The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Comments on Xiao-Li Meng’s Double Your V ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Comments on Xiao-Li Meng’s Double Your Variance, Dirtify Your Bayes, Devour Your Pufferfish, and Draw Your Kidstogram✩
Dennis K.J. Lin  

Authors

 
Placeholder
https://doi.org/10.51387/23-NEJSDS6E
Pub. online: 20 January 2023      Type: Statistical Methodology      Open accessOpen Access

✩ Main article: https://doi.org/10.51387/23-NEJSDS6.

Accepted
7 September 2022
Published
20 January 2023

References

[1] 
Allison, K. H. and Sledge, G. W. (2014). Heterogeneity and cancer. Oncology 28(9) 772–772.
[2] 
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39(1) 1–22. MR0501537
[3] 
Hsu, P. (1938). Contribution to the theory of” Student’s” t-test as applied to the problem of two samples. Statistical Research Memoirs.
[4] 
Martin, R. and Liu, C. (2015). Conditional inferential models: combining information for prior-free probabilistic inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77(1) 195–217. https://doi.org/10.1111/rssb.12070. MR3299405
[5] 
Martin, R. and Liu, C. (2015) Inferential models: reasoning with uncertainty 145. CRC Press. MR3618727
[6] 
Martin, R. and Liu, C. (2015). Marginal inferential models: prior-free probabilistic inference on interest parameters. Journal of the American Statistical Association 110(512) 1621–1631. https://doi.org/10.1080/01621459.2014.985827. MR3449059
[7] 
Scheffé, H. (1970). Practical solutions of the Behrens-Fisher problem. Journal of the American Statistical Association 65(332) 1501–1508. MR0273732
[8] 
Schuemie, M. J., Cepeda, M. S., Suchard, M. A., Yang, J., Tian, Y., Schuler, A., Ryan, P. B., Madigan, D. and Hripcsak, G. (2020). How confident are we about observational findings in healthcare: a benchmark study. Harvard data science review 2(1).
[9] 
Schuemie, M. J., Ryan, P. B., Pratt, N., Chen, R., You, S. C., Krumholz, H. M., Madigan, D., Hripcsak, G. and Suchard, M. A. (2020). Principles of large-scale evidence generation and evaluation across a network of databases (LEGEND). Journal of the American Medical Informatics Association 27(8) 1331–1337.
[10] 
Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association 82(398) 528–540. MR0898357
[11] 
Tukey, J. W. et al.(1977) Exploratory data analysis 2. Reading, MA.

Full article PDF XML
Full article PDF XML

Copyright
© 2022 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Metrics (since February 2017)
109

Article info
views

30

Full article
views

23

PDF
downloads

12

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy