The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 2 (2024)
  4. The Anytime-Valid Logrank Test: Error Co ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

The Anytime-Valid Logrank Test: Error Control Under Continuous Monitoring with Unlimited Horizon
Volume 2, Issue 2 (2024), pp. 190–214
Judith ter Schure   Muriel F. Pérez-Ortiz   Alexander Ly     All authors (4)

Authors

 
Placeholder
https://doi.org/10.51387/24-NEJSDS65
Pub. online: 29 May 2024      Type: Methodology Article      Open accessOpen Access
Area: Statistical Methodology

Accepted
23 January 2024
Published
29 May 2024

Abstract

We introduce the anytime-valid (AV) logrank test, a version of the logrank test that provides type-I error guarantees under optional stopping and optional continuation. The test is sequential without the need to specify a maximum sample size or stopping rule, and allows for cumulative meta-analysis with type-I error control. The method can be extended to define anytime-valid confidence intervals. The logrank test is an instance of the martingale tests based on E-variables that have been recently developed. We demonstrate type-I error guarantees for the test in a semiparametric setting of proportional hazards, show explicitly how to extend it to ties and confidence sequences and indicate further extensions to the full Cox regression model. Using a Gaussian approximation on the logrank statistic, we show that the AV logrank test (which itself is always exact) has a similar rejection region to O’Brien-Fleming α-spending but with the potential to achieve $100\% $ power by optional continuation. Although our approach to study design requires a larger sample size, the expected sample size is competitive by optional stopping.

