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Abstract
Historically, the primary objective of Phase I clinical trials has been to pick an optimal dose in terms of patient safety,

referred to as the maximum tolerated dose (MTD). Most of these trials recommend a “one-size-fits-all” dose for the
patient population being studied, while also solely focusing on short-term adverse events. Often patient heterogeneity
exists so that group-specific dose selection is of interest. To address the issue of patient heterogeneity, several dose-finding
methods have been proposed, including the shift model framework based on the Continual Reassessment Method (CRM).
Additionally, for many cancer therapies, relevant toxicities may be defined by participants experiencing adverse events at
any point over a long evaluation window, resulting in pending outcomes when new participants need to be assigned a dose.
By leveraging the CRM, the time-to-event continual reassessment method (TITE-CRM) provides a feasible approach for
addressing this issue. Motivated by a Phase I trial involving radiotherapy that included two patient groups conducted at
the University of Virginia, we have developed a hybrid design that combines elements from the TITE-CRM and the shift
model framework. This approach helps address patient heterogeneity and late-onset toxicity simultaneously. We illustrate
how to perform a dose-finding trial using the proposed design, and compare its operating characteristics to other suggested
methods in the field by conducting a simulation study. The shift model TITE-CRM is shown to be a practical design
with good operating characteristics in regard to selecting the correct MTD in each group. An R package is also being
developed, allowing investigators to provide group-specific MTD recommendations by applying the proposed design, in
addition to providing operating characteristics for custom simulation settings.
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1. INTRODUCTION
This article considers the problem of designing dose-

finding trials that simultaneously account for patient hetero-
geneity and late-onset toxicities. The design described herein
is applied to a Phase I clinical trial conducted at the Univer-
sity of Virginia. Participants were classified into two groups
(good prognosis and poor prognosis) according to their ex-
pected tolerance to a radiation treatment [15]. Instead of
conducting two separate, parallel trials for the groups, the
design used in Muller et al. [15] borrowed accumulating in-
formation across groups to identify group-specific maximum
tolerated doses (MTDs) within a single trial. In addition,
the dose-limiting toxicity (DLT) observation window is up
to 90 days, and on average 1-2 patients are accrued monthly.
Therefore, there is also a potential for late-onset toxicities,
which the original trial design did not incorporate, motivat-
ing the new design proposed in this work. Although such
phase I trials are increasing in modern oncology develop-
ment, there is little practical statistical methodology for de-
signing these trials. More details of the trial are provided
below.
∗Corresponding author.

It is not uncommon for participants to be separated into
prognostic groups where they differ in terms of their ex-
pected reaction to the treatment [12]. For instance, prior
studies have shown that children diagnosed with Acute
Leukemia have a higher tolerance to the treatment rela-
tive to adults [16]. In this case, we say that the groups are
ordered in that one group has a higher expected probabil-
ity of DLT than the other group when receiving the same
dose. Using a standard Phase I design to conduct two in-
dependent trials is to be avoided due to the possibility of
observing a reversal [8]. A reversal occurs when the MTD
selection violates the known group order. For instance, the
MTD for a group known to have a poor prognosis should
not be greater than that of the good prognosis group. Ad-
ditionally, if the investigators decide on conducting a stan-
dard design, disregarding heterogeneity, the dose level that
is recommended would be too toxic for part of the popu-
lation and sub-optimal for the other. O’Quigley et al. [19]
proposed a straightforward extension of the Continual Re-
assessment Method (CRM) to two groups in which two pa-
rameters are being estimated rather than one. The idea is
that the additional parameter models the relationship be-
tween the two groups. Furthermore, every additional dis-
tinct group requires an extra parameter to be estimated ac-
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cording to the multi-sample CRM. Due to relatively small
sample sizes and limited resources in Phase I trials, it is
more efficient to exploit under-parameterized models rather
than estimating additional continuous parameters. An intu-
itive and simple design extending the CRM to “shift” type
models [20] accommodates for patient heterogeneity and is
practical in trials [15]. The method argues that since we are
dealing with a discrete set of dose levels {d1, d2, . . . , dk}, the
clinical difference between the groups can be accounted for
by shifting the final recommended dose level of one group
by one, two, or more levels away from the other group.

The CRM, and its patient heterogeneity extensions, as-
sume complete information on the DLT status of each par-
ticipant when assigning doses. Participants can experience
a DLT at any point in the evaluation window, but they
have to complete the full evaluation window without DLT
to be classified as a non-DLT outcome. Due to the short
observation window in Phase I clinical trials, many Phase I
methods face a challenge in situations where toxicities are
defined over a long evaluation window relative to patient
accrual rate. For instance, suppose that DLT for a particu-
lar treatment can be observed at any point over 15 weeks,
and the accrual rate is one patient per week. Since we have
to wait for 15 weeks to score a patient’s outcome as a non-
DLT, as many as 15 patients may be accrued before the
first patient’s DLT outcome is observed. So what doses will
these patients be administered? Waiting for 15 weeks until
the evaluation of the previous patient is recorded would re-
sult in a long trial duration. Alternatively, putting them on
the same dose as the first participant is an efficient use of
resources in a small Phase I trial. Multiple publications have
addressed late-onset toxicities, such as [23, 1, 13, 30, 29, 27].
The two most popular designs in practice are the time-to-
event (TITE)-CRM [6] and the TITE-BOIN [31].

There are limited options for designing Phase I trials that
simultaneously account for patient heterogeneity and late-
onset toxicities. Salter et al. [22] proposed a modification
to the TITE-CRM [6] using the two-parameter model of
O’Quigley et al. [19] and maximum likelihood estimation.
Chapple and Thall [2] presented a Bayesian design called
Sub-TITE which makes sequentially adaptive subgroup-
specific decisions while possibly combining subgroups that
have similar estimated dose-toxicity curves. A logistic re-
gression model for the probability of toxicity is utilized to
make the decisions based on computed posterior quantities.
This scheme allows for different subgroups to be combined
for dose finding if the accumulated data indicates homo-
geneous groups. The Two-Stage Sub-TITE (2S-Sub-TITE)
was subsequently presented by McGovern et al.[14], which
delays borrowing strength and dynamic clustering across
subgroups when the trial starts to improve trial accuracy. In
the 1st stage, separate models are estimated for each sub-
group. The 2nd stage is initiated at some pre-specified point
of patient accrual, and the Sub-TITE design is subsequently
followed.

The objective of this paper is to develop a practical hy-
brid design that combines elements from the TITE-CRM
and the shift model framework (Shift TITE-CRM) to ad-
dress patient heterogeneity and late-onset toxicities simulta-
neously. The rationale for extending the shift models frame-
work to the TITE-CRM emanates from the computational
simplicity exhibited by each method relative to the alterna-
tive methods described above. The rest of this article is laid
out as follows. The following sub-section provides a moti-
vating Phase 1/2 trial in which participants were separated
into two different groups and late-onset toxicities were possi-
ble. In the Methods section, we demonstrate how the Shift
TITE-CRM is executed by building on methodology from
the TITE-CRM and the shift model CRM. We discuss the
simulation design and investigate the operating character-
istics of the proposed method in the Simulation Studies
section. Finally, we will conclude with remarks and future
research in the Conclusion and Discussion section.

Motivating Trial
Muller et al. [15] conducted a single-arm Phase I/II trial

at the University of Virginia where patients received a ra-
diation treatment via a novel real-time radiation oncology
workflow for the delivery of high-dose single-fraction stereo-
tactic body radiation therapy (SBRT). The study team be-
lieved that the therapy treatment at a dose higher than 8 Gy
would lead to rapid, durable, and significant pain relief, etc.
Among the 46 eligible patients for treatment, 31 were con-
sidered poor prognosis and classified as Group 1. 15 patients
were considered good prognosis and classified as Group 2.
DLTs were defined at grade ≥ 4 toxicity occurring within
90 days of treatment. Patients in both groups were adminis-
tered one of k = 4 available dose levels, and dose allocation
was conducted using a 2-stage shift model CRM for hetero-
geneous groups [26], but the potential for late-onset toxicity
was not accounted for in the design. Acceptable safety was
defined by any estimated DLT probability less than or equal
to a maximum toxicity tolerance of Θ = 0.20.

In Group g, the trial is investigating four ordered dose
levels: {dg1, dg2, dg3, dg4}, and the primary objective is to
identify the MTD in each of the g groups. Since patients
in Group 1 have a poorer prognosis, the expected prob-
ability of toxicity should be higher than that of Group 2
at each dose level. Thus, the MTD for Group 1 should be
lower than the MTD for Group 2. For instance, if the MTD
was defined to be dose d23 for Group 2, then the MTD for
Group 1 could be one or two levels below d23, given by the
following set {d11, d12}. For a fixed dose d2j administered
in Group 2, the possible doses administered in Group 1 are
{d11, d12, . . . , d1,j−1}. So the total number of possible shifts
in the MTD between the two groups would be j − 1, where
the “true” shift could be any of these values. The true shift
is sequentially estimated from a class of CRM shift models
using the accumulated data from each new cohort of partic-
ipants.
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2. METHODS
Implementation of the proposed design can be done using

two approaches; a likelihood-based approach, or a Bayesian
approach. We will be focusing on the latter since a likelihood
approach would require an additional stage of rule-based al-
location until at least one DLT and one non-DLT are ob-
served (outcome heterogeneity) so that one can start mod-
eling. Now, suppose there are K available dose levels and G
distinct groups. Let dk denote the dose at level k for some
Group g, where k ∈ {1, 2, . . . ,K} and g ∈ {1, 2, . . . , G}. We
utilize the idea of the shift between group dose levels to in-
corporate the clinical relationship between the groups [9].
The shifts in the MTD then range from 0 to K−1 dose lev-
els according to the clinical difference of one group relative
to the other.

In general, assume that we have M possible shifts, in-
dexed by m = 1, . . . ,M , between the two groups. For every
possible shift model m, the probability of DLT Rmg(dk) at
dose k in Group g is modeled by

Rmg(dk) = Pr(Ygk = 1|dk, g,m) = Ψmg(dk, am) = P
exp(am)
mgk

The “Pmgk” values construct the skeleton, which is a set
of pre-specified constants representing an initial guess for
the probability of toxicity at each dose level. As mentioned
before, the group with a poorer prognosis will have rela-
tively larger skeleton values. The relative location of the
MTDs is accounted for by selecting various skeletons with
group-specific MTD positions reflecting all possible scenar-
ios. Then, the skeletons are constructed to be both shifted
and monotonic. The term “shift” refers to the relative lo-
cation of MTDs between groups, while within each group,
the skeleton is monotonic, assuming that DLT probabilities
increase with dose. In the motivating trial with K = 4 dose
levels in each of G = 2 groups, there were three shift models
considered given in Table 1.

Since a Bayesian form of the CRM is used, a prior
probability distribution g(am) of the parameter am, and a
prior probability p(m) for each shift model should be pre-
specified. For the power model, it is recommended to use
a zero mean normal prior distribution for the parameter a
for each shift model m, such as gm(am) ∼ N(0, σ2

am
) [17]

and the concept of the least informative variance has shown
good performance across a broad array of dose-toxicity sce-
narios [11]. Let ng be the number of patients in Group g at
the end of the study, so that the total number of patients
accrued is n =

∑G
g=1 ng. The likelihood under shift model

m is then given by,

Lm(Ωj |am) =
∏G

g=1

∏ng

j=1

(
wjgΨmg(xjg, am)

)yjg
(
1− wjgΨmg(xjg, am)

)(1−yjg)

where Ωj denotes the data accumulated up to the jth pa-
tient, wjg denotes the weight for the jth patient in group g,
Ψmg(xjg, am) represents the probability of detecting a DLT
in Group g for shift model m, corresponding to the dose

xjg administered to patient j, and yjg denotes the DLT sta-
tus of patient j in Group g. The weight w is a function of
the observation of each patient and has a linear association
with the dose-toxicity model. Utilizing a linear function for
the weights has been shown to perform well in most sce-
narios [6]. Similar to the TITE-CRM [6], the weights are
constructed using a linear function where wjg =

ujg

T , ujg is
the time to observe a DLT for patient j in Group g, and T is
the length of time that defines the DLT evaluation window.
The posterior density of a given the data accumulated after
j participants,

fm(am|Ωj) =
Lm(Ωj |am)× g(am)∫ ∞

−∞
Lm(Ωj |am)× g(am)dam

and is used to generate an estimate âm for am for each
shift model. Further, the posterior probabilities of the mod-
els given the data can be established and given by:

π(m|Ωj) =

p(m)

∫ ∞

−∞
Lm(Ωj |am)× g(am)dam

M∑
m=1

p(m)

∫ ∞

−∞
Lm(Ωj |am)× g(am)dam

The design will choose the shift model with the largest pos-
terior probability, p(m), among the M models. It is expected
that the more the data support a particular shift model m,
the greater its posterior probability will be. So for Group g,
a particular shift model is chosen, say h, that has the highest
posterior probability among the models. Then, we take the
working model Ψhg(dk, a) associated with this shift model,
and estimate a by applying the Bayesian form of the CRM

R̂hg(dk) = P
exp(âh)
hgk where,

âh =

∫ ∞

−∞
ah × Lh(Ωj |ah)× gh(ah) dah

∫ ∞

−∞
Lh(Ωj |ah)× gh(ah) dah

We choose to estimate Rhg(dk) based on the “plug-in” esti-
mate [18] for the MTD, which has been studied more thor-
oughly and systematically than other estimators in the lit-
erature [5]. When escalating, the design is restricted to not
skipping any dose levels that haven’t been administered.
Dose allocation for the next cohort of patients, or MTD
selection if at the end of the trial, is found by selecting the
dose in each group which minimizes the difference in the
probability of toxicity and target DLT rate, |R̂hg(dk)−Θ|.

3. SIMULATION STUDIES
3.1 Single Simulated Trial

This subsection exemplifies the proposed design in a sin-
gle simulated trial with a similar setting to the motivat-
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ing trial by Muller et al. [15]. Participants are classified
into G = 2 distinct groups with K = 4 available dose
levels, dg1, . . . , dg4. Participants with poor prognosis are
classified as Group 1, and participants with good progno-
sis are classified as Group 2. The magnitude of the clin-
ical difference is then translated by the number of shifts
in dose levels between the groups. The true toxicity curves
for Groups 1 and 2 are given by {0.03,0.11,0.21,0.33} and
{0.01,0.03,0.11,0.21} respectively; where we assumed a one
level shift in the MTD location between the two groups.
The target DLT probability that defines the MTD is spec-
ified at Θ = 0.20, indicating that d3 is the correct dose for
Group 1, and d4 is the correct dose for Group 2. The study
is set to enroll a total of 46 participants, with an antici-
pated distribution of 50% in Group 1 and 50% in Group 2.
The DLT endpoint was defined with respect to a 3-month
follow-up period with one participant being enrolled every
0.5 months. We established the skeleton values using a sys-
tematic approach [10], and adjusted the position of these
values to correspond to each of the three possible shift mod-
els given in Table 1. For each shift model, we assigned a
prior probability p(m) = 1

M and implemented a normal
prior N(0, σ2

a = 1.34) on the parameter a. Failure times were
generated under a conditionally uniform model. After each
included participant, the model-based approach described
in Section 3 is employed to assign the dose for the next par-
ticipant. The MTD selection is generated at the end of the
trial for each group, and a summary of the simulated trial is
provided in Table 2. The initial patient, classified as being
at poor risk, received dose level d1 and exhibited a non-DLT
response. Consequently, the subsequent recommended dose
for the second patient, also categorized as poor risk, was d2,
resulting in a non-DLT response as well. When the third
participant, categorized as being at good risk, enrolled in
the study, the design recommended escalating the dose to
d3, taking into account the improved risk profile of partici-
pant 3 compared to participants 1 and 2. At the end of the
trial we observed four consecutive non-DLTs in Group 1, and
three consecutive non-DLTs in Group 2. The final estimated
DLT probabilities for Group 1 were given by R̂(d1) = 0.067,
R̂(d2) = 0.125, R̂(d3) = 0.194, and R̂(d4) = 0.284. The
final estimated DLT probabilities for Group 2 were given
by R̂(d1) = 0.028, R̂(d2) = 0.067, R̂(d3) = 0.125, and
R̂(d4) = 0.194. Therefore, the recommended dose levels are
d3 and d4 for Groups 1 and 2 respectively.

3.2 Simulation Setting
In this section, we evaluate the operating characteristics

of our method using a simulation study that consists of three
scenarios used the 2-sample TITE-CRM paper [22]. We com-
pare the performance of the two methods using these sce-
narios. Salter et al. [22] specified a target probability of DLT
at Θ = 0.20 for a treatment that consists of k = 6 dose lev-
els, d1, . . . , d6. A total of 32 participants were accrued to the
study, with an anticipated distribution of 50% in Group 1

Table 1. Skeleton values by dose level for each possible shift
model in the Motivating Trial.

Doses in Gy
Model Prognosis

group
8 10 12.5 15

m = 1 1 - Poor 0.07 0.13 0.20 0.29
2 - Good 0.03 0.07 0.13 0.20

m = 2 1 - Poor 0.13 0.20 0.29 0.38
2 - Good 0.03 0.07 0.13 0.20

m = 3 1 - Poor 0.20 0.29 0.38 0.47
2 - Good 0.03 0.07 0.13 0.20

Table 2. A single simulated trial of 46 patients where “j”
denotes patient ID, “g” denotes group designation, “uj”

denotes time to toxicity, “xj” denotes dose administered, and
“yj” denotes DLT status.

j g uj xj yj j g uj xj yj

1 1 - d1 0 24 1 - d2 0
2 1 - d2 0 25 2 - d3 0
3 2 - d3 0 26 2 - d3 0
4 2 - d4 0 27 1 - d2 0
5 1 1.33 d4 1 28 2 2.28 d3 1
6 1 1.22 d4 1 29 2 - d3 0
7 2 1.82 d4 1 30 2 - d3 0
8 1 - d2 0 31 2 - d4 0
9 1 - d1 0 32 1 - d3 0
10 2 2.01 d4 1 33 2 - d3 0
11 1 - d1 0 34 2 - d3 0
12 1 - d1 0 35 2 - d3 0
13 1 - d1 0 36 2 - d3 0
14 2 - d3 0 37 2 - d4 0
15 1 - d1 0 38 1 - d3 0
16 1 - d1 0 39 1 2.97 d3 1
17 2 - d3 0 40 2 - d4 0
18 1 - d2 0 41 2 - d4 0
19 2 - d3 0 42 1 - d3 0
20 1 1.55 d2 1 43 2 - d4 0
21 1 - d2 0 44 1 - d3 0
22 2 - d3 0 45 1 - d2 0
23 1 - d2 0 46 1 - d2 0

â = 0.017 Recommended dose for group 1: d3
Recommended dose for group 2: d4

and 50% in Group 2. The DLT endpoint was defined over a
6-months follow-up period with a new participant being ac-
crued every 0.5 months. The true DLT probabilities for each
of these scenarios are provided in the lines labeled R(dk) in
Table 4. The proposed skeleton values in Salter et al. [22]
were used as prior guess of DLT probabilities.

Next, we examined the performance of the proposed de-
sign in trials in which three patient groups were being stud-
ied. Across seven different toxicity scenarios, we simulated
trials accruing a total of 36 participants, with an expected
allocation of one-third in each of the three groups. The
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Table 3. Skeleton value by dose level for three groups.
Group 1 Group 2 Group 3

Model d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4
m = 1 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35
m = 2 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35
m = 3 0.25 0.35 0.45 0.55 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35
m = 4 0.15 0.25 0.35 0.45 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35
m = 5 0.25 0.35 0.45 0.55 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35
m = 6 0.25 0.35 0.45 0.55 0.25 0.35 0.45 0.55 0.05 0.15 0.25 0.35

true toxicity probabilities for each of these scenarios are
provided in the lines labeled R(dk) in Table 5. The sce-
narios were constructed in a way to accommodate all pos-
sible clinical differences between the groups knowing that
MTD1 ≤ MTD2 ≤ MTD3. The proportion of MTD se-
lection for all scenarios is a result of 1000 simulated trials
generated using the programming language R. In each sce-
nario, the starting dose was d1 for all groups. Participants
were followed for 6 months, and a new patient is accrued on
a fixed scheme of every 0.5 months. For each shift model,
we assigned a prior probability p(m) = 1

M and implemented
a normal prior N(0, σ2

a = 1.34) on the parameter a. We
investigated two different failure time models of the Shift
TITE-CRM. S-TITE U generated the failure times under a
conditionally uniform model, and S-TITE E generated fail-
ure times under a truncated exponential model, with an
upper limit restricted to less than the follow-up period of
6 months. We established the skeleton using a systematic
approach [10], and adjusted the position of these values to
correspond to each of the seven possible orders consistent
with the shifts given in Table 3. We also provide simulation
results evaluating patient allocation, varying sample sizes,
target DLT rates, and accrual rates. These additional re-
sults are given in the supplementary material.

3.3 Simulation Results
In the two group setting, the proportion of MTD selection

over the three scenarios are provided in Table 4 where the re-
sults of the Shift TITE-CRM and the 2-sample TITE CRM
are compared. The two methods had comparable ranges of
proportion of correct selection (PCS) of the group-specific
MTDs over the 3 scenarios. The 2-sample TITE CRM gen-
erated a PCS range of {0.37, 0.58} and the Shift TITE-CRM
generated a PCS range of {0.426, 0.579}. In the 1st sce-
nario, d2 and d3 corresponded to true probabilities of DLT
closest to Θ = 0.20 for Groups 1 and 2 respectively. The
PCS in both groups were slightly higher with the 2-sample
TITE CRM approach compared to the Shift-TITE CRM
approach. In the 2nd scenario, the simulated trial assumed
a greater clinical difference between the two groups, where
d2 and d4 corresponded to true probabilities of DLT clos-
est to the target DLT rate for Groups 1 and 2 respectively.
The Shift TITE-CRM resulted in a higher PCSS = 0.493
relative to the 2-sample TITE CRM PCS2Sample = 0.44 in

Group 1. In Group 2, the Shift TITE-CRM outperforms the
2-sample TITE CRM with approximately 10% difference in
PCS (0.466 vs. 0.37). This specific scenario indicates that
the proposed design is outperforming the 2-sample TITE
CRM when there is a two level shift in MTD between the
two groups. In the 3rd scenario, the two groups were as-
sumed the same in terms of their probabilities of DLT over
the entire range of dose levels. Therefore, the dose that cor-
responded to probability of DLT closest to Θ = 0.20 is d2
in both groups. The two methods resulted in similar operat-
ing characteristics with PCS2Sample = 0.45 for both groups,
PCSS = 0.492 and PCSS = 0.426 for Groups 1 and 2 re-
spectively.

In the three group setting, the proportion of MTD selec-
tion across the seven scenarios are provided in Table 5. The
range of PCS of the group-specific MTDs over the seven
scenarios is {0.380, 0.709}. In scenario 1, it is assumed that
there is no difference between the groups. In Group 1, the
S-TITE U generated a PCS = 0.472 similar to that of Group
2 with PCS = 0.496 and Group 3 with PCS = 0.437. As for
the S-TITE E, all of the groups showed a slight reduction
in PCS. In scenario 2, it is assumed that there is a one-
shift difference in Groups 2 and 3 relative to Group 1. The
PCS decreased on average across all three groups compared
to scenario 1, while still maintaining the highest percentage
of MTD selection at the correct doses across all groups. In
scenario 3, we assumed a greater shift for Groups 2 and 3
relative to Group 1. S-TITE U generated a PCS = 0.472 for
Group 1, PCS = 0.437 for Group 2, and PCS = 0.474 for
Group 3. In scenario 4, we assumed that only Group 3 is
clinically different to Group 1. The simulations generated a
PCS range of {0.415,0.522}. The 5th and 7th scenarios are
considered the most heterogeneous in regards to their group-
specific MTDs; all groups are clinically different from one
another. For these scenarios, the proposed method would
indicate that the “true” shift model is m = 5 provided in
Table 3. Across these two scenarios, the PCS for Group 1 is
0.522 and 0.696 under S-TITE U, and the PCS is 0.522 and
0.607 under S-TITE E. Groups 2 and 3 generated a smaller
PCS that ranges from 0.415 to 0.513 across the two meth-
ods. In the 6th scenario, Groups 1 and 2 are assumed to have
d1 as the correct dose, shifted two levels away from that of
Group 3 d3. The PCS of the MTD was high for Group 1 un-
der both uniform and exponential assumptions. S-TITE U
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Table 4. The proportion of MTD Selection for Shift Models TITE and 2-sample TITE-CRM at each dose where “R(dk)”
denotes the true probability of DLT, “S-TITE” denotes the Shift TITE-CRM design, and “2-Sample TITE” denotes the

2-Sample TITE CRM design.
Group 1 Group 2

Scenario d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6
1 R(dk) 0.08 0.20 0.35 0.50 0.70 0.80 0.01 0.05 0.18 0.40 0.55 0.70

S-TITE 0.303 0.458 0.223 0.016 0.000 0.000 0.008 0.193 0.579 0.205 0.015 0.000
2-Sample TITE 0.22 0.49 0.25 0.05 0.000 0.000 0.001 0.15 0.58 0.20 0.04 0.000

2 R(dk) 0.02 0.19 0.31 0.45 0.51 0.63 0.03 0.05 0.11 0.21 0.39 0.50
S-TITE 0.105 0.493 0.319 0.078 0.005 0.000 0.000 0.057 0.354 0.466 0.117 0.006

2-Sample TITE 0.12 0.44 0.35 0.09 0.02 0.000 0.000 0.05 0.35 0.37 0.18 0.05
3 R(dk) 0.07 0.23 0.31 0.35 0.45 0.57 0.07 0.23 0.31 0.35 0.45 0.57

S-TITE 0.276 0.492 0.191 0.037 0.004 0.000 0.122 0.426 0.345 0.083 0.023 0.001
2-Sample TITE 0.25 0.45 0.23 0.07 0.03 0.00 0.25 0.45 0.25 0.04 0.01 0.000

Table 5. The proportion of MTD selection for each dose across the 7 scenarios where “R(dk)” denotes the true probability of
toxicity, “S-TITE U” denotes Shift TITE-CRM design with failure times generated uniformly, and “S-TITE E” denotes Shift

TITE-CRM design with failure times generated exponentially.

Group 1 Group 2 Group 3
Scenario d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

1 R(dk) 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35
S-TITE U 0.064 0.324 0.472 0.140 0.008 0.243 0.496 0.253 0.002 0.142 0.437 0.419
S-TITE E 0.031 0.338 0.458 0.173 0.005 0.231 0.477 0.287 0.001 0.156 0.418 0.425

2 R(dk) 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35
S-TITE U 0.262 0.416 0.269 0.053 0.035 0.321 0.443 0.201 0.009 0.214 0.403 0.374
S-TITE E 0.245 0.432 0.252 0.071 0.018 0.316 0.444 0.222 0.007 0.206 0.426 0.361

3 R(dk) 0.22 0.33 0.42 0.52 0.05 0.17 0.27 0.37 0.03 0.12 0.24 0.40
S-TITE U 0.472 0.364 0.142 0.022 0.067 0.361 0.437 0.135 0.009 0.250 0.474 0.267
S-TITE E 0.442 0.395 0.142 0.021 0.035 0.341 0.435 0.189 0.000 0.199 0.472 0.329

4 R(dk) 0.13 0.27 0.45 0.55 0.16 0.26 0.36 0.46 0.05 0.15 0.25 0.35
S-TITE U 0.388 0.480 0.121 0.011 0.222 0.460 0.258 0.060 0.034 0.313 0.403 0.250
S-TITE E 0.338 0.506 0.145 0.011 0.168 0.488 0.272 0.072 0.028 0.303 0.380 0.289

5 R(dk) 0.22 0.32 0.40 0.52 0.15 0.24 0.33 0.43 0.05 0.15 0.25 0.40
S-TITE U 0.522 0.358 0.110 0.010 0.219 0.415 0.309 0.057 0.029 0.348 0.427 0.196
S-TITE E 0.522 0.348 0.117 0.013 0.224 0.416 0.290 0.070 0.019 0.315 0.455 0.211

6 R(dk) 0.25 0.35 0.45 0.55 0.25 0.35 0.45 0.55 0.05 0.15 0.25 0.35
S-TITE U 0.709 0.244 0.045 0.002 0.494 0.375 0.118 0.013 0.060 0.415 0.386 0.139
S-TITE E 0.698 0.251 0.049 0.002 0.509 0.357 0.120 0.014 0.053 0.409 0.391 0.147

7 R(dk) 0.24 0.40 0.54 0.66 0.11 0.26 0.41 0.55 0.03 0.10 0.25 0.40
S-TITE U 0.696 0.266 0.037 0.001 0.293 0.461 0.227 0.019 0.023 0.359 0.493 0.125
S-TITE E 0.607 0.336 0.055 0.002 0.187 0.501 0.280 0.032 0.010 0.280 0.513 0.197

generated a PCS = 0.709, and S-TITE E generated a PCS =
0.698. In Groups 2 and 3, the PCS range was {0.386,0.509}
across the two methods. Overall, the results indicate that
Shift TITE-CRM is performing well in terms of correctly
recommending group-specific MTDs. The Shift TITE-CRM
also demonstrates good operating characteristics in terms
of patient allocation to doses at and around group-specific
MTDs, as detailed in the supplementary material.

4. CONCLUSIONS
The hybrid design (Shift TITE-CRM) presented in this

article is a practical tool in Phase I clinical trials that ad-

dresses the issue of patient heterogeneity and late-onset tox-
icities simultaneously in a single trial. The proposed design
is presented in a Bayesian framework since using likelihood
estimation presents additional challenges in more than one
group setting. Prior to estimation, at least one toxic and one
non-toxic outcome have to be observed to fit the model. So
the design for the first stage has to be specified and there
is not a clear optimal design to use, especially in presence
of patient heterogeneity. We examined the performance of
the Shift TITE-CRM in terms of correctly selecting group-
specific MTDs across seven different scenarios and compared
its performance to the 2-sample TITE CRM. Each of the
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three 2-sample TITE CRM applications were competitive
with the Shift TITE-CRM in terms of the PCS except when
there was a shift greater than one in MTD level. In this
case, our proposed Shift TITE-CRM demonstrated superior
performance. We also examined the performance with dif-
ferent sample sizes, accrual rates, and target toxicity rates
provided in the supplementary material. We expect to have
at most three groups in Phase I trials and the proposed de-
sign generates good operating characteristics in a reasonable
range of sample sizes for such trials. In our simulation study,
we assumed a sample size of 36 patients separated into three
groups. In a real-life phase I trial, it is recommended to have
a larger sample size when patients are separated into more
than two groups which will yield better precision in selecting
the correct MTD as shown in the supplemental material.

For future work, we are exploring the use of this method
for partially ordered groups, where group order is known
between some but not all groups. We will also build an R
package which will serve as a tool to conduct the Shift TITE-
CRM design in Phase I clinical trials. Salter et al. [21] devel-
oped a SAS program to accommodate two groups using the
TITE-CRM and likelihood estimation. In the R package,
statisticians and clinicians will be able to simulate operat-
ing characteristics at the design stage and input their new
data after accruing patients to recommend a dose to the next
cohort of patients at the trial conduct stage. The skeleton
values should be constructed according to the specific trial
which should be straightforward when knowing the complete
ordering of the groups. Note that an increase in the number
of groups and/or dose levels leads to an increase in the re-
quired sample size to ensure good operating characteristics.
An increase in the dimension also leads to the need to spec-
ify more skeleton values for the shift models, which can also
add complexity. In partially ordered groups, the construc-
tion of the skeleton values could become more complex in
some scenarios. In trials accounting for patient heterogene-
ity, borrowing information across groups early in the trial
can lead to rapid dose escalation in less sensitive groups.
Building on the approach of [28], future implementations
are exploring the integration of asymmetric loss functions
within the CRM shift model framework to impose penal-
ties on overdosing. This approach aims to mitigate the risk
of overdosing in each group, particularly during the early
stages of the study when sample sizes are small.

SUPPLEMENTARY MATERIAL
The supplementary material includes additional simu-

lation results, detailing patient allocation, varying sample
sizes, target DLT rates, and accrual rates.
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