Four Types of Frequentism and Their Interplay with Bayesianism
Volume 1, Issue 2 (2023), pp. 126–137
Pub. online: 16 August 2022
Type: Commentary And/or Historical Perspective
Open Access
Area: Statistical Methodology
Accepted
18 July 2022
18 July 2022
Published
16 August 2022
16 August 2022
References
Bayarri, M., Benjamin, D. J., Berger, J. O. and Sellke, T. M. (2016). Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses. Journal of Mathematical Psychology 72 90–103. https://doi.org/10.1016/j.jmp.2015.12.007. MR3506028
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57(1) 289–300. MR1325392
Berger, J. O. and Mortera, J. (1999). Default Bayes factors for nonnested hypothesis testing. Journal of the American Statistical Association 94(446) 542–554. https://doi.org/10.2307/2670175. MR1702325
Berger, J. O. and Wolpert, R. L. (1988). The likelihood principle. Institute of Mathematical Statistics. MR0773665
Berger, J. O., Boukai, B. and Wang, Y. (1997). Unified frequentist and Bayesian testing of a precise hypothesis. Statistical Science 12(3) 133–160. https://doi.org/10.1214/ss/1030037904. MR1617518
Berger, J. O., Boukai, B. and Wang, Y. (1999). Simultaneous Bayesian-frequentist sequential testing of nested hypotheses. Biometrika 86(1) 79–92. https://doi.org/10.1093/biomet/86.1.79. MR1688073
Berger, J. O., Brown, L. D. and Wolpert, R. L. (1994). A unified conditional frequentist and Bayesian test for fixed and sequential simple hypothesis testing. The Annals of Statistics 1787–1807. https://doi.org/10.1214/aos/1176325757. MR1329168
Dass, S. C. and Berger, J. O. (2003). Unified conditional frequentist and Bayesian testing of composite hypotheses. Scandinavian Journal of Statistics 30(1) 193–210. https://doi.org/10.1111/1467-9469.00326. MR1965102
Efron, B. (2012) Large-scale inference: empirical Bayes methods for estimation, testing, and prediction 1. Cambridge University Press. https://doi.org/10.1017/CBO9780511761362. MR2724758
Fisher, R. A. (1956). Statistical methods and scientific inference. MR0076233
Good, I. J. (1983) Good thinking: The foundations of probability and its applications. U of Minnesota Press. MR0723501
Hannig, J., Iyer, H., Lai, R. C. and Lee, T. C. (2016). Generalized fiducial inference: A review and new results. Journal of the American Statistical Association 111(515) 1346–1361. https://doi.org/10.1080/01621459.2016.1165102. MR3561954
Hartigan, J. (1966). Note on the confidence-prior of Welch and Peers. Journal of the Royal Statistical Society: Series B (Methodological) 28(1) 55–56. MR0195194
Neyman, J. (1977). Frequentist probability and frequentist statistics. Synthese 97–131. https://doi.org/10.1007/BF00485695. MR0652325
Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. The Annals of Mathematical Statistics 35(1) 1–20. https://doi.org/10.1214/aoms/1177703729. MR0163407
Sellke, T., Bayarri, M. and Berger, J. O. (2001). Calibration of ρ values for testing precise null hypotheses. The American Statistician 55(1) 62–71. https://doi.org/10.1198/000313001300339950. MR1818723
Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. The Annals of Statistics 31(6) 2013–2035. https://doi.org/10.1214/aos/1074290335. MR2036398
Vovk, V. G. (1993). A logic of probability, with application to the foundations of statistics. Journal of the Royal Statistical Society: series B (Methodological) 55(2) 317–341. MR1224399
Xie, M. q. g. and Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review. International Statistical Review 81(1) 3–39. https://doi.org/10.1111/insr.12000. MR3047496