References

[1] 
Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. Statistical Models Based on Counting Processes. Springer (1993). ISBN 978-1-4612-4348-9. Google-Books-ID: fh3SBwAAQBAJ.
[2] 
Breiman, L. Optimal gambling systems for favorable games. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, vol. 4.1, pp. 65–79. University of California Press (January 1961). MR0135630. https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on/chapter/Optimal-Gambling-Systems-for-Favorable-Games/bsmsp/1200512159.
[3] 
Cox, D. R. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological) 34(2) 187–220 (1972). ISSN 0035-9246. Publisher: [Royal Statistical Society, Wiley]. https://www.jstor.org/stable/2985181. MR0341758
[4] 
Cox, D. R. Partial likelihood. Biometrika 62(2) 269–276 (1975). ISSN 0006-3444. Publisher: [Oxford University Press, Biometrika Trust]. https://doi.org/10.2307/2335362. MR0400509
[5] 
Darling, D. A. and Robbins, H. Confidence sequences for mean, variance, and median. Proceedings of the National Academy of Sciences 58(1) 66–68 (July 1967). Publisher: Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.58.1.66. MR0215406
[6] 
Dawid, A. P. Present position and potential developments: some personal views: statistical theory: the prequential approach. Journal of the Royal Statistical Society. Series A (General) 147(2) 278–292 (1984). ISSN 0035-9238. Publisher: [Royal Statistical Society, Wiley]. https://doi.org/10.2307/2981683. MR0763811
[7] 
Efron, B. The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association 72(359) 557–565 (September 1977). ISSN 0162-1459. https://doi.org/10.1080/01621459.1977.10480613. MR0451514
[8] 
Fleming, T. R. and Harrington, D. P. Counting Processes and Survival Analysis. John Wiley & Sons (September 2011). ISBN 978-1-118-15066-5. MR1100924
[9] 
Grünwald, P. D., De Heide, R. and Koolen, W. Safe testing. Journal of the Royal Statistical Society, Series B (2024). With Discussion. arXiv:1906.07801.
[10] 
Grünwald, P. D. and Mehta, N. A. A tight excess risk bound via a unified PAC-Bayesian–Rademacher–Shtarkov–MDL complexity. In Proceedings of the 30th International Conference on Algorithmic Learning Theory, pp. 433–465. PMLR (March 2019). ISSN 2640-3498. https://proceedings.mlr.press/v98/grunwald19a.html. MR3932854
[11] 
Grünwald, P. D. and Roos, T. Minimum description length revisited. International Journal of Mathematics for Industry 11(01) 1930001 (December 2019). ISSN 2661-3352. Publisher: World Scientific Publishing Co. https://doi.org/10.1142/s2661335219300018. MR4090761
[12] 
Howard, S. R., Ramdas, A., McAuliffe, J. and Sekhon, J. Time-uniform Chernoff bounds via nonnegative supermartingales. Probability Surveys 17 257–317 (2020). https://doi.org/10.1214/18-PS321. MR4100718
[13] 
Howard, S. R., Ramdas, A., McAuliffe, J. and Sekhon, J. Time-uniform, nonparametric, nonasymptotic confidence sequences. The Annals of Statistics 49(2) 1055–1080 (2021). https://doi.org/10.1214/20-aos1991. MR4255119
[14] 
Kim, K. and DeMets, D. L. Confidence intervals following group sequential tests in clinical trials. Biometrics 43(4) 857–864 (1987). ISSN 0006-341X. Publisher: [Wiley, International Biometric Society]. https://doi.org/10.2307/2531539. MR0920470
[15] 
Klein, J. P. and Moeschberger, M. L. Survival Analysis: Techniques for Censored and Truncated Data. Statistics for Biology and Health. Springer, New York, NY (2003). ISBN 978-0-387-95399-1, 978-0-387-21645-4. https://doi.org/10.1007/b97377
[16] 
Tze Leung Lai. On confidence sequences. The Annals of Statistics 4(2) 265–280 (March 1976). ISSN 0090-5364, 2168-8966. Publisher: Institute of Mathematical Statistics. https://doi.org/10.1214/aos/1176343406. MR0395103.
[17] 
Li, J. and Barron, A. Mixture density estimation. In Advances in Neural Information Processing Systems, vol. 12. MIT Press (1999). https://papers.nips.cc/paper/1999/hash/a0f3601dc682036423013a5d965db9aa-Abstract.html.
[18] 
Li, Q. (J.) Estimation of Mixture Models. PhD Thesis, Yale University, New Haven, CT, USA, 1999. MR2699116
[19] 
Lindon, M. and Malek, A. Anytime-valid inference for multinomial count data. In (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh, eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 2817–2831. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/12f3bd5d2b7d93eadc1bf508a0872dc2-Paper-Conference.pdf.
[20] 
Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports 50(3) 163–170 (March 1966). ISSN 0069-0112.
[21] 
Mehrotra, D. V. and Roth, A. J. Relative risk estimation and inference using a generalized logrank statistic. Statistics in Medicine 20(14) 2099–2113 (2001). ISSN 1097-0258. https://doi.org/10.1002/sim.854.
[22] 
O’Brien, P. C. and Fleming, T. R. A multiple testing procedure for clinical trials. Biometrics 35(3) 549–556 (1979). ISSN 0006-341X. Publisher: [Wiley, International Biometric Society]. https://doi.org/10.2307/2530245
[23] 
Peto, R. Discussion of: Regression models and life tables, by DR Cox. Journal of the Royal Statistical Society, Series B 26 205–207 (1972). MR0341758
[24] 
Peto, R. and Peto, J. Asymptotically efficient rank invariant test procedures. Journal of the Royal Statistical Society. Series A (General) 135(2) 185–207 (1972). ISSN 0035-9238. Publisher: [Royal Statistical Society, Wiley]. https://doi.org/10.2307/2344317
[25] 
Pocock, S. J. Group sequential methods in the design and analysis of clinical trials. Biometrika 64(2) 191–199 (August 1977). ISSN 0006-3444. https://doi.org/10.1093/biomet/64.2.191
[26] 
Pocock, S. J. Current controversies in data monitoring for clinical trials. Clinical Trials 3(6) 513–521 (December 2006). ISSN 1740-7745. Publisher: SAGE Publications https://doi.org/10.1177/1740774506073467.
[27] 
Proschan, M. A., Lan, K. K. G. and Turk Wittes, J. Statistical Monitoring of Clinical Trials: A Unified Approach. Springer (December 2006). ISBN 978-0-387-44970-8. Google-Books-ID: BCu8c8NwXxcC.
