The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 2 (2023)
  4. Four Types of Frequentism and Their Inte ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Four Types of Frequentism and Their Interplay with Bayesianism
Volume 1, Issue 2 (2023), pp. 126–137
James Berger  

Authors

 
Placeholder
https://doi.org/10.51387/22-NEJSDS4
Pub. online: 16 August 2022      Type: Commentary And/or Historical Perspective      Open accessOpen Access
Area: Statistical Methodology

Accepted
18 July 2022
Published
16 August 2022

References

[1] 
Bayarri, M., Benjamin, D. J., Berger, J. O. and Sellke, T. M. (2016). Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses. Journal of Mathematical Psychology 72 90–103. https://doi.org/10.1016/j.jmp.2015.12.007. MR3506028
[2] 
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57(1) 289–300. MR1325392
[3] 
Berger, J. O. (2014). Conditioning is the issue. Past, Present, and Future of Statistical Science 253.
[4] 
Berger, J. O. and Mortera, J. (1999). Default Bayes factors for nonnested hypothesis testing. Journal of the American Statistical Association 94(446) 542–554. https://doi.org/10.2307/2670175. MR1702325
[5] 
Berger, J. O. and Wolpert, R. L. (1988). The likelihood principle. Institute of Mathematical Statistics. MR0773665
[6] 
Berger, J. O., Boukai, B. and Wang, Y. (1997). Unified frequentist and Bayesian testing of a precise hypothesis. Statistical Science 12(3) 133–160. https://doi.org/10.1214/ss/1030037904. MR1617518
[7] 
Berger, J. O., Boukai, B. and Wang, Y. (1999). Simultaneous Bayesian-frequentist sequential testing of nested hypotheses. Biometrika 86(1) 79–92. https://doi.org/10.1093/biomet/86.1.79. MR1688073
[8] 
Berger, J. O., Brown, L. D. and Wolpert, R. L. (1994). A unified conditional frequentist and Bayesian test for fixed and sequential simple hypothesis testing. The Annals of Statistics 1787–1807. https://doi.org/10.1214/aos/1176325757. MR1329168
[9] 
Dass, S. C. and Berger, J. O. (2003). Unified conditional frequentist and Bayesian testing of composite hypotheses. Scandinavian Journal of Statistics 30(1) 193–210. https://doi.org/10.1111/1467-9469.00326. MR1965102
[10] 
Edwards, W., Lindman, H. and Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review 70(3).
[11] 
Efron, B. (2012) Large-scale inference: empirical Bayes methods for estimation, testing, and prediction 1. Cambridge University Press. https://doi.org/10.1017/CBO9780511761362. MR2724758
[12] 
Fisher, R. A. (1956). Statistical methods and scientific inference. MR0076233
[13] 
Good, I. J. (1983) Good thinking: The foundations of probability and its applications. U of Minnesota Press. MR0723501
[14] 
Hannig, J., Iyer, H., Lai, R. C. and Lee, T. C. (2016). Generalized fiducial inference: A review and new results. Journal of the American Statistical Association 111(515) 1346–1361. https://doi.org/10.1080/01621459.2016.1165102. MR3561954
[15] 
Hartigan, J. (1966). Note on the confidence-prior of Welch and Peers. Journal of the Royal Statistical Society: Series B (Methodological) 28(1) 55–56. MR0195194
[16] 
Ioannidis, J. P. (2008). Effect of formal statistical significance on the credibility of observational associations. American Journal of Epidemiology 168(4) 374–383.
[17] 
Maurer, W. (1995). Multiple comparisons in drug clinical trials and preclinical assays: A-priori ordered hypothesis. Biomed. Chem.-Pharm. Ind. 6 3–18.
[18] 
Mayo, D. G. (1996) Error and the growth of experimental knowledge. University of Chicago Press.
[19] 
Mayo, D. G. (2018). Statistical inference as severe testing. Cambridge, UK: Cambridge Univ. Press Access provided by Katholieke Universiteit Leuven-KU Leuven on 10(25) 21.
[20] 
Neyman, J. (1977). Frequentist probability and frequentist statistics. Synthese 97–131. https://doi.org/10.1007/BF00485695. MR0652325
[21] 
Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. The Annals of Mathematical Statistics 35(1) 1–20. https://doi.org/10.1214/aoms/1177703729. MR0163407
[22] 
Sellke, T., Bayarri, M. and Berger, J. O. (2001). Calibration of ρ values for testing precise null hypotheses. The American Statistician 55(1) 62–71. https://doi.org/10.1198/000313001300339950. MR1818723
[23] 
Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. The Annals of Statistics 31(6) 2013–2035. https://doi.org/10.1214/aos/1074290335. MR2036398
[24] 
Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145) 661–678.
[25] 
Vovk, V. G. (1993). A logic of probability, with application to the foundations of statistics. Journal of the Royal Statistical Society: series B (Methodological) 55(2) 317–341. MR1224399
[26] 
Xie, M. q. g. and Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review. International Statistical Review 81(1) 3–39. https://doi.org/10.1111/insr.12000. MR3047496

Full article PDF XML
Full article PDF XML

Copyright
© 2023 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Funding
National Science Foundation grant 1821289 and National Institute of Health grant 1P41EB028744-01A1.

Metrics
since December 2021
1456

Article info
views

544

Full article
views

663

PDF
downloads

146

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy