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We appreciate the comments by Cao and Pan [1] who
highlighted the major points discussed in our paper, “Con-
siderations for Single-Arm Trials to Support Accelerated
Approval of Oncology Drugs” [2], and who also expressed
concerns about potential biases and other related issues in
single-arm trials (SATs). Specifically, Cao and Pan pointed
out that, unlike randomized controlled trials (RCTs), SATs
are inherently associated with methodological limitations—
such as the lack of a control arm—which can complicate the
interpretation of treatment effects. They briefly discussed
considerations for analytical methods (e.g., propensity score
matching), additional endpoints (e.g., patient-reported out-
comes [PROs], quality of life [QoL]), subgroup analyses, and
control of false positives. They also addressed the use of ex-
ternal controls, individual patient data (IPD), issues related
to statistical power and small sample sizes, and various po-
tential sources of bias (e.g., selection bias, information bias)
in SATs. Ultimately, they argued that SATs, as a component
of a broader evidentiary framework, should incorporate his-
torical controls, real-world evidence (RWE), and confirma-
tory post-marketing studies [1].

While we agree with most of the points raised by Cao and
Pan [1], we would like to emphasize that SATs may only
be appropriate in specific clinical contexts—such as rare
and/or life-threatening cancers with no efficacious treatment
options—where randomized controlled trials (RCTs) are ei-
ther (1) unethical or infeasible, as outlined as “necessary
conditions” for SATs in our paper [2], or (2) unnecessary
in cases where outcomes under control conditions are well
understood (analogous to testing parachutes [3]), such as
the cell therapy approved for synovial sarcoma [4]. Relevant
regulatory guidance documents [5, 6, 7] also support the ap-
propriate use of SATs in the context of accelerated approval
(AA). The desirable conditions are presented in Sections 3
and 4 of Lu et al. [2], which—together with the necessary
conditions in Section 2— constitute a comprehensive frame-
work of prerequisites for the use of SATs to support AA. To
address the concerns and critical points raised by Cao and
Pan [1], we provide a brief discussion of additional consider-
ations for using SATs in the regulatory approval of oncology
drugs.
∗Corresponding author: orcid.org/0000-0002-8219-2370.

As discussed in several sections of our paper [2] and in
the comments by Cao and Pan [1], a major concern with
SATs is the lack of an internal comparator arm, which can
introduce biases in comparative effect estimates. The reflec-
tion paper by the European Medicines Agency (EMA) [7]
summarizes various sources of bias and corresponding miti-
gation strategies that can be applied during the design, con-
duct, analysis, and reporting of an SAT. It also acknowledges
that these strategies may not fully eliminate bias and that
demonstrating unbiased effect estimates may be impossible.
To assess potential biases and their magnitude, one may con-
sider conducting sensitivity analyses to quantify these biases
[8, 9] and to explore the robustness of study conclusions to
various assumptions and sources of bias [10, 11].

An SAT generally relies on an implicit or explicit ex-
ternal control (EC) to estimate the therapeutic effects of
an anticancer drug. The FDA draft guidance on externally
controlled trials (ECTs) [12] states that “if the natural his-
tory of a disease is well-defined and the disease is known not
to improve in the absence of an intervention or with avail-
able therapies, historical information can potentially serve
as the control group.” An Implicit EC refers to a study-level
summary (e.g., an aggregate response rate derived from pre-
vious trials or RWE studies) or a literature reported thresh-
old value (e.g., a quantity derived from a meta-analysis).
In contrast, an explicit EC involves pre-defined IPD from
other trials or from real-world data (RWD) sources such
as disease registries and electronic medical records [13, 14].
From a design perspective, regulatory agencies [6, 12] rec-
ommend pre-specification of the following key elements in
an SAT protocol when using an EC: suitable data sources,
baseline eligibility criteria, appropriate exposure definitions
and observation windows, clinically meaningful endpoints,
analytic methods, and strategies to minimize the effects of
missing data and various biases. The estimand framework
outlined in ICH E9(R1) [15] should be followed to precisely
define the estimand that aligns with the clinical question,
as part of efforts to reduce potential biases. Particular at-
tention should be given to potential discrepancies in the fre-
quency and pattern of intercurrent events (ICEs) between
the treatment and EC arms when defining the estimand for
an ECT (including SATs); see also Chen et al. [16] for gen-
eral considerations on estimands in RWE studies. Strategies
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for handling ICEs should be pre-specified in the protocol or
SAP to ensure that the estimated estimand appropriately
addresses the clinical question defined in the protocol. For a
causal estimand to be identifiable in ECTs, a fit-for-purpose
assessment of the RWD should evaluate the validity of the
underlying causal assumptions—consistency, positivity, and
exchangeability—in addition to standard data quality met-
rics such as relevance, reliability, and fitness for research
use [16, 17]. From an analysis perspective, the FDA draft
guidance [12] emphasizes that the analytic method should
be capable of “identifying and managing sources of con-
founding and bias, including a strategy to account for differ-
ences in baseline factors and confounding variables between
trial arms.” Nevertheless, quantitative bias analysis is rec-
ommended to assess the sensitivity of study conclusions to
various sources of bias when using an EC in SATs [9, 18].

Regarding endpoints selection, most SATs supporting AA
use surrogate endpoints to measure immediate or inter-
mediate anticancer activity rather than longer-term, clin-
ically meaningful time-to-event endpoints (e.g., overall sur-
vival), as the latter may not be adequately characterized
in SATs [7, 19, 20]. PROs and QoL measures may also be
incorporated in SATs to capture patient-centric effects—
particularly treatment benefits beyond tumor response (e.g.,
symptom relief) compared to baseline—which can enhance
real-world relevance and support regulatory approval [21].
However, caution should be exercised, as PROs and QoL
outcomes may be over- or underestimated due to missing
data in long-term follow-up SATs [22, 23].

Confirmatory subgroup analysis (SA) in SATs is often ap-
proached with caution due to inherent limitations, such as
the lack of an internal comparator arm, small sample sizes,
and susceptibility to bias, which can render SA results un-
reliable. In general, SA in SATs is conducted exploratorily,
without pre-specified statistical power, to provide support-
ing evidence on the consistency of efficacy across subgroups.
In some cases, a pre-specified SA based on molecularly de-
fined biomarkers is conducted in SATs, with appropriate
multiplicity adjustments, to evaluate whether a biomarker-
modifying effect exists [7, 24, 25].

As for statistical power and sample size, regulatory guid-
ance documents on RWE studies (including SATs with IPD
ECs) recommend that a statistical analysis plan (SAP) be
developed in advance and submitted to the relevant regula-
tory agency prior to study initiation [7, 12, 26]. The SAP
should include, at a minimum, clearly defined analyses for
primary and secondary estimands, statistical power, sample
size, and methods for controlling the probability of erro-
neous conclusions. In particular, the sample size of an SAT
should be sufficiently large to provide a reliable answer to
the clinical question, taking into account the planned analy-
sis and the criteria for trial success [12, 26]. For SATs using
a fixed threshold control, classical statistical methods for bi-
nary outcomes and duration of response can be used to de-
termine the sample size required to detect a clinically mean-
ingful and statistically significant treatment effect compared

to the fixed threshold value [27]. For SATs using IPD as ECs,
in addition to conventional sample size determination meth-
ods for detecting meaningful differences with desired power
[28, 29, 30, 31, 32], additional statistical considerations in-
clude: (1) Identification and evaluation of fit-for-purpose
RWD sources—Research-oriented RWD (e.g., disease reg-
istries, prospective cohorts) is generally preferred over trans-
actional RWD (e.g., claims data). The choice of RWD source
impacts the effective sample size—the number of patients
eligible to serve as ECs. (2) Type I error inflation—Type I
error may be inflated if the response rate in the EC drifts
toward the extremes (0 or 1) from a hypothetical value.
(3) Analytical methods for estimating treatment effects—
Different methods (e.g., Bayesian dynamic borrowing, PS
matching, regression) rely on different assumptions and may
yield varying results, affecting power and required sample
size [33, 34]. (4) Separation of treatment effects from bias—
The sample size must be sufficiently large to distinguish
true treatment effects from potential bias in the analysis.
(5) Simulation studies—Simulations are useful for exploring
the interactions among key design factors such as power,
sample size, type I error, analytical methods, bias, and the
causal gap. Sample size re-estimation during the course of
the study may be implemented upon regulatory agreement
[35]; see also Chen et al. [36] for further discussion on trial
design and analysis using external data.

Finally, we would like to express our gratitude to Cao
and Pan for their thoughtful comments and to the Journal
Editor for the opportunity to further elaborate on additional
considerations in using SATs to support the AA of oncology
drugs.
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