[28] 
Ramdas, A., Ruf, J., Larsson, M. and Koolen, W. Admissible anytime-valid sequential inference must rely on nonnegative martingales. arXiv:2009.03167 [math, stat] (September 2020).
[29] 
Ramdas, A., Grünwald, P., Vovk, V. and Shafer, G. Game-theoretic statistics and safe anytime-valid inference. Statist. Sci. 38(4) 576–601 (2023). ISSN 0883-4237. https://doi.org/10.1214/23-sts894. MR4665027
[30] 
Robbins, H. and Siegmund, D. The expected sample size of some tests of power one. The Annals of Statistics 2(3) 415–436 (May 1974). ISSN 0090-5364. Publisher: Institute of Mathematical Statistics. https://doi.org/10.1214/aos/1176342704. MR0448750
[31] 
Robbins, H. and Siegmund, D. Boundary crossing probabilities for the Wiener process and sample sums. The Annals of Mathematical Statistics 41(5) 1410–1429 (October 1970). ISSN 0003-4851, 2168-8990. Publisher: Institute of Mathematical Statistics. https://doi.org/10.1214/aoms/1177696787. MR0277059
[32] 
Schoenfeld, D. The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika 68(1) 316–319 (1981). ISSN 0006-3444. Publisher: [Oxford University Press, Biometrika Trust]. https://doi.org/10.1093/biomet/68.1.316. MR0614969
[33] 
ter Schure, J. A. (Judith), Ly, A., Belin, L., Benn, C. S., Bonten, M. J. M., Cirillo, J. D., Damen, J. A. A., Fronteira, I., Hendriks, K. D., Junqueira-Kipnis, A. P., Kipnis, A., Launay, O., Mendez-Reyes, J. E., Netea, M. G., Nielsen, S., Upton, C. M., van den Hoogen, G., Weehuizen, J. M., Grünwald, P. D. and van Werkhoven, C. H. (Henri). Bacillus Calmette-Guérin vaccine to reduce COVID-19 infections and hospitalisations in healthcare workers: a living systematic review and prospective ALL-IN meta-analysis of individual participant data from randomised controlled trials. medRxiv (2022). https://doi.org/10.1101/2022.12.15.22283474
[34] 
ter Schure, J. and Grünwald, P. Accumulation Bias in metaanalysis: the need to consider time in error control [version 1; peer review: 2 approved]. F1000Research, 8:962, June 2019. ISSN 2046-1402. https://f1000research.com/articles/8-962/v1.
[35] 
ter Schure, J. and Grünwald, P. ALL-IN meta-analysis: breathing life into living systematic reviews [version 1; peer review: 1 approved, 2 approved with reservations]. F1000Research, page 11:549, 2022. https://f1000research.com/articles/11-549.
[36] 
Sellke, T. and Siegmund, D. Sequential analysis of the proportional hazards model. Biometrika 70(2) 315–326 (1983). Publisher: Oxford University Press. https://doi.org/10.1093/biomet/70.2.315. MR0712020
[37] 
Shafer, G. Testing by betting: A strategy for statistical and scientific communication. Journal of the Royal Statistical Society Series A 184(2) 407–431 (2021). Publisher: Royal Statistical Society. https://doi.org/10.1111/rssa.12647. MR4255905
[38] 
Slud, E. V. Sequential linear rank tests for two-sample censored survival data. Annals of Statistics 12(2) 551–571 (June 1984). ISSN 0090-5364, 2168-8966. Publisher: Institute of Mathematical Statistics. https://doi.org/10.1214/aos/1176346505. MR0740911
[39] 
Slud, E. V. Partial likelihood for continuous-time stochastic processes. Scandinavian Journal of Statistics 19(2) 97–109 (1992). ISSN 0303-6898. Publisher: [Board of the Foundation of the Scandinavian Journal of Statistics, Wiley]. https://www.jstor.org/stable/4616231. MR1173593
[40] 
Tse, T. and Davison, A. C. A note on universal inference. Stat 11(1) e501 (2022). https://doi.org/10.1002/sta4.501. MR4529724
[41] 
Tsiatis, A. A. A large sample study of Cox’s regression model. The Annals of Statistics 9(1) 93–108 (January 1981). ISSN 0090-5364, 2168-8966. Publisher: Institute of Mathematical Statistics. https://doi.org/10.1214/aos/1176345335
[42] 
Tsiatis, A. A. Group Sequential Methods for Survival Analysis with Staggered Entry. Institute of Mathematical Statistics (1982). ISBN 978-0-940600-02-7. https://doi.org/10.1214/lnms/1215464854. MR0734207
[43] 
Turner, R., Ly, A., Perez-Ortiz, M. F., ter Schure, J. and Grunwald, P. D. safestats: Safe Anytime-Valid Inference, November 2022. https://CRAN.R-project.org/package=safestats.
[44] 
Ville, J. Etude critique de la notion de collectif. Gauthier-Villars (1939). MR3533075
[45] 
Wald, A. Sequential Analysis. Wiley, New York (1947). MR0020764
[46] 
Wang, R. and Ramdas, A. False discovery rate control with e-values. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 84(3) 822–852 (2022). MR4460577
[47] 
Wasserman, L., Ramdas, A. and Balakrishnan, S. Universal inference. Proceedings of the National Academy of Sciences 117(29) 16880–16890 (July 2020). ISSN 0027-8424, 1091-6490. Publisher: National Academy of Sciences Section: Physical Sciences. https://doi.org/10.1073/pnas.1922664117
[48] 
Waudby-Smith, I. and Ramdas, A. Confidence sequences for sampling without replacement. In Advances in Neural Information Processing Systems, vol. 33, pp. 20204–20214 (2020).
[49] 
Waudby-Smith, I. and Ramdas, A. Estimating means of bounded random variables by betting. Journal of the Royal Statistical Society Series B: Statistical Methodology (2023). ISSN 1369-7412. https://doi.org/10.1093/jrsssb/qkad009. MR4716192
[50] 
Waudby-Smith, I., Arbour, D., Sinha, R., Kennedy, E. H. and Ramdas, A. Time-uniform central limit theory and asymptotic confidence sequences. arXiv:2103.06476 (2021).
[51] 
Wu, J. and Xiong, X. Group sequential survival trial design and monitoring using the log-rank test. Statistics in Biopharmaceutical Research 9(1) 35–43 (January 2017). https://doi.org/10.1080/19466315.2016.1189355

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Alpha saving Exact Interim analysis Optional stopping Proportional hazards

Metrics
since December 2021
406

Article info
views

111

Full article
views

201

PDF
downloads

34

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy