug
group respond to event A but not B. For the eight placebo
patients, we assume that half of them respond to both
events A and B, and the other half don’t respond to neither
A nor B.

When we consider the composite endpoint by winning
either A or B, results tell us that the drug response rate
is 100% and the placebo response rate is 50%. However,
if we further study the two individual events, we can see
that this result is mainly driven by the event A, because

Figure 1: Toy example of composite endpoint (A or B).

the drug performs worse than the placebo on the event B.
In particular, although for the composite endpoint A or B
and the component A, the placebo response rate is 50% and
drug response rate is 100%, for the component B the placebo
response rate is still 50% but the drug response rate is 0%.
In other words, if we do not consider any specific winning
criteria, Event A and Event B should be equally important.
Otherwise, results can be very misleading, and the study
will not be powerful.

2.2 Literature Review for Two Types of Win
Ratio Methods: Matched and Unmatched

The idea of WRs is not new and has been extensively
studied. This type of endpoint has also been utilized in many
large cardiovascular and renal clinical trials [15, 6]. The ba-
sic idea of constructing a WR is first to pair all patients in
two treatment arms and compare their performance accord-
ing to pre-defined criteria to determine their winning status.
At the end, combine all pairs’ winning status for making the
final statistical inference. These pairs can be either coming
from matched or unmatched samples [12, 19, 1, 13]. More
details regarding how we applied the WR methods in ei-
ther unmatched or matched pairs will be discussed and il-
lustrated in Section 3. As noted in our toy example, how all
the components are prioritized in the composite endpoint
will affect the performance and interpretability of the WR
results.

3. WIN RATIO WINNING CRITERIA AND
SAMPLE SIZE CALCULATION

3.1 Composite Endpoint with Prioritized
Components

3.1.1 Prioritized Binary Component

We begin the evaluation by considering the composite
endpoint with two binary prioritized components. Suppose
the two components we consider are death and hospitaliza-
tion. We also assume that the death event is more clinically
critical than hospitalization. We theoretically derive the test
statistics and confidence interval under the null hypothesis
and the analytical formula for sample size calculation.

Notation Let Yti denote the death event for the ith patient
who is assigned in the treatment group (i.e., patients take
the assigned drug) T , and assume their death events are in-
dependent. Therefore, Yti

iid−−→ Bernoulli(pt), where Yti = 1
represents that the ith patient dead and Yti = 0 represents
the patient living after the treatment. Similarly, we let Yci

be the indicator of the death event for ith patient who is
assigned in the control group C, and Yci

iid−−→ Bernoulli(pc).
In addition, Xti indicate the hospitalization event for the ith
patient in treatment group T , and Xti

iid−−→ Bernoulli(qt).
That is Xti = 1 if the ith patient in the treatment group
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Figure 2: The comparison principle for composite endpoint
with two prioritized binary components.

requires hospitalization, and Xti = 0 if the ith patient does
not. Similarly, let indicator Xci denote the hospitalization
event for the ith patient under the control group C, and
Xci

iid−−→ Bernoulli(qc). The principle for comparing a com-
posite endpoint with two prioritized binary components, i.e.,
the winning rule of WR calculation, is specified in Figure 2.
It emphasizes that treatment versus placebo’s impact to
death will be evaluated first; if no decision could be made at
the first stage, their impact on hospitalization will be evalu-
ated as the second step; if still no decision can be made, we
say ‘tie’.

Sample Size for Matched Win Ratio In the previous sec-
tion, we introduced the way we pair patients; either coming
from matched or unmatched samples will affect the perfor-
mance and interpretability of the WR results. Here we derive
the asymptotic properties of WR test statistics and the sam-
ple size formula for any given Type I and power requirement
with details in Appendix A. We first analyze the matched
win ratio method and then the unmatched method.

First, the probability of a treatment wins under all sce-
narios is derived as

pw = pt(1− qt)pcqc + (1− pt)qtpc

+ (1− pt)(1− qt)
(
1− (1− pc)(1− qc)

)
.

The probability of a treatment losses under all scenarios is:

pl = pt(1− qt)(1− pc) + ptqt(1− pcqc)

+ (1− pt)qt(1− pc)(1− qc).

The probability that treatment and control tie under is

ptie = 1− pw − pl.

Next, we let the binary random variable Xi follow
Bernoulli(p), which denotes every win-loss comparison,
where Xi = 1 if treatment wins; otherwise, Xi = 0, and

p = P (treatment win|all non-tie pairs) = pw
1− ptie

.

Suppose a total number of N patients are randomized,
and we let n = N(1− ptie) denote the total number of non-
tie units. Based on the Delta Method, we derive that

√
n

(
X̄

1− X̄
− p

1− p

)
D−→ N

(
0,

p2

(1− p)2

)
, X̄ =

n∑
i=1

Xi/n.

(3.1)

It is obvious that under the null hypothesis, p = 0.5 and√
n( X̄

1−X̄
−1)

D−→ N(0, 1). Besides, the minimum sample size
N required for power β under Type I error α is

N =
n

1− ptie
and n =

( p
1−pZα − pa

1−pa
Zβ

p
1−p − pa

1−pa

)2

, (3.2)

where pa is the proportion under alternative hypothesis.

Sample Size for Unmatched Win Ratio Similar to the
matched WR, we first consider all the scenarios in which
treatment wins and treatment losses.

For treatment and control pair (i, j), treatment wins
when Yti = 0, Ycj = 1, or Yti = 1, Ycj = 1, Xti = 0,
Xcj = 1, or Yti = 0, Ycj = 0, Xti = 0, Xcj = 1. Similarly,
control wins when Yti = 1, Ycj = 0, or Yti = 1, Ycj = 1,
Xti = 1, Xcj = 0, or Yti = 0, Ycj = 0, Xti = 1, Xcj = 0.

Therefore, we derive the test statistics for win ra-
tio g(X) by dividing the total number of treatment
wins by the total number of control wins, where X =
(Yt, Xt, XYt, Y c,Xc,XYc) and Yt =

∑n1

i=1 Yti, Xt =∑n1

i=1 Xti, XYt =
∑n1

i=1 XtiYti, Y c =
∑n0

j=1 Ycj , Xc =∑n0

j=1 Xcj , XYc =
∑n0

j=1 XcjYcj . The n1 is the number of pa-
tients assigned to the treatment group, and n0 is the number
of patients assigned to the control group. nt = n1 + n0.

Then by the Delta Method, we derive

√
nt

(
g(X)− g(θ)

) D−→ N
(
0, C2

)
,

C2 =

(
d

dθ
g(θ)

)T

COV (X)

(
d

dθ
g(θ)

)
, (3.3)

where θ = (pt, qt, ptqt, pc, qc, pcqc), g(θ) = g(E(X)).
Therefore, under the null hypothesis

√
nt

(
g(X)− 1

) D−→ N
(
0, C2

0

)
,

C2
0 =

(
d

dθ
g(θ)

)T

COV (X)

(
d

dθ
g(θ)

)
|θ=θ0

, (3.4)

where θ0 = (0.5, 0.5, 0.25, 0.5, 0.5, 0.25).
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Similarly, under the alternative hypothesis
√
nt

(
g(X)− g(θ1)

) D−→ N
(
0, C2

1

)
,

C2
1 =

(
d

dθ
g(θ)

)T

COV (X)

(
d

dθ
g(θ)

)
|θ=θ1

, (3.5)

where θ1 = (pt1, qt1, pt1qt1, pc1, qc1, pc1qc1).
Therefore, the minimum sample size required for power

β under Type I error α is

nt =

(
C0Zα − C1Zβ

g(θ1)− 1

)2

. (3.6)

3.1.2 Prioritized Survival Component

In this section, we show the winning rules of matched
and unmatched methods for the composite endpoint of two
prioritized survival components. To further explore the pros
and cons of the WR methods, traditional Cox regression
in survival analysis and O’Brien’s rank-sum-type test are
considered and incorporated [2]. Point estimation and its
corresponding confidence interval and power comparison are
extensively explored via numerical studies in Section 6.2.

(Stratified) Matched Win Ratio We stratify patients into
different strata based on their baseline covariates, and then
form matched pairs on the study drug and the control. For
each matched pair, according to the following criteria, we
then compare each patient in the study drug group with the
one matched in the placebo group is a winner or a loser and
its asymptotic properties via Algorithm 1 [15]. We also note
that [12] proposed a closed-form variance estimator and ap-
proximate 1−α confidence interval, which could be utilized
for testing the null hypothesis.

(Stratified) Unmatched Win Ratio We utilize the stratified
Finkelstein and Schoenfeld (FS) test from [5] and [15] and
derive the corresponding power by simulations. It proceeds
as follows

1. Stratify patients into k strata and let Ak denote nk

patients in the kth strata.
2. Irrespective of treatment group, compare all possible

pairs of patients i, j to determine whether patient i is
a winner, loser, or tie.

3. Calculate Nw and NL via the same way as in the
matched method.

4. Define uij and assign uij = +1,−1, 0 according to win-
ning status of patient i (i.e., winner, loser, or tie).

5. Within each stratum, calculate Ui where for i ∈ Ak,
Ui =

∑
j∈Ak

uij . It will be a positive integer if patient
i wins more often than losses compared with all other
patients.

We calculate the WR Rw and test statistics z as follows:

Rw = Nw/NL, z = T/V 1/2, T =
∑
k

∑
i∈Ak

DiUi,

Algorithm 1: (Stratified) Matched Winning Rule
1 if stratified then
2 patients are stratified into k different strata based on

their covariates, form matched pairs within each
stratum for the new treatment and the control; all
pairs are then collected.

3 else
4 Form matched pairs based on the whole sample.
5 for every matched pair do
6 if one of the two patients die then
7 if patient in the treatment group dies first then
8 Control wins (Treatment loses)
9 if patient in the control group dies first then

10 Treatment wins (Control loses)

11 else
12 � Both patients die on the same day, or neither of

them die
13 if patient in the treatment group has

hospitalization first then
14 Control wins
15 if patient in the control group has hospitalization

first, then
16 Treatment wins
17 else
18 Tie � Both patients were hospitalized on the

same day; no patient was hospitalized

19 Obtain:
1. The number of patients that fall into categories: (a)

new treatment patient has death first Na; (b) control
patient has death first Nb; (c) new treatment patient
has hospitalization first Nc; (d) control patient has
hospitalization first Nd.

2. Nw = Nb +Nd, the number of “winners” for the new
treatment. NL = Na +Nc, the number of “losers” for
the new treatment.

3. The proportion pW : pW = Nw
Nw+NL

,
pL, pU = pw ± 1.96[ pw(1−pw)

(Nw+NL)
]1/2

4. The “WR” RW = Nw
NL

= pw
1−pw

, CIRW ,0.95=( pL
1−pL

, pU
1−pU

)

5. The test statistics via a standardized normal
assumption, for a significance hypothesis testing:

z = (pw − 0.5)/[pw(1− pw)/(Nw +NL)]
1
2 (3.7)

V =
∑
k

mk(nk −mk)

nknk − 1

∑
i∈Ak

U2
i ,

where Di = 1 for subjects in the new group and Di = 0 for
patients in the standard group.

For hypothesis testing, we also utilize the standardized
normal statistics z in the equation (3.7) of Algorithm 1. For
the confidence interval (CI) and power, we first calculate
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lnRw and its approximate standard error s = lnRw/z. Then
we have CIlnRw,0.95 = (lnRw,L, lnRw,U ) = (lnRw − 1.96s,
lnRw + 1.96s), and thus CIRw,0.95 = (elnRw,L , elnRw,U ).

For the unstratified unmatched WR method, we follow
the same step as the stratified unmatched WR method ex-
cept for the stratification.
Cox Regression We use cox regression to analyze the time
to the first event of the composite endpoint. For example,
in a typical Cox regression equation

h(t) = h0(t) exp(βtxt + βcxcov) (3.8)

The h(t) is hazard rate at given time t, where t =
min(Ed, Ehos). The xt is an indicator representing whether
the patient is in the treatment group, and xcov are patients’
baseline covariates. h0(t) is the baseline hazard, which does
not depend on treatment indicator xt and covariates xcov1,
xcov2. Finally, βt is the expected log hazard ratio (HR) that
compares the risk of a patient in treatment to those in the
control arm for both death and hospitalization events. We
are interested in testing whether βt is 0 or not under required
Type I error.
O’Brien’s Rank-Sum-Type Test Peter C. O’Brien proposed
a rank-sum-type test in [2]. We incorporate it within the
context of composite endpoint as follows:

1. Let Yijk represent the kth variable for the jth subject in
group i, where k = 1, . . . ,K, j = 1, . . . , ni, i = 1, . . . , I.
Yijk is defined such that large values are better than
small values for each k. (For example, k is death or
hospitalization, i is treatment or control group, and ji
is the jth patient in group i.)

2. Let Rijk represent the rank of Yijk among all values of
variable k in the pooled set of I samples. Define Sij

as the sum of the ranks assigned to the jth person in
sample i.

3. Perform a One-Way Analysis of Variance (ANOVA) on
the Sij values.

3.2 Composite Endpoint with Equally
Important Continuous Components

To generalize the use of the WR method in a composite
endpoint with more than two components, we consider the
situation in which a composite endpoint has multiple equally
important components. For example, a composite endpoint
with three equally important continuous components has
notations described as follows

Suppose yp,j,i is the ith patient’s time to its jth compo-
nent improvement in the placebo group, yt,j,i is the ith pa-
tient’s time to its jth component improvement in the treat-
ment group, and ybase is a baseline. We identify the indica-
tors of successful improvement for patients in the placebo
group via the following indicators:

Ip,j,i =
{
1 yp,j,i/ybase,i < ct,

0 yp,j.i/ybase,i ≥ ct,

Ip,i =
{
1

∑3
j=1 Ip,j,i ≥ 1,

0
∑3

j=1 Ip,j,i = 0,

where Ip,j,i is an indicator that implies whether the ith pa-
tient in placebo group successfully improves on the jth com-
ponent with cutoff ct, and Ip,i is an indicator that implies
whether the ith patient in placebo group successfully im-
proves on at least one component. Similarly, we identify the
indicators of successful improvement It,j,i and It,i for pa-
tients in the treatment group via the following indicators:

It,j,i =
{
1 yt,j,i/ybase,i < ct,

0 yt,j,i/ybase,i ≥ ct,

It,i =
{
1

∑3
j=1 It,j,i ≥ 1,

0
∑3

j=1 It,j,i = 0.

(Stratified) Matched Win Ratio The logic here is similar
to the Algorithm 1 except for some modification, especially
the way to define the winner in every matched pair com-
parison. We stratified patients into different strata based on
their baseline covariates, and then form matched pairs on
the study drug and the control. For each matched pair, we
determine that the patient in the study drug is a winner or
a loser by the following rule:

1. Calculate the total number of successful improvements
for each patient in placebo, i.e., calculate

∑3
j=1 Ip,j,i,

i = 1, . . . , n0.
2. Calculate the total number of successful improvements

for each patient in treatment, i.e., calculate
∑3

j=1 It,j,i,
i = 1, . . . , n1.

3. Within each pair, if the total number of successful im-
provements for the patient in treatment is greater than
that for the patient in placebo, treatment wins.

4. Within each pair, if the total number of successful im-
provements for the patient in treatment is less than that
for the patient in placebo, control wins.

5. Otherwise, tie.

Calculate Nw, the number of winners, and NL, the number
of losers for the study drug. The test statistics is the same
as the one in Algorithm 1.

(Stratified) Unmatched Win Ratio The procedure here is
the same as the unmatched WR method for the composite
endpoint with the prioritized survival components. However,
like the above matched WR for continuous components, the
rule to define the winner in every matched pair comparison
is completely different and should follow the winning rule in
the new matched WR.

Contingency Table For evaluating the advantage of WR
methods, we construct a conventional contingency table as
in Table 1. We let n11 =

∑n1.

i=1 It,i, n10 =
∑n1.

i=1(1 − It,i),
n01 =

∑n0.

i=1 Ip,i, and n00 =
∑n0.

i=1(1− Ip,i).
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Table 1. Contingency table.
Success Failure Total

Treatment n11 n10 n1.

Placebo n01 n00 n0.

Total n.1 n.0 N

Then we perform hypothesis test via odds ratio. The idea
is, instead of calculating the total number of improvements
in the treatment (placebo) group for ith patient, a success
of treatment (placebo) is counted if the patient has at least
one improved component after being allocated to the treat-
ment (placebo) group. Therefore, the test statistic and its
distribution is

ÔR =
n11n00

n10n01
, log(ÔR) ∼ N(0, ŝe),

ŝe =

√
1

n11
+

1

n10
+

1

n01
+

1

n00
.

4. SEQUENTIAL ENRICHED DESIGN
To further enhance trial efficacy, two-stage designs can be

considered for rare disease clinical trials. In our illustration,
we considered sequential enriched design (SED). As seen
in Figure 3, SED has two stages. However, before patients
are randomized to the first main stage, a placebo lead-in
phase is built in to determine their placebo response status.
The first major stage of SED is a traditional parallel design,
and at the end of the first stage, only patients in the drug
group of Stage 1 and are also responders will be further
rerandomized to the second stage. The goal of SED is to
only study patients who are both placebo non-responders
and drug responders.

We use cs0 to denote the cutoff for determining placebo
nonresponders, i.e., if ypj,i/ybase,i > cs0 for ∀j = 1, 2, 3,
then the ith patient is a placebo nonresponder. Let cs1
be the cutoff for determining drug nonresponders, i.e., if
yj,i/ybase,i > cs1 for all j = 1, 2, 3, the ith patient is drug
nonresponder.

As shown in Table 2, the overall patient population is
composed of four subpopulations according to the treat-
ments patients receive, and whether they respond to the

Figure 3: SED procedure [3].

Table 2. Distribution of overall patient population.
Proportion Drug

responder
Drug

non-responder
Placebo responder p1 p2

Placebo non-responder p3 p4

treatments or not. The four categories are drug responders
and placebo responder p1, drug non-responders and placebo
responders p2, drug responders and placebo non-responders
p3, and drug non-responders and placebo non-responders p4.
Note that in SED, the target patient population is the type
of patients with p3 probability.

5. DATA GENERATION
5.1 Composite Endpoint with Two Survival

Components
We utilize ‘coxed’ package in R statistical software to gen-

erate survival time response [10, 11]. For simplicity, we illus-
trate our idea by only considering two components, death
and hospitalization.

Time to the Component Improvements with Less Clinical
Importance

Ehos = H−1
0

[
− log(u) exp(−Xβhos)

]
,

where X = (xt, xcov1, xcov2), βhos = (βt, βcov1, βcov2). The
xt is an indicator of whether the patient is in the treatment
group. βt is the expected log hazard ratio (HR) that com-
pares the risk of a patient in treatment to that in control
for hospitalization. The drug is effective if βt > 0. βcov1 and
βcov2 are coefficients of covariate x1 and x2, respectively.
The u is randomly drawn from a standard uniform distribu-
tion U [0, 1]. H0 =

∫ t

0
h0(s)ds is cumulative baseline hazard

function, where h0(t) represents baseline hazard;

Time to the Component Improvements with More Clinical
Importance

Ed = H−1
0

[
− log(u) exp(−Xβd)

]
,

where X = (xt, xdhraito, xcov1, xcov2), βd = (βt +
βin, βdhratio, βcov1, βcov2). βin is expected log HR that de-
scribes the difference between the risk of a patient for
death and hospitalization in treatment group. Therefore,
β′
t = βt + βin is the expected log HR that compares the

risk of a patient in the treatment to that in control for the
death event. The xdhraito is a standardized random vari-
able that describes the strength of the relationship between
risk of death and hospitalization for each patient without
treatment effect. The βdhraito describes the strength of the
relationship between Ed and xdhratio. βdhraito = 0 indicates
that the patient’s risk of hospitalization is equal to their risk
of death in the control group.
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5.2 Composite Endpoint with Three Equally
Important Continuous Components and
Repeated Measurements

Time to Patient’s Three Component Improvements in the
Placebo Group

ybase = βcov1x1 + βcov2x2,

ypj = βpj(1− xk) + ybase + εpj , j = 1, 2, 3.

The ybase is a baseline vector and βcov1 and βcov2 are
coefficients of covariate vectors x1 and x2, respectively. In
addition, ypj is a vector that stores the time (or any con-
tinuous measurements) to the jth component improvement
of patients who are in the placebo group. The xk is an indi-
cator vector that shows whether patients are in the placebo
group (xk = 0) or treatment group (xk = 1). The βpj is the
placebo effect that may reduce a patient’s time to the jth
component improvement in placebo to that in baseline. The
placebo is effective if βpj < 0. The εpj is the randomness
that corresponds to the jth placebo response.

Time to Patient’s Three Component Improvements in the
Treatment Group

y1 = βt1xk + ybase + εt1,

y2 = (βt1 + βin2)xk + ybase + εt2,

y3 = (βt1 + βin3)xk + ybase + εt3.

βt1 is drug effect that reduces a patient’s time (or any
continuous measurements) to the first component improve-
ment in treatment to that in baseline, which is effective if
βt < 0. The βin2 describes the difference of drug efficacy be-
tween the first and second components in treatment group,
i.e., βt2 = βt1 + βin2 is the drug effect that reduces a pa-
tient’s time (or any continuous measurement) to the second
component improvement in treatment to that in baseline.
In addition, βin3 has a similar definition to βin2, and εtj for
j = 1, 2, 3 is the randomness that corresponds to the ith
treatment response.

6. NUMERICAL STUDY
We evaluate WR methods on different type of compos-

ite endpoints, and compare it with conventional estima-
tion methods under different experimental designs. In Sec-
tion 6.1, we perform simulations to examine the close-form
sample size formula for binary composite endpoints. We
consider two scenarios, the WR can help save sample sizes
and it does not have power advantage, respectively. In Sec-
tion 6.2, we evaluate the utility of WR method for survival
endpoints, comparing different estimation analyses, Type I
error and study power under complete randomization (CR).
In Section 6.3, we extend to the two-stage sequential enrich-
ment design (SED) and show its benefit in further improv-
ing study efficiency using continuous endpoints, especially
for small-size studies.

6.1 Toy Example: Sample Size Requirement
for Prioritized Composite Endpoint with
Two Binary Components

We use a toy example here to show how the matched
win-ratio method in Section 3.1.1 saves samples for the com-
posite endpoint with two prioritized binary components. In
our simulation, we set Type I error α = 0.05 and power
β = 95%. We use the same notation as in Section 3.1.1 and
apply the closed-form sample size calculation formula (3.2).
We let pt, the probability of death in the treatment group,
vary among (0, 0.3) and keep other probabilities of an event
fixed.

In Figure 4, we set pc = 0.3, qt = qc = 0.5. It mimics
the scenario that compared to a placebo, a drug does not
improve the component of less importance. That is the drug
is effective to death only and has no effect on hospitalization.

The blue line is always below the red line, showing a
clear difference between the WR method and the conven-
tional method which does not consider clinical importance
and treats the two components equally. This smaller mini-
mum sample size of WR method also matches Table 9, where
WR has larger power than the conventional method (i.e. cox
regression) when the treatment has effect on death only.

It can also be observed that the difference is small at the
beginning, as it represents the true difference between pc and
pt (i.e., the x-axis value) is large, and the more pt approach
the pc = 0.3 the greater WR method can save the samples.
This further demonstrates the advantage of WR method in
detecting small treatment effect for prioritized composite
endpoints, and its potential for small-size studies.

In Figure 5, we set pc = 0.3, qt = 0.45, qc = 0.5, a
scenario that a drug is effective to both two components.
In contrast, the WR doesn’t provide much benefit in power
improvement, which aligns the Table 7. It can be observed
that (1) although the blue line is below the red line when

Figure 4: Sample size requirement for binary composite end-
point of two components when treatment has effect on death
only.
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Figure 5: Sample size requirement for binary composite end-
point of two components when treatment has effect on both
components.

pt < 0.24, the minimum sample size differences between the
two lines are very small; (2) the WR does not have advantage
when pt >= 0.24. That is the benefit of utilizing a prioritized
composite endpoint decreases as the pt approaches the pc.

6.2 Survival Composite Endpoint with Two
Components under Parallel Design

We let βcov1 = −0.5, βcov2 = 0.5, xcov1, xcov2 ∼
Bernoulli(0.5), xdhratio ∼ Uniform(0, 1). Table 3 shows
the distribution of patients in four generated strata.

Table 3. Distribution of patients.
Stratum 1 2 3 4

Percentage of patients (%) 24.5 23.6 26.5 25.4

We estimate the HR based on Cox regression and cal-
culate the WR for our proposed SED and analyses. In ad-
dition, we calculate the corresponding confidence intervals
and Type I error as well as power via the exact methods.

Type I Error When under the null hypothesis, a drug has
no effect such that every patient is equally likely to have
hospitalization/death in the treatment and control groups
time. We show that either HR or win ratios are close to 1 and
the Type I errors are controlled for all examined methods.
Our results are displayed in Table 4 and Table 5.

Power for the Same Effects on Both Components Next,
we examine the performance of WR methods by comparing
it with other commonly used analyses for cases with either
both two components have a similar effect or only one having
an effect. Our results are shown below.

As seen in Table 7, it can be observed that the powers or-
der is Cox regression > O’Brien’s > stratified unmatched ∼
unstratified unmatched > stratified matched when assuming
the same effects on both components.

Power for Having Effect on Death Only (No Effect on Hos-
pitalization) As seen in Table 9, it can be observed that
the powers order is stratified unmatched > unstratified un-
matched ∼ stratified matched > O’Brien’s > Cox regres-
sion.

Table 9 thus demonstrates that WR methods can more
greatly increase trial efficiency than traditional methods
when treatment is effective on a prioritized component that
occurs after a prioritized component, where the traditional
methods that measure the first event cannot be detected
thus. Specifically, in Table 9, when N = 60, the two un-
matched WR methods increases around 30% more power
than ‘Cox regression’ and ‘O’Brien’s rank sum-type test’
(i.e. the two traditional methods); when N = 200, the
improvement is 20% for ‘Cox regression’ and is 10% for
‘O’Brien’s rank sum-type test’. The ‘stratified matched WR’
also shows the same trend. This shows the advantage of
WR in trial efficiency enhancement: for small sized studies,
considering a composite endpoint with win ratio can help
increase study power.

Power for Having Effect on Death Only but Assuming Wrong
Winning Criteria As seen in Table 11, it can be observed
that the powers order is O’Brien’s > Cox regression >
stratified unmatched ∼ unstratified unmatched ∼ stratified
matched when assuming that only effect exists on the death
event, not the hospitalization event.

Table 5. Type I error comparison with
βt = βin = βdhratio = 0.

Type I error N = 60 N = 100 N = 200

Cox regression 0.05 0.05 0.05
Stratified matched WR 0.06 0.06 0.06
Stratified unmatched WR 0.04 0.05 0.05
Unstratified unmatched WR 0.04 0.05 0.05
O’Brien’s rank-sum-type test 0.05 0.05 0.05

Table 4. The estimation of treatment effect for different sample sizes.
Total Sample Size N = 60 N = 100 N = 200

Estimation Beta (SE) CI Beta (SE) CI Beta (SE) CI
HR 1.05 (0.40) (0.60, 1.83) 1.02 (0.27) (0.67, 1.54) 1.02 (0.18) (0.76, 1.37)
Stratified, matched WR 1.01 (0.67) (0.44, 2.33) 1.01 (0.45) (0.54, 1.89) 1.00 (0.27) (0.65, 1.53)
Stratified, unmatched WR 1.05 (0.49) (0.54, 2.02) 1.03 (0.33) (0.63, 1.68) 1.00 (0.21) (0.72, 1.41)
Unstratified, unmatched WR 1.04 (0.44) (0.56, 1.90) 1.03 (0.32) (0.65, 1.65) 1.01 (0.21) (0.73, 1.40)
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Table 6. The estimation of treatment effect of different sample sizes.
Total Sample Size N = 60 N = 100 N = 200

Estimation Beta (SE) CI Beta (SE) CI Beta (SE) CI
HR 0.62 (0.25) (0.36, 1.10) 0.61 (0.16) (0.40, 0.93) 0.60 (0.11) (0.45, 0.82)
Stratified matched WR 1.51 (1.20) (0.69, 3.87) 1.49 (0.75) (0.82, 2.95) 1.49 (0.43) (0.98, 2.34)
Stratified unmatched WR 1.59 (0.77) (0.81, 3.12) 1.54 (0.50) (0.95, 2.54) 1.52 (0.32) (1.08, 2.14)
Unstratified unmatched WR 1.55 (0.68) (0.84, 2.89) 1.51 (0.47) (0.94, 2.43) 1.49 (0.30) (1.07, 2.08)

Table 7. Power comparison with setting βt = log(0.6) and let
βin = 0 (β′ = βt + βin = log(0.6)) to make HR = 0.6.

Power N = 60 N = 100 N = 200

Cox regression 0.44 0.66 0.92
Stratified matched WR 0.17 0.26 0.47
Stratified unmatched WR 0.19 0.36 0.65
Unstratified unmatched WR 0.21 0.35 0.61
O’Brien’s rank-sum-type test 0.32 0.51 0.82

6.3 Continuous Composite Endpoint with
Three Components and Repeated
Measurements under SED

As highlighted in the introduction, two-stage enrichment
designs such as sequential parallel comparison design, SED
and sequential multiple assignment randomized trial have
been proposed and used in clinical trials. After learning
that the use of WR can increase the study power, we are
interested in assessing whether the idea of WR can be im-
plemented in two-stage design to further increase trial effi-
ciency for rare disease clinical trials. We consider the SED
and compare it with complete randomization (CR) in our
evaluation in the followings.

Check Type I Error Drug and placebo are equally effective
in all the three components.

All Type I errors in Table 12 are preserved when sample
size N is big. In addition, The Type I error under stratified
matched WR is preserved more slowly than others.

Power Comparison

Scenario 1 The drug is equally effective in improving all
three components, and it’s more effective than placebo in
all the three components. The results are in Table 13.

When
∑3

j=1 |βpj − βtj | = 1.5, SED always outperforms
CR. The WR methods for composite components under
both designs achieve higher power than other tests when
sample size N is large. Stratified methods have higher power
than nonstratified methods.

Scenario 2 The drug is much more effective than placebo
in the first component, but it’s equally effective as placebo
in the 2nd and 3rd components. We decrease the drug’s
overall efficacy to the three components. The results are in
Table 14.

When
∑3

j=1 |βpj − βtj | = 0.5, although powers decrease,
SED still outperforms CR.

Scenario 3 We keep assuming that a drug is equally effec-
tive in improving the three components and more effective
than placebo. However, we adjust the distribution of pa-
tients by decreasing the proportion of the target patient p3.
The results are in Table 15. When

∑3
j=1 |βpj − βtj | = 1.5

and target population is low, the SED even more outper-
forms the CR than the scenario when p3 = 0.8 when the
sample size N is small.

Table 9. Power comparison with setting βt = 0 and
βin = log(0.18) (β′ = βt + βin = log(0.18)) such that

HR = 0.6 under cox regression.
Power N = 60 N = 100 N = 200

Cox regression 0.51 0.65 0.81
Stratified matched WR 0.78 0.94 0.99
Stratified unmatched WR 0.90 0.99 1
Unstratified unmatched WR 0.89 0.99 1
O’Brien’s rank-sum-type test 0.50 0.74 0.93

Table 8. The estimation of treatment effect of different sample sizes.
Total Sample Size N = 60 N = 100 N = 200

Estimation Beta (SE) CI Beta (SE) CI Beta (SE) CI
HR 0.61 (0.25) (0.35, 1.09) 0.59 (0.16) (0.39, 0.91) 0.60 (0.11) (0.45, 0.81)
Stratified matched WR 3.02 (4.48) (1.38, 11.8) 3.06 (2.31) (1.66, 7.58) 2.98 (1.13) (1.92, 5.20)
Stratified unmatched WR 3.29 (1.80) (1.58, 6.84) 3.24 (1.20) (1.87, 5.59) 3.05 (0.70) (2.10, 4.43)
Unstratified unmatched WR 3.14 (1.58) (1.59, 6.23) 3.09 (1.10) (1.84, 5.21) 2.96 (0.67) (2.06, 4.25)



10 F. Wang, S. Chen, and T. Gwise

Table 10. The estimation of treatment effect of different sample sizes.
Total Sample Size N = 60 N = 100 N = 200

Estimation Beta (SE) CI Beta (SE) CI Beta (SE) CI
HR 0.60 (0.24) (0.34, 1.06) 0.59 (0.16) (0.39, 0.91) 0.60 (0.11) (0.44, 0.81)
Stratified matched WR 1.12 (0.78) (0.49, 2.65) 1.17 (0.65) (0.63, 2.22) 1.12 (0.31) (0.74, 1.73)
Stratified unmatched WR 1.19 (0.54) (0.62, 2.29) 1.19 (0.39) (0.73, 1.96) 1.15 (0.23) (0.82, 1.61)
Unstratified unmatched WR 1.18 (0.52) (0.64, 2.19) 1.17 (0.37) (0.73, 1.88) 1.14 (0.22) (0.82, 1.58)

Table 11. Power comparison with setting βt = 0 and
βin = log(0.18) (β′ = βt + βin = log(0.18)) such that

HR = 0.6 under cox regression.
Power N = 60 N = 100 N = 200

Cox regression 0.50 0.66 0.82
Stratified matched WR 0.07 0.07 0.10
Stratified unmatched WR 0.06 0.09 0.12
Unstratified unmatched WR 0.09 0.07 0.11
O’Brien’s rank-sum-type test 0.51 0.72 0.91

In summary, given the same sample size N , the power
of SED is at least approximately equal to or greater than
the one under CR, especially for smaller N . That is, two-
stage enrichment designs can further enhance trial efficiency,
especially for a small-size clinical trial. Let us take the
‘stratified unmatched WR’ as an example. In Table 14 (sce-
nario 2), when N = 100 the ‘stratified unmatched WR’ un-
der SED increases 14% power than the ‘Contingency Table’
(i.e. the traditional method) but increases 4% under CR;
when N = 500 the ‘stratified unmatched WR’ under SED
continues to increase 14% power and increases 12% under
CR. The ‘unstratified unmatched WR’ has the same trend.
Table 15 (scenario 3) further confirms the benefit of SED in
improving power for win-ratio methods.

APPENDIX A. APPENDIX
A.1 Derivation of p. under Matched Win Ratio

We consider all the scenarios that treatment wins and the
corresponding probability pw.

pw = P (YT = 1, Xt = 0, Yc = 1, Xc = 1)

+ P (YT = 0, Xt = 1, Yc = 1, Xc = 0)

+ P (YT = 0, Xt = 1, Yc = 1, Xc = 1)

+ P (YT = 0, Xt = 0, Yc = 1, Xc = 0)

+ P (YT = 0, Xt = 0, Yc = 1, Xc = 1)

+ P (YT = 0, Xt = 0, Yc = 0, Xc = 1)

= pt(1− qt)pcqc + (1− pt)qtpc

+ (1− pt)(1− qt)
(
1− (1− pc)(1− qc)

)
.

Also, we consider all the scenarios that control wins and
the corresponding probability pl.

pl = P (YT = 1, Xt = 0, Yc = 0, Xc = 1)

+ P (YT = 1, Xt = 0, Yc = 0, Xc = 0)

+ P (YT = 1, Xt = 1, Yc = 0, Xc = 1)

+ P (YT = 1, Xt = 1, Yc = 0, Xc = 0)

+ P (YT = 1, Xt = 1, Yc = 1, Xc = 0)

Table 12. Type I error comparison with setting (p1, p2, p3, p4) = (0.05, 0.05, 0.8, 0.1), ε ∼ N(0, 1), βpj = βt1 = −1.5,
βin2 = βin3 = 0, βcov1 = βcov2 = 5, ct = 0.8, cs0 = 0.8, cs1 = 0.9.

Type I error N = 100 N = 200 N = 500

Design CR SED CR SED CR SED
Contingency table 0.05 0.05 0.05 0.05 0.05 0.05
Stratified matched WR 0.08 0.13 0.07 0.07 0.06 0.06
Stratified unmatched WR 0.05 0.05 0.06 0.04 0.05 0.05
Unstratified unmatched WR 0.05 0.05 0.06 0.04 0.05 0.05

Table 13. Power comparison with setting (p1, p2, p3, p4) = (0.05, 0.05, 0.8, 0.1), ε ∼ N(0, 1), βpj = −1.5, βt1 = −2,
βin2 = βin3 = 0, βcov1 = βcov2 = 5, ct = 0.8, cs0 = 0.8, cs1 = 0.9.

Power N = 100 N = 200 N = 500

Design SED CR SED CR SED CR
Contingency table 0.30 0.30 0.58 0.45 0.92 0.90
Stratified matched WR 0.48 0.46 0.77 0.69 0.99 0.99
Stratified unmatched WR 0.49 0.47 0.81 0.74 0.99 0.99
Unstratified unmatched WR 0.33 0.32 0.59 0.51 0.92 0.93
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Table 14. Power comparison with setting (p1, p2, p3, p4) = (0.05, 0.05, 0.8, 0.1), ε ∼ N(0, 1), βpj = −1.5, βt1 = −2,
βin2 = βin3 = 0.5, βcov1 = βcov2 = 5, ct = 0.8, cs0 = 0.8, cs1 = 0.9.

Power N = 100 N = 200 N = 500

Design SED CR SED CR SED CR
Contingency table 0.09 0.07 0.16 0.13 0.27 0.20
Stratified matched WR 0.15 0.14 0.23 0.20 0.40 0.31
Stratified unmatched WR 0.23 0.11 0.27 0.17 0.41 0.32
Unstratified unmatched WR 0.22 0.07 0.24 0.14 0.32 0.22

Table 15. Power comparison with setting (p1, p2, p3, p4) = (0.6, 0.05, 0.3, 0.05), ε ∼ N(0, 1), βpj = −1.5, βt1 = −2,
βin2 = βin3 = 0, βcov1 = βcov2 = 5, ct = 0.8, cs0 = 0.8, cs1 = 0.9.

Power N = 100 N = 200 N = 500

Design SED CR SED CR SED CR
Contingency table 0.07 0.06 0.10 0.10 0.20 0.17
Stratified matched WR 0.12 0.07 0.13 0.11 0.23 0.23
Stratified unmatched WR 0.23 0.07 0.25 0.15 0.33 0.26
Unstratified unmatched WR 0.20 0.06 0.24 0.10 0.29 0.19

+ P (YT = 0, Xt = 1, Yc = 0, Xc = 0)

= pt(1− qt)(1− pc)

+ ptqt(1− pcqc) + (1− pt)qt(1− pc)(1− qc).

Then, we consider all the scenarios that treatment and con-
trol tie and the corresponding probability ptie.

ptie = P (YT = 1, Xt = 0, Yc = 1, Xc = 0)

+ P (YT = 1, Xt = 1, Yc = 1, Xc = 1)

+ P (YT = 0, Xt = 1, Yc = 0, Xc = 1)

+ P (YT = 0, Xt = 0, Yc = 0, Xc = 0)

= 1− pw − pl.

Suppose a total of N units are randomized, and we let n =
N(1 − ptie) denote the total number of non-tie units. Also,
we let the binary random variable Xi follow Bernoulli(p),
where

p = P (treatment win|all non-tie pairs)

=
P (treatment wins in all pairs)

P (non-tie pairs)

=
pw

1− ptie
.

A.2 Derivation of g(X) under Unmatched Win
Ratio

Here we derive the g(X) in equation (3.3)

g(X) =

Ȳt−ȲtȲc−2X̄Yt
¯XYc+X̄t

¯XYc+2X̄YtȲc−X̄tȲc+X̄cX̄Yt−X̄Yt−X̄cX̄t+X̄t

2 ¯XYcȲt−ȲcȲt−X̄cȲt−2X̄Yt
¯XYc+X̄t

¯XYc− ¯XYc+Ȳc+X̄cX̄Yt−X̄cX̄t+X̄c

g(θ)

= g
(
E(X)

)

=
pt−ptpc−2ptqtpcqc+qtqtpcqc+2ptqtpc−qtpc+qcptqt−ptqt−qcqt+qt

2pcqcpt−pcpt−qcpt−2ptqtpcqc+qtpcqc−pcqc+pc+qcptqt−qcqt+qc
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