In addition to scientific questions, clinical trialists often explore or require other design features, such as increasing the power while controlling the type I error rate, minimizing unnecessary exposure to inferior treatments, and comparing multiple treatments in one clinical trial. We propose implementing adaptive seamless design (ASD) with response adaptive randomization (RAR) to satisfy various clinical trials’ design objectives. However, the combination of ASD and RAR poses a challenge in controlling the type I error rate. In this paper, we investigated how to utilize the advantages of the two adaptive methods and control the type I error rate. We offered the theoretical foundation for this procedure. Numerical studies demonstrated that our methods could achieve efficient and ethical objectives while controlling the type I error rate.
Clinical trials usually involve sequential patient entry. When designing a clinical trial, it is often desirable to include a provision for interim analyses of accumulating data with the potential for stopping the trial early. We review Bayesian sequential clinical trial designs based on posterior probabilities, posterior predictive probabilities, and decision-theoretic frameworks. A pertinent question is whether Bayesian sequential designs need to be adjusted for the planning of interim analyses. We answer this question from three perspectives: a frequentist-oriented perspective, a calibrated Bayesian perspective, and a subjective Bayesian perspective. We also provide new insights into the likelihood principle, which is commonly tied to statistical inference and decision making in sequential clinical trials. Some theoretical results are derived, and numerical studies are conducted to illustrate and assess these designs.