Investigating Ecological Interactions in the Tumor Microenvironment Using Joint Species Distribution Models for Point Patterns
Volume 2, Issue 3 (2024), pp. 296–310
Pub. online: 19 June 2024
Type: Cancer Research
Open Access
Accepted
23 April 2024
23 April 2024
Published
19 June 2024
19 June 2024
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that involves interactions between different cell types, such as cancer cells, immune cells, and stromal cells. These interactions can promote or inhibit tumor growth and affect response to therapy. Multitype Gibbs point process (MGPP) models are statistical models used to study the spatial distribution and interaction of different types of objects, such as the distribution of cell types in a tissue sample. Such models are potentially useful for investigating the spatial relationships between different cell types in the tumor microenvironment, but so far studies of the TME using cell-resolution imaging have been largely limited to spatial descriptive statistics. However, MGPP models have many advantages over descriptive statistics, such as uncertainty quantification, incorporation of multiple covariates and the ability to make predictions. In this paper, we describe and apply a previously developed MGPP method, the saturated pairwise interaction Gibbs point process model, to a publicly available multiplexed imaging dataset obtained from colorectal cancer patients. Importantly, we show how these methods can be used as joint species distribution models (JSDMs) to precisely frame and answer many relevant questions related to the ecology of the tumor microenvironment.
References
Boyk, A., Wojas-Krawczyk, K., Krawczyk, P., Milanowski and Tumor, J. (June 2022). Microenvironment—A Short Review of Cellular and Interaction Diversity. Biology 11(6), 929. Publisher: Multidisciplinary Digital Publishing Institute issn: 2079-7737. https://www.mdpi.com/2079-7737/11/6/929 (2023).
Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G. and Amelio, I. (Jan. 24, 2018) The hypoxic tumour microenvironment. Oncogenesis 7(1), 1–13. Publisher: Nature Publishing Group, issn: 2157-9024. https://www.nature.com/articles/s41389-017-0011-9 (2023).
Li, Y., Zhao, L., Li, Hypoxia, X. -F. and the Tumor Microenvironment. (Aug. 5, 2021). Technology in Cancer Research & Treatment 20, 15330338211036304. issn: 1533-0346. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358492/ (2023).
Tan, K., Naylor and Tumour, M. J. (May 13, 2022). Microenvironment-Immune Cell Interactions Influencing Breast Cancer Heterogeneity and Disease Progression. Frontiers in Oncology 12, 876451. issn: 2234-943X. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138702/ (2023).
Sun, Y. (Sept. 28, 2016). Tumor microenvironment and cancer therapy resistance. Cancer Letters 380, 205–215. issn: 0304-3835. https://www.sciencedirect.com/science/article/pii/S0304383515005121 (2023).
Ni, Y. et al. (May 20, 2021). The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Frontiers in Cell and Developmental Biology 9, 637675. issn: 2296-634X. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173135/ (2023).
Li, X. et al. (Oct. 7, 2021). Crosstalk Between the Tumor Microenvironment and Cancer Cells: A Promising Predictive Biomarker for Immune Checkpoint Inhibitors. Frontiers in Cell and Developmental Biology 9, 738373. issn: 2296-634X. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529050/ (2023).
Pienta, K. J., McGregor, N., Axelrod, R. and Axelrod, D. E. (Dec. 2008). Ecological Therapy for Cancer: Defining Tumors Using an Ecosystem Paradigm Suggests New Opportunities for Novel Cancer Treatments. Translational Oncology 1, 158–164. issn: 1936-5233. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582164/ (2021).
Adler, F. R., Amend, S. R., Baratchart, E. and Whelan, C. J. (Feb. 10, 2022). Editorial: From Ecology to Cancer Biology and Back Again. Frontiers in Ecology and Evolution 10, 840375. issn: 2296-701X. https://www.frontiersin.org/articles/10.3389/fevo.2022.840375/full (2022).
Somarelli, J. A. (Apr. 28, 2021). The Hallmarks of Cancer as Ecologically Driven Phenotypes. Frontiers in Ecology and Evolution 9, 661583. issn: 2296-701X. https://www.frontiersin.org/articles/10.3389/fevo.2021.661583/full (2022).
Thomas, F., Roche, B., Giraudeau, M., Hamede, R. and Ujvari, B. (2020). The interface between ecology, evolution, and cancer: More than ever a relevant research direction for both oncologists and ecologists. Evolutionary Applications 13, 1545–1549. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/eva.13031, issn: 1752-4571. https://onlinelibrary.wiley.com/doi/abs/10.1111/eva.13031 (2021).
Reynolds, B. A., Oli, M. W. and Oli, M. K. (2020). Eco-oncology: Applying ecological principles to understand and manage cancer. Ecology and Evolution 10, 8538–8553. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.6590, issn: 2045-7758. https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6590 (2021).
Van Dam, S., Baars, M. J. D., Vercoulen and Multiplex, Y. (Jan. 2022). Tissue Imaging: Spatial Revelations in the Tumor Microenvironment. Cancers 14(13), 3170. Publisher: Multidisciplinary Digital Publishing Institute, issn: 2072-6694. https://www.mdpi.com/2072-6694/14/13/3170 (2023).
Black, S. et al. (Aug. 2021). CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nature Protocols 16, 3802–3835. issn: 1750-2799. https://www.nature.com/articles/s41596-021-00556-8 (2021).
Baddeley, A., Turner and spatstat, R. (Jan. 26, 2005). An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software 12, 1–42. issn: 1548-7660. https://doi.org/10.18637/jss.v012.i06 (2023).
Fortin, M. -J., Dale, M. R. and Ver Hoef, J. M. (2016). In Wiley StatsRef: Statistics Reference Online, 1–13. John Wiley & Sons, Ltd, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07766.pub2, isbn: 978-1-118-44511-2. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07766.pub2 (2023).
Ben-Said, M. (Aug. 5, 2021). Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecological Processes 10, 56. issn: 2192-1709. https://doi.org/10.1186/s13717-021-00314-4 (2023).
Velázquez, E., Martínez, I., Getzin, S., Moloney, K. A. and Wiegand, T. (2016). An evaluation of the state of spatial point pattern analysis in ecology. Ecography. 39, 1042–1055. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ecog.01579, issn: 1600-0587. https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.01579 (2023).
Canete, N. P. et al. (May 26, 2022). spicyR: spatial analysis of in situ cytometry data in R. Bioinformatics 38, 3099–3105. issn: 1367-4803. https://doi.org/10.1093/bioinformatics/btac268 (2023).
Vu, T. et al. (June 15, 2022). SPF: A spatial and functional data analytic approach to cell imaging data. PLOS Computational Biology 18, e1009486. Publisher: Public Library of Science, issn: 1553-7358. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009486 (2023).
Creed, J. H. et al. (Dec. 7, 2021). spatialTIME and iTIME: R package and Shiny application for visualization and analysis of immunofluorescence data. Bioinformatics 37, 4584–4586. issn: 1367-4803. https://doi.org/10.1093/bioinformatics/btab757 (2023).
Behanova, A., Klemm, A. and Wählby, C. (Jan. 28, 2022). Spatial Statistics for Understanding Tissue Organization. Frontiers in Physiology 13, 832417. issn: 1664-042X. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837270/ (2023).
Yuan, Z. et al. (Nov. 28, 2022). SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nature Communications 13(1), 7330. Publisher: Nature Publishing Group, issn: 2041-1723. https://www.nature.com/articles/s41467-022-34867-5 (2023).
Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. and Saez-Rodriguez, J. (Apr. 14, 2022). Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biology 23, 97. issn: 1474-760X. https://doi.org/10.1186/s13059-022-02663-5 (2023).
Galon, J. et al. (Oct. 3, 2012). Cancer classification using the Immunoscore: a worldwide task force. Journal of Translational Medicine 10, 205. issn: 1479-5876. https://doi.org/10.1186/1479-5876-10-205 (2023).
Allam, M. et al. (Sept. 1, 2022). Spatially variant immune infiltration scoring in human cancer tissues. npj Precision Oncology 6(1), 1–21. Publisher: Nature Publishing Group. issn: 2397-768X. https://www.nature.com/articles/s41698-022-00305-4 (2023).
Tikhonov, G. et al. (2020). Joint species distribution modelling with the r-package Hmsc. Methods in Ecology and Evolution 11, 442–447. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13345, issn: 2041-210X. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13345 (2023).
Tikhonov, G., Abrego, N., Dunson, D. and Ovaskainen, O. (2017). Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods in Ecology and Evolution 8, 443–452. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12723, issn: 2041-210X. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12723 (2023).
Ovaskainen, O., Roy, D. B., Fox, R. and Anderson, B. J. (2016). Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution 7, 428–436. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12502, issn: 2041-210X. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12502 (2023).
Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. and McCarthy, M. A. (2021). Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution 12, 394–404. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13518, issn: 2041-210X. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13518 (2023).
Clark, J. S., Gelfand, A. E., Woodall, C. W. and Zhu, K. (2014). More than the sum of the parts: forest climate response from joint species distribution models. Ecological Applications 24, 990–999. _eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/13-1015.1, issn: 1939-5582. https://onlinelibrary.wiley.com/doi/abs/10.1890/13-1015.1 (2023).
Stoyan, D. and Penttinen, A. (2000). Recent Applications of Point Process Methods in Forestry Statistics. Statistical Science 15, 61–78. Publisher: Institute of Mathematical Statistics, issn: 0883-4237. https://www.jstor.org/stable/2676677 (2023). https://doi.org/10.1214/ss/1009212674. MR1842237
Law, R. et al. (2009). Ecological information from spatial patterns of plants: insights from point process theory. Journal of Ecology 97, 616–628. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2745.2009.01510.x, issn: 1365-2745. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2745.2009.01510.x (2023).
Illian, J. B. et al. (2013). Fitting complex ecological point process models with integrated nested Laplace approximation. Methods in Ecology and Evolution 4, 305–315. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210x.12017, issn: 2041-210X. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210x.12017 (2023).
Illian, J. B., Møller, J. and Waagepetersen, R. P. (Sept. 1, 2009). Hierarchical spatial point process analysis for a plant community with high biodiversity. Environmental and Ecological Statistics 16, 389–405. issn: 1573-3009. https://doi.org/10.1007/s10651-007-0070-8 (2023). https://doi.org/10.1007/s10651-007-0070-8. MR2749847
Renner, I. W. et al. (2015). Point process models for presence-only analysis. Methods in Ecology and Evolution 6, 366–379. _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12352, issn: 2041-210X. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12352 (2023).
Rajala, T., Murrell, D. J., Olhede and Detecting, S. C. (Nov. 1, 2018). Multivariate Interactions in Spatial Point Patterns with Gibbs Models and Variable Selection. Journal of the Royal Statistical Society Series C: Applied Statistics 67, 1237–1273. issn: 0035-9254, 1467-9876. https://academic.oup.com/jrsssc/article/67/5/1237/7058395 (2023). https://doi.org/10.1111/rssc.12281. MR3873707
Flint, I., Golding, N., Vesk, P., Wang, Y. and Xia, A. (Nov. 1, 2022). The Saturated Pairwise Interaction Gibbs Point Process as a Joint Species Distribution Model. Journal of the Royal Statistical Society Series C: Applied Statistics 71, 1721–1752. issn: 0035-9254. https://doi.org/10.1111/rssc.12596 (2023). https://doi.org/10.1111/rssc.12596. MR4511129
Goltsev, Y. et al. (Aug. 9, 2018). Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174, 968–981.e15. issn: 0092-8674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086938/ (2023).
Geyer, C. (1999). (O. Barndorff-Nielsen, W. Kendall and M. Van Lieshout, eds.) In Stochastic Geometry: Likelihood and Computation, chapter 3. Monographs on Statistics and Applied Probability 80, 79–140. Chapman and Hall/CRC, isbn: 978-0-203-73827–978-0-203-6. https://doi.org/10.1007/978-1-4899-3210-5. MR1317097
Baddeley, A. J. and van Lieshout, M. N. M. (Dec. 1, 1995). Area-interaction point processes. Annals of the Institute of Statistical Mathematics 47, 601–619. issn: 1572-9052. https://doi.org/10.1007/BF01856536 (2024). https://doi.org/10.1007/BF01856536. MR1370279
Illian, J. B. and Hendrichsen, D. K. (2010). Gibbs point process models with mixed effects. Environmetrics 21, 341–353. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/env.1008, issn: 1099-095X. https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1008 (2024). https://doi.org/10.1002/env.1008. MR2842247
King, R., Illian, J. B., King, S. E., Nightingale, G. F. and Hendrichsen, D. K. (Dec. 1, 2012). A Bayesian Approach to Fitting Gibbs Processes with Temporal Random Effects. Journal of Agricultural, Biological, and Environmental Statistics 17. 601–622. issn: 1537-2693. https://doi.org/10.1007/s13253-012-0111-0 (2024). https://doi.org/10.1007/s13253-012-0111-0. MR3041887
Baddeley, A., Coeurjolly, J. -F., Rubak, E. and Waagepetersen, R. (2014). Logistic regression for spatial Gibbs point processes. Biometrika 101, 377–392. Publisher: [Oxford University Press, Biometrika Trust], issn: 0006-3444. https://www.jstor.org/stable/43305620 (2024). https://doi.org/10.1093/biomet/ast060. MR3215354
Spiekerman, C. F., Lin and Marginal, D. Y. (1998). Regression Models for Multivariate Failure Time Data. Journal of the American Statistical Association 93, 1164–1175. Publisher: [American Statistical Association, Taylor & Francis, Ltd.], issn: 0162-1459. https://www.jstor.org/stable/2669859 (2023). https://doi.org/10.2307/2669859. MR1649210