The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 3 (2023)
  4. Editorial. Design and Analysis of Experi ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Editorial. Design and Analysis of Experiments for Data Science
Volume 1, Issue 3 (2023), pp. 297–298
HaiYing Wang   Xinwei Deng   Devon Lin     All authors (6)

Authors

 
Placeholder
https://doi.org/10.51387/23-NEJSDS13EDI
Pub. online: 27 November 2023      Type: Editorial      Open accessOpen Access

Published
27 November 2023

References

[1] 
Bui, T., Steiner, S. and Stevens, N. (2023). General Additive Network Effect Models. The New England Journal of Statistics in Data Science 1–19. https://doi.org/10.51387/23-NEJSDS29.
[2] 
Chen, P.-Y., Chen, R.-B. and Wong, W. K. (2023). Particle Swarm Optimization for Finding Efficient Longitudinal Exact Designs for Nonlinear Models. The New England Journal of Statistics in Data Science 1–15. https://doi.org/10.51387/23-NEJSDS45.
[3] 
Hao, S., Yang, M. and Zheng, W. (2023). Algorithm-Based Optimal and Efficient Exact Experimental Designs for Crossover and Interference Models. The New England Journal of Statistics in Data Science 1–10. https://doi.org/10.51387/23-NEJSDS41.
[4] 
Kang, L., Deng, X. and Jin, R. (2023). Bayesian D-Optimal Design of Experiments with Quantitative and Qualitative Responses. The New England Journal of Statistics in Data Science 1–15. https://doi.org/10.51387/23-NEJSDS30.
[5] 
Li, Y., Zhang, Q., Khademi, A. and Yang, B. (2023). Optimal Design of Controlled Experiments for Personalized Decision Making in the Presence of Observational Covariates. The New England Journal of Statistics in Data Science 1–8. https://doi.org/10.51387/23-NEJSDS22.
[6] 
Pronzato, L. and Rendas, M.-J. (2023). Validation of Machine Learning Prediction Models. The New England Journal of Statistics in Data Science 1–21. https://doi.org/10.51387/23-NEJSDS50.
[7] 
Qi, Y. and Chien, P. (2023). Construction of Supersaturated Designs with Small Coherence for Variable Selection. The New England Journal of Statistics in Data Science 1–11. https://doi.org/10.51387/23-NEJSDS34.
[8] 
Shen, S., Mao, H., Zhang, Z., Chen, Z., Nie, K. and Deng, X. (2023). Clustering-Based Imputation for Dropout Buyers in Large-Scale Online Experimentation. The New England Journal of Statistics in Data Science 1–11. https://doi.org/10.51387/23-NEJSDS33.
[9] 
Shi, C., Chiu, A. K. and Xu, H. (2023). Evaluating Designs for Hyperparameter Tuning in Deep Neural Networks. The New England Journal of Statistics in Data Science 1–8. https://doi.org/10.51387/23-NEJSDS26.
[10] 
Singh, R. and Stufken, J. (2023). Subdata Selection With a Large Number of Variables. The New England Journal of Statistics in Data Science 1–13. https://doi.org/10.51387/23-NEJSDS36.
[11] 
Zhu, H., Yu, J., Lai, D. and Wang, L. (2023). Seamless Clinical Trials with Doubly Adaptive Biased Coin Designs. The New England Journal of Statistics in Data Science 1–9. https://doi.org/10.51387/23-NEJSDS25.

Full article PDF XML
Full article PDF XML

Copyright
© 2023 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Metrics
since December 2021
293

Article info
views

98

Full article
views

210

PDF
downloads

46

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy