Editorial. Design and Analysis of Experiments for Data Science
Volume 1, Issue 3 (2023), pp. 297–298
Pub. online: 27 November 2023
Type: Editorial
Open Access
Published
27 November 2023
27 November 2023
References
Bui, T., Steiner, S. and Stevens, N. (2023). General Additive Network Effect Models. The New England Journal of Statistics in Data Science 1–19. https://doi.org/10.51387/23-NEJSDS29.
Chen, P.-Y., Chen, R.-B. and Wong, W. K. (2023). Particle Swarm Optimization for Finding Efficient Longitudinal Exact Designs for Nonlinear Models. The New England Journal of Statistics in Data Science 1–15. https://doi.org/10.51387/23-NEJSDS45.
Hao, S., Yang, M. and Zheng, W. (2023). Algorithm-Based Optimal and Efficient Exact Experimental Designs for Crossover and Interference Models. The New England Journal of Statistics in Data Science 1–10. https://doi.org/10.51387/23-NEJSDS41.
Kang, L., Deng, X. and Jin, R. (2023). Bayesian D-Optimal Design of Experiments with Quantitative and Qualitative Responses. The New England Journal of Statistics in Data Science 1–15. https://doi.org/10.51387/23-NEJSDS30.
Li, Y., Zhang, Q., Khademi, A. and Yang, B. (2023). Optimal Design of Controlled Experiments for Personalized Decision Making in the Presence of Observational Covariates. The New England Journal of Statistics in Data Science 1–8. https://doi.org/10.51387/23-NEJSDS22.
Pronzato, L. and Rendas, M.-J. (2023). Validation of Machine Learning Prediction Models. The New England Journal of Statistics in Data Science 1–21. https://doi.org/10.51387/23-NEJSDS50.
Qi, Y. and Chien, P. (2023). Construction of Supersaturated Designs with Small Coherence for Variable Selection. The New England Journal of Statistics in Data Science 1–11. https://doi.org/10.51387/23-NEJSDS34.
Shen, S., Mao, H., Zhang, Z., Chen, Z., Nie, K. and Deng, X. (2023). Clustering-Based Imputation for Dropout Buyers in Large-Scale Online Experimentation. The New England Journal of Statistics in Data Science 1–11. https://doi.org/10.51387/23-NEJSDS33.
Shi, C., Chiu, A. K. and Xu, H. (2023). Evaluating Designs for Hyperparameter Tuning in Deep Neural Networks. The New England Journal of Statistics in Data Science 1–8. https://doi.org/10.51387/23-NEJSDS26.
Singh, R. and Stufken, J. (2023). Subdata Selection With a Large Number of Variables. The New England Journal of Statistics in Data Science 1–13. https://doi.org/10.51387/23-NEJSDS36.
Zhu, H., Yu, J., Lai, D. and Wang, L. (2023). Seamless Clinical Trials with Doubly Adaptive Biased Coin Designs. The New England Journal of Statistics in Data Science 1–9. https://doi.org/10.51387/23-NEJSDS25.