Double generalized linear models provide a flexible framework for modeling data by allowing the mean and the dispersion to vary across observations. Common members of the exponential dispersion family including the Gaussian, Poisson, compound Poisson-gamma (CP-g), Gamma and inverse-Gaussian are known to admit such models. The lack of their use can be attributed to ambiguities that exist in model specification under a large number of covariates and complications that arise when data display complex spatial dependence. In this work we consider a hierarchical specification for the CP-g model with a spatial random effect. The spatial effect is targeted at performing uncertainty quantification by modeling dependence within the data arising from location based indexing of the response. We focus on a Gaussian process specification for the spatial effect. Simultaneously, we tackle the problem of model specification for such models using Bayesian variable selection. It is effected through a continuous spike and slab prior on the model parameters, specifically the fixed effects. The novelty of our contribution lies in the Bayesian frameworks developed for such models. We perform various synthetic experiments to showcase the accuracy of our frameworks. They are then applied to analyze automobile insurance premiums in Connecticut, for the year of 2008.
Joint species distribution modeling is attracting increasing attention in the literature these days, recognizing the fact that single species modeling fails to take into account expected dependence/interaction between species. This short paper offers discussion that attempts to illuminate five noteworthy technical issues associated with such modeling in the context of plant data. In this setting, the joint species distribution work in the literature considers several types of species data collection. For convenience of discussion, we focus on joint modeling of presence/absence data. For such data, the primary modeling strategy has been through introduction of latent multivariate normal random variables.
These issues address the following: (i) how the observed presence/absence data is linked to the latent normal variables as well as the resulting implications with regard to modeling the data sites as independent or spatially dependent, (ii) the incompatibility of point referenced and areal referenced presence/absence data in spatial modeling of species distribution, (iii) the effect of modeling species independently/marginally rather than jointly within site, with regard to assessing species distribution, (iv) the interpretation of species dependence under the use of latent multivariate normal specification, and (v) the interpretation of clustering of species associated with specific joint species distribution modeling specifications.
It is hoped that, by attempting to clarify these issues, ecological modelers and quantitative ecologists will be able to better appreciate some subtleties that are implicit in this growing collection of modeling ideas. In this regard, this paper can serve as a useful companion piece to the recent survey/comparison article by [33] in Methods in Ecology and Evolution.