The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 1 (2024)
  4. Dietary Patterns and Cancer Risk: An Ove ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Dietary Patterns and Cancer Risk: An Overview with Focus on Methods
Volume 2, Issue 1 (2024), pp. 30–53
Valeria Edefonti 1,2   Roberta De Vito 3,4,5   Maria Parpinel 6     All authors (4)

Authors

 
Placeholder
https://doi.org/10.51387/23-NEJSDS35
Pub. online: 29 May 2023      Type: Methodology Article      Open accessOpen Access
Area: Cancer Research

1 Branch of Medical Statistics, Biometry, and Epidemiology “G. A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano.
2 Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico.
3 Department of Biostatistics, Brown University.
4 Data Science Initiative, Brown University.
5 Center for Computational Molecular Biology, Brown University.
6 Department of Medicine - DAME, Università degli Studi di Udine.

Accepted
28 April 2023
Published
29 May 2023

Notes

to Adriano Decarli, Honorary Professor of Medical Statistics, Università degli Studi di Milano

Abstract

Traditionally, research in nutritional epidemiology has focused on specific foods/food groups or single nutrients in their relation with disease outcomes, including cancer. Dietary pattern analysis have been introduced to examine potential cumulative and interactive effects of individual dietary components of the overall diet, in which foods are consumed in combination. Dietary patterns can be identified by using evidence-based investigator-defined approaches or by using data-driven approaches, which rely on either response independent (also named “a posteriori” dietary patterns) or response dependent (also named “mixed-type” dietary patterns) multivariate statistical methods. Within the open methodological challenges related to study design, dietary assessment, identification of dietary patterns, confounding phenomena, and cancer risk assessment, the current paper provides an updated landscape review of novel methodological developments in the statistical analysis of a posteriori/mixed-type dietary patterns and cancer risk. The review starts from standard a posteriori dietary patterns from principal component, factor, and cluster analyses, including mixture models, and examines mixed-type dietary patterns from reduced rank regression, partial least squares, classification and regression tree analysis, and least absolute shrinkage and selection operator. Novel statistical approaches reviewed include Bayesian factor analysis with modeling of sparsity through shrinkage and sparse priors and frequentist focused principal component analysis. Most novelties relate to the reproducibility of dietary patterns across studies where potentialities of the Bayesian approach to factor and cluster analysis work at best.

References

[1] 
Ascherio, A., Stampfer, M. J., Colditz, G. A., Rimm, E. B., Litin, L. and Willett, W. C. (1992). Correlations of vitamin A and E intakes with the plasma concentrations of carotenoids and tocopherols among American men and women. J Nutr 122(9) 1792–1801.
[2] 
Assi, N., Moskal, A., Slimani, N., Viallon, V., Chajes, V., Freisling, H., Monni, S., Knueppel, S., Förster, J., Weiderpass, E. and others. (2016). A treelet transform analysis to relate nutrient patterns to the risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 19(2) 242–254.
[3] 
Avalos-Pacheco, A., Rossell, D. and Savage, R. S. (2022). Heterogeneous large datasets integration using Bayesian factor regression. Bayesian Anal 17(1) 33–66. https://doi.org/10.1214/20-ba1240. MR4377136
[4] 
Balder, H. F., Virtanen, M., Brants, H. A., Krogh, V., Dixon, L. B., Tan, F., Mannisto, S., Bellocco, R., Pietinen, P., Wolk, A. and others. (2003). Common and country-specific dietary patterns in four European cohort studies. J Nutr 133(12) 4246–4251.
[5] 
Bédard, A., Garcia-Aymerich, J., Sanchez, M., Le Moual, N., Clavel-Chapelon, F., Boutron-Ruault, M. -C., Maccario, J. and Varraso, R. (2015). Confirmatory factor analysis compared with principal component analysis to derive dietary patterns: a longitudinal study in adult women. J Nutr 145(7) 1559–1568.
[6] 
Bertuccio, P., Rosato, V., Andreano, A., Ferraroni, M., Decarli, A., Edefonti, V. and La Vecchia, C. (2013). Dietary patterns and gastric cancer risk: a systematic review and meta-analysis. Ann Oncol 24(6) 1450–1458.
[7] 
Bhattacharya, A. and Dunson, D. B. (2011). Sparse Bayesian infinite factor models. Biometrika 98(2) 291–306. https://doi.org/10.1093/biomet/asr013. MR2806429
[8] 
Biesbroek, S., van der A, D. L., Brosens, M. C., Beulens, J. W., Verschuren, W. M., van der Schouw, Y. T. and Boer, J. M. (2015). Identifying cardiovascular risk factor-related dietary patterns with reduced rank regression and random forest in the EPIC-NL cohort. Am J Clin Nutr 102(1) 146–154.
[9] 
Blashfield, R. K. and Aldenderfer, M. S. (1978). The literature on cluster analysis. Multivariate Behav Res 13(3) 271–295.
[10] 
Bravi, F., Lee, Y. q. C. A., Hashibe, M., Boffetta, P., Conway, D. I., Ferraroni, M., La Vecchia, C., Edefonti, V. and INHANCE Consortium investigators (2021). Lessons learned from the INHANCE consortium: An overview of recent results on head and neck cancer. Oral Dis 27(1) 73–93.
[11] 
Breiman, L. (2017) Classification and regression trees. Routledge.
[12] 
Cade, J., Thompson, R., Burley, V. and Warm, D. (2002). Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5(4) 567–587.
[13] 
Camp, N. J. and Slattery, M. L. (2002). Classification tree analysis: a statistical tool to investigate risk factor interactions with an example for colon cancer (United States). Cancer Cause Control 13(9) 813–823.
[14] 
Canuto, R., Camey, S., Gigante, D. P., Menezes, A. and Olinto, M. T. A. (2010). Focused principal component analysis: a graphical method for exploring dietary patterns. Cadernos de Saúde Pública 26 2149–2156.
[15] 
Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q. and West, M. (2008). High-dimensional sparse factor modeling: applications in gene expression genomics. J Am Stat Assoc 103(484) 1438–1456. https://doi.org/10.1198/016214508000000869. MR2655722
[16] 
Castelló, A., Buijsse, B., Martín, M., Ruiz, A., Casas, A. M., Baena-Cañada, J. M., Pastor-Barriuso, R., Antolín, S., Ramos, M., Muñoz, M. and others. (2016). Evaluating the applicability of data-driven dietary patterns to independent samples with a focus on measurement tools for pattern similarity. J Acad Nutr Diet 116(12) 1914–1924.
[17] 
Castelló, A., Lope, V., Vioque, J., Santamariña, C., Pedraz-Pingarrón, C., Abad, S., Ederra, M., Salas-Trejo, D., Vidal, C., Sánchez-Contador, C. and others. (2016). Reproducibility of data-driven dietary patterns in two groups of adult Spanish women from different studies. Brit J Nutr 116(4) 734–742.
[18] 
Cespedes, E. M. and Hu, F. B. (2015). Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 101(5) 899–900.
[19] 
Clinton, S. K., Giovannucci, E. L. and Hursting, S. D. (2020). The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutr 150(4) 663–671.
[20] 
Dalmartello, M., Decarli, A., Ferraroni, M., Bravi, F., Serraino, D., Garavello, W., Negri, E., Vermunt, J. and La Vecchia, C. (2020). Dietary patterns and oral and pharyngeal cancer using latent class analysis. Int J Cancer 147(3) 719–727.
[21] 
Dalmartello, M., Vermunt, J., Serraino, D., Garavello, W., Negri, E., Levi, F. and La Vecchia, C. (2021). Dietary patterns and oesophageal cancer: a multi-country latent class analysis. J Epidemiol Community Health 75 567–573.
[22] 
De Keyzer, W., Huybrechts, I., De Vriendt, V., Vandevijvere, S., Slimani, N., Van Oyen, H. and De Henauw, S. (2011). Repeated 24-hour recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr Res 55.
[23] 
De Stefani, E., Ronco, A. L., Boffetta, P., Deneo-Pellegrini, H., Correa, P., Acosta, G. and Mendilaharsu, M. (2012). Nutrient-derived dietary patterns and risk of colorectal cancer: a factor analysis in Uruguay. Asian Pac J Cancer Prev 13(1) 231–235.
[24] 
De Vito, R., Lee, Y. C. A., Parpinel, M., Serraino, D., Olshan, A. F., Zevallos, J. P., Levi, F., Zhang, Z. F., Morgenstern, H., Garavello, W. and others. (2019). Shared and study-specific dietary patterns and head and neck cancer risk in an international consortium. Epidemiology 30(1) 93.
[25] 
De Vito, R., Bellio, R., Trippa, L. and Parmigiani, G. (2019). Multi-study factor analysis. Biometrics 75(1) 337–346. https://doi.org/10.1111/biom.12974. MR3953734
[26] 
De Vito, R., Bellio, R., Trippa, L. and Parmigiani, G. (2021). Bayesian multistudy factor analysis for high-throughput biological data. Ann Appl Stat 15(4) 1723–1741. https://doi.org/10.1214/21-aoas1456. MR4355073
[27] 
De Vito, R., Stephenson, B., Sotres-Alvarez, D., Siega-Riz, A. M., Mattei, J., Parpinel, M., Peters, B. A., Bainter, S. A., Daviglus, M. L., Van Horn, L. and others. (2022). Shared and ethnic background site-specific dietary patterns in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). medRxiv.
[28] 
Devlin, U. M., McNulty, B. A., Nugent, A. P. and Gibney, M. J. (2012). The use of cluster analysis to derive dietary patterns: methodological considerations, reproducibility, validity and the effect of energy mis-reporting. Proc Nutr Soc 71(4) 599–609.
[29] 
DiBello, J. R., Kraft, P., McGarvey, S. T., Goldberg, R., Campos, H. and Baylin, A. (2008). Comparison of 3 methods for identifying dietary patterns associated with risk of disease. Am J Epidemiol 168(12) 1433–1443.
[30] 
Dietary Guidelines Advisory Committee (2015) Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.
[31] 
Easton, J. F., Román Sicilia, H. and Stephens, C. R. (2019). Classification of diagnostic subcategories for obesity and diabetes based on eating patterns. Nutr Diet 76(1) 104–109.
[32] 
Edefonti, V., Randi, G., Decarli, A., La Vecchia, C., Bosetti, C., Franceschi, S., Dal Maso, L. and Ferraroni, M. (2009). Clustering dietary habits and the risk of breast and ovarian cancers. Ann Oncol 20(3) 581–590.
[33] 
Edefonti, V., Randi, G., La Vecchia, C., Ferraroni, M. and Decarli, A. (2009). Dietary patterns and breast cancer: a review with focus on methodological issues. Nutr Rev 67(6) 297–314.
[34] 
Edefonti, V., Hashibe, M., Parpinel, M., Turati, F., Serraino, D., Matsuo, K., Olshan, A. F., Zevallos, J. P., Winn, D. M., Moysich, K. et al. (2015). Natural vitamin C intake and the risk of head and neck cancer: A pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Int J Cancer 137(2) 448–462.
[35] 
Edefonti, V., Nicolussi, F., Polesel, J., Bravi, F., Bosetti, C., Garavello, W., La Vecchia, C., Bidoli, E., Decarli, A., Serraino, D. and others. (2015). Nutrient-based dietary patterns and nasopharyngeal cancer: evidence from an exploratory factor analysis. Br J Cancer 112(3) 446–454.
[36] 
Edefonti, V., De Vito, R., Dalmartello, M., Patel, L., Salvatori, A. and Ferraroni, M. (2020). Reproducibility and Validity of A Posteriori Dietary Patterns: A Systematic Review. Adv Nutr 11(2) 293–326.
[37] 
Edefonti, V., De Vito, R., Salvatori, A., Bravi, F., Patel, L., Dalmartello, M. and Ferraroni, M. (2020). Reproducibility of A Posteriori Dietary Patterns across Time and Studies: A Scoping Review. Adv Nutr 11(5) 1255–1281.
[38] 
Edefonti, V., Di Maso, M., Tomaino, L., Parpinel, M., Garavello, W., Serraino, D., Ferraroni, M., Crispo, A., La Vecchia, C. and Bravi, F. (2022). Diet quality as measured by the Healthy Eating Index 2015 and oral and pharyngeal cancer risk. J Acad Nutr Diet 122(9) 1677–1687.
[39] 
Edefonti, V., Hashibe, M., Ambrogi, F., Parpinel, M., Bravi, F., Talamini, R., Levi, F., Yu, G., Morgenstern, H., Kelsey, K. and others. (2012). Nutrient-based dietary patterns and the risk of head and neck cancer: a pooled analysis in the International Head and Neck Cancer Epidemiology consortium. Ann Oncol 23(7) 1869–1880.
[40] 
Engelhardt, B. E. and Stephens, M. (2010). Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. PLoS Genet 6(9) 1001117.
[41] 
Fahey, M. T., Ferrari, P., Slimani, N., Vermunt, J. K., White, I. R., Hoffmann, K., Wirfält, E., Bamia, C., Touvier, M., Linseisen, J. et al. (2012). Identifying dietary patterns using a normal mixture model: application to the EPIC study. J Epidemiol Community Health 66(1) 89–94.
[42] 
Falissard, B., Corruble, E., Mallet, L. and Hardy, P. (2001). Focused principal component analysis: a promising approach for confirming findings of exploratory analysis? Int J Meth Psych Res 10(4) 191–195.
[43] 
Falissard, B. (1999). Focused principal component analysis: looking at a correlation matrix with a particular interest in a given variable. J Comput Graph Stat 8(4) 906–912.
[44] 
Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. J Am Stat Ass 97(458) 611–631. https://doi.org/10.1198/016214502760047131. MR1951635
[45] 
Garcia-Larsen, V., Morton, V., Norat, T., Moreira, A., Potts, J. F., Reeves, T. and Bakolis, I. (2019). Dietary patterns derived from principal component analysis (PCA) and risk of colorectal cancer: a systematic review and meta-analysis. Eur J Clin Nutr 73(3) 366–386.
[46] 
Gianfredi, V., Ferrara, P., Dinu, M., Nardi, M. and Nucci, D. (2022). Diets, dietary patterns, single foods and pancreatic cancer risk: An umbrella review of meta-analyses. Int J Environ Res Public Health 19(22) 14797.
[47] 
Gleason, P. M., Boushey, C. J., Harris, J. E. and Zoellner, J. (2015). Publishing nutrition research: a review of multivariate techniques part 3: data reduction methods. J Acad Nutr Diet 115(7) 1072–1082.
[48] 
Gorst-Rasmussen, A., Dahm, C. C., Dethlefsen, C., Scheike, T. and Overvad, K. (2011). Exploring dietary patterns by using the treelet transform. Am J Epidemiol 173(10) 1097–1104.
[49] 
Greve, B., Pigeot, I., Huybrechts, I., Pala, V. and Börnhorst, C. (2016). A comparison of heuristic and model-based clustering methods for dietary pattern analysis. Public Health Nutr 19(2) 255–264.
[50] 
Harrington, D. (2009) Confirmatory factor analysis. Oxford University Press, Oxford, UK.
[51] 
Hearty, A. P. and Gibney, M. J. (2008). Analysis of meal patterns with the use of supervised data mining techniques–artificial neural networks and decision trees. Am J Clin Nutr 88(6) 1632–1642.
[52] 
Hébert, J. R., Hurley, T. G., Steck, S. E., Miller, D. R., Tabung, F. K., Peterson, K. E., Kushi, L. H. and Frongillo, E. A. (2014). Considering the value of dietary assessment data in informing nutrition-related health policy. Adv Nutr 5(4) 447–455.
[53] 
Hernan, M. A. and Robins, J. M. (2006). Estimating causal effects from epidemiological data. J Epidemiol Community Health 60(7) 578–586.
[54] 
Hill, A. B. (1965). The environment and disease: association or causation? Proc R Soc Med 58(5) 295–300.
[55] 
Hoffmann, K., Schulze, M. B., Schienkiewitz, A., Nöthlings, U. and Boeing, H. (2004). Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol 159(10) 935–944.
[56] 
Hu, F. B. (2002). Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13(1) 3–9.
[57] 
Imamura, F. and Jacques, P. F. (2011). Invited commentary: dietary pattern analysis. Am J Epidemiol 173(10) 1105–1108.
[58] 
Jacobs, D. R. (2014). What comes first: the food or the nutrient? Executive summary of a symposium. J Nutr 144(4 Suppl) 543–546.
[59] 
Jacobs, D. R. and Steffen, L. M. (2003). Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr 78(3 Suppl) 508–513.
[60] 
Jacobs, D. R. and Tapsell, L. C. (2007). Food, not nutrients, is the fundamental unit in nutrition. Nutr Rev 65(10) 439–450.
[61] 
Jacobs, D. R. and Tapsell, L. C. (2013). Food synergy: the key to a healthy diet. Proc Nutr Soc 72(2) 200–206.
[62] 
Jacobs, D. R., Gross, M. D. and Tapsell, L. C. (2009). Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 89(5) 1543–1548.
[63] 
Jacques, P. F. and Tucker, K. L. (2001). Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 73(1) 1–2.
[64] 
Jannasch, F., Kröger, J. and Schulze, M. B. (2017). Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies. J Nutr 147(6) 1174–1182.
[65] 
Joo, J., Williamson, S. A., Vazquez, A. I., Fernandez, J. R. and Bray, M. S. (2018). Advanced dietary patterns analysis using sparse latent factor models in young adults. J Nutr 148(12) 1984–1992.
[66] 
Judd, S. E., Letter, A. J., Shikany, J. M., Roth, D. L. and Newby, P. K. (2015). Dietary patterns derived using exploratory and confirmatory factor analysis are stable and generalizable across race, region, and gender subgroups in the REGARDS study. Front Nutr 1 29.
[67] 
Kant, A. K. (1996). Indexes of overall diet quality: a review. J Am Diet Assoc 96(8) 785–791.
[68] 
Kant, A. K. (2004). Dietary patterns and health outcomes. J Am Diet Assoc 104(4) 615–635.
[69] 
Kipnis, V., Freedman, L. S., Brown, C. C., Hartman, A., Schatzkin, A. and Wacholder, S. (1993). Interpretation of energy adjustment models for nutritional epidemiology. Am J Epidemiol 137(12) 1376–1380.
[70] 
Krebs-Smith, S. M., Subar, A. F. and Reedy, J. (2015). Examining dietary patterns in relation to chronic disease: matching measures and methods to questions of interest. Circulation 132(9) 790–793.
[71] 
Lazarou, C., Karaolis, M., Matalas, A. L. and Panagiotakos, D. B. (2012). Dietary patterns analysis using data mining method. An application to data from the CYKIDS study. Comput Methods Programs Biomed 108(2) 706–714.
[72] 
Lee, A. B., Nadler, B. and Wasserman, L. (2008). Treelets – An adaptive multi-scale basis for sparse unordered data. Ann Appl Stat 2(2) 435–471. https://doi.org/10.1214/07-AOAS137. MR2524336
[73] 
Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D. and Rakowski, W. (2003). Classification and regression tree analysis in public health: methodological review and comparison with logistic regression. Ann Behav Med 26(3) 172–181.
[74] 
Liese, A. D., Krebs-Smith, S. M., Subar, A. F., George, S. M., Harmon, B. E., Neuhouser, M. L., Boushey, C. J., Schap, T. E. and Reedy, J. (2015). The Dietary Patterns Methods Project: synthesis of findings across cohorts and relevance to dietary guidance. J Nutr 145(3) 393–402.
[75] 
Lo Siou, G., Yasui, Y., Csizmadi, I., McGregor, S. E. and Robson, P. J. (2011). Exploring statistical approaches to diminish subjectivity of cluster analysis to derive dietary patterns: The Tomorrow Project. Am J Epidemiol 173(8) 956–967.
[76] 
Lopes, H. F. and West, M. (2004). Bayesian model assessment in factor analysis. Stat Sinica 14 41–67. MR2036762
[77] 
Männistö, S., Dixon, L. B., Balder, H. F., Virtanen, M. J., Krogh, V., Khani, B. R., Berrino, F., van den Brandt, P. A., Hartman, A. M., Pietinen, P. and others. (2005). Dietary patterns and breast cancer risk: results from three cohort studies in the DIETSCAN project. Cancer Causes Control 16(6) 725–733.
[78] 
Männistö, S., Harald, K., Kontto, J., Lahti-Koski, M., Kaartinen, N. E., Saarni, S. E., Kanerva, N. and Jousilahti, P. (2014). Dietary and lifestyle characteristics associated with normal-weight obesity: the National FINRISK 2007 Study. Brit J Nutr 111(5) 887–894.
[79] 
Martinez, M. E., Marshall, J. R. and Sechrest, L. (1998). Invited commentary: Factor analysis and the search for objectivity. Am J Epidemiol 148(1) 17–19.
[80] 
McEligot, A. J., Poynor, V., Sharma, R. and Panangadan, A. (2020). Logistic LASSO regression for dietary intakes and breast cancer. Nutrients 12(9) 2652.
[81] 
Melaku, Y. A., Gill, T. K., Taylor, A. W., Adams, R. and Shi, Z. (2018). A comparison of principal component analysis, partial least-squares and reduced-rank regressions in the identification of dietary patterns associated with bone mass in ageing Australians. Eur J Nutr 57(5) 1969–1983.
[82] 
Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80(2) 267–278. https://doi.org/10.1093/biomet/80.2.267. MR1243503
[83] 
Michels, K. B. and Schulze, M. B. (2005). Can dietary patterns help us detect diet–disease associations? Nutr Res Rev 18(2) 241–248.
[84] 
Milà-Villarroel, R., Bach-Faig, A., Puig, J., Puchal, A., Farran, A., Serra-Majem, L. and Carrasco, J. L. (2011). Comparison and evaluation of the reliability of indexes of adherence to the Mediterranean diet. Public Health Nutr 14(12A) 2338–2345.
[85] 
Moeller, S. M., Reedy, J., Millen, A. E., Dixon, L. B., Newby, P., Tucker, K. L., Krebs-Smith, S. M. and Guenther, P. M. (2007). Dietary patterns: challenges and opportunities in dietary patterns research. J Am Diet Assoc 107(7) 1233–1239.
[86] 
Moskal, A., Pisa, P. T., Ferrari, P., Byrnes, G., Freisling, H., Boutron-Ruault, M., Cadeau, C., Nailler, L., Wendt, A., Kühn, T. and others. (2014). Nutrient patterns and their food sources in an International Study Setting: report from the EPIC study. PLoS One 9(6) 98647.
[87] 
Mozaffarian, D., Katan, M. B., Ascherio, A., Stampfer, M. J. and Willett, W. C. (2006). Trans fatty acids and cardiovascular disease. N Engl J Med 354(15) 1601–1613.
[88] 
National Institutes of Health, National Cancer Institute (2023). Dietary Assessment Primer. https://dietassessmentprimer.cancer.gov/ Accessed 2023-02-09.
[89] 
Newby, P. K. and Tucker, K. L. (2004). Empirically derived eating patterns using factor or cluster analysis: a review. Nutr. Rev. 62(5) 177–203.
[90] 
Newby, P. K., Weismayer, C., Akesson, A., Tucker, K. L. and Wolk, A. (2006). Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136(3) 626–633.
[91] 
Ocké, M. C. and Kaaks, R. J. (1997). Biochemical markers as additional measurements in dietary validity studies: application of the method of triads with examples from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 65(4 Suppl) 1240–1245.
[92] 
Ocké, M. C. (2013). Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. P Nutr Soc 72(2) 191–199.
[93] 
Oluwagbemigun, K., Foerster, J., Watkins, C., Fouhy, F., Stanton, C., Bergmann, M. M., Boeing, H. and Nöthlings, U. (2020). Dietary patterns are associated with serum metabolite patterns and their association is influenced by gut bacteria among older German adults. J Nutr 150(1) 149–158.
[94] 
Padmadas, S. S., Dias, J. G. and Willekens, F. J. (2006). Disentangling women’s responses on complex dietary intake patterns from an Indian cross-sectional survey: a latent class analysis. Public Health Nutr 9(2) 204–211.
[95] 
Park, T. and Casella, G. (2008). The Bayesian lasso. J Am Stat Assoc 103(482) 681–686. https://doi.org/10.1198/016214508000000337. MR2524001
[96] 
Patterson, B. H., Dayton, C. M. and Graubard, B. I. (2002). Latent class analysis of complex sample survey data: application to dietary data. J Am Stat Ass 97(459) 721–741. https://doi.org/10.1198/016214502388618465. MR1941406
[97] 
Preis, S. R., Spiegelman, D., Zhao, B. B., Moshfegh, A., Baer, D. J. and Willett, W. C. (2011). Application of a repeat-measure biomarker measurement error model to 2 validation studies: examination of the effect of within-person variation in biomarker measurements. Am J Epidemiol 173(6) 683–694.
[98] 
Rhee, J. J., Cho, E. and Willett, W. C. (2014). Energy adjustment of nutrient intakes is preferable to adjustment using body weight and physical activity in epidemiological analyses. Public Health Nutr 17(5) 1054–1060.
[99] 
Rita Gaio, A., Costa, J. P., Santos, A. C., Ramos, E. and Lopes, C. (2012). A restricted mixture model for dietary pattern analysis in small samples. Stat Med 31(19) 2137–2150. https://doi.org/10.1002/sim.5336. MR2956067
[100] 
Roková, V. and George, E. I. (2016). Fast Bayesian factor analysis via automatic rotations to sparsity. J Am Stat Assoc 111(516) 1608–1622. https://doi.org/10.1080/01621459.2015.1100620. MR3601721
[101] 
Romaguera, D., Vergnaud, A. C., Peeters, P. H., van Gils, C. H., Chan, D. S., Ferrari, P., Romieu, I., Jenab, M., Slimani, N., Clavel-Chapelon, F. et al. (2012). Is concordance with World Cancer Research Fund/American Institute for Cancer Research guidelines for cancer prevention related to subsequent risk of cancer? Results from the EPIC study. Am J Clin Nutr 96(1) 150–163.
[102] 
Rosner, B., Spiegelman, D. and Willett, W. C. (1990). Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. Am J Epidemiol 132(4) 734–745.
[103] 
Ryman, T. K., Boyer, B. B., Hopkins, S., Philip, J., O’brien, D., Thummel, K. and Austin, M. A. (2015). Characterising the reproducibility and reliability of dietary patterns among Yup’ik Alaska Native people. Brit J Nutr 113(4) 634–643.
[104] 
Satija, A., Yu, E., Willett, W. C. and Hu, F. B. (2015). Understanding nutritional epidemiology and its role in policy. Adv Nutr 6(1) 5–18. MR3337656
[105] 
Schatzkin, A., Kipnis, V., Carroll, R. J., Midthune, D., Subar, A. F., Bingham, S., Schoeller, D. A., Troiano, R. P. and Freedman, L. S. (2003). A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol 32(6) 1054–1062.
[106] 
Schoenaker, D. A., Dobson, A. J., Soedamah-Muthu, S. S. and Mishra, G. D. (2013). Factor analysis is more appropriate to identify overall dietary patterns associated with diabetes when compared with Treelet transform analysis. J Nutr 143(3) 392–398.
[107] 
Schulz, C. A., Oluwagbemigun, K. and Nöthlings, U. (2021). Advances in dietary pattern analysis in nutritional epidemiology. Eur J Nutr 60(8) 4115–4130.
[108] 
Schulze, M. B., Martínez-González, M. A., Fung, T. T., Lichtenstein, A. H. and Forouhi, N. G. (2018). Food based dietary patterns and chronic disease prevention. BMJ 361 2396.
[109] 
Slattery, M. L., Boucher, K. M., Caan, B. J., Potter, J. D. and Ma, K. N. (1998). Eating patterns and risk of colon cancer. Am J Epidemiol 148(1) 4–16.
[110] 
Sorlie, P. D., Avilés-Santa, L. M., Wassertheil-Smoller, S., Kaplan, R. C., Daviglus, M. L., Giachello, A. L., Schneiderman, N., Raij, L., Talavera, G., Allison, M. et al. (2010). Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol 20(8) 629–641.
[111] 
Sotres-Alvarez, D., Herring, A. H. and Siega-Riz, A. M. (2010). Latent class analysis is useful to classify pregnant women into dietary patterns. J Nutr 140(12) 2253–2259.
[112] 
Spiegelman, D., Zhao, B. and Kim, J. (2005). Correlated errors in biased surrogates: study designs and methods for measurement error correction. Stat Med 24(11) 1657–1682. https://doi.org/10.1002/sim.2055. MR2137643
[113] 
Stephenson, B. J., Herring, A. H. and Olshan, A. (2020). Robust clustering with subpopulation-specific deviations. J Am Stat Assoc 115(530) 521–537. https://doi.org/10.1080/01621459.2019.1611583. MR4107655
[114] 
Stephenson, B. J., Sotres-Alvarez, D., Siega-Riz, A. M., Mossavar-Rahmani, Y., Daviglus, M. L., Van Horn, L., Herring, A. H. and Cai, J. (2020). Empirically derived dietary patterns using robust profile clustering in the Hispanic Community Health Study/Study of Latinos. J Nutr 150(10) 2825–2834.
[115] 
Stephenson, B. J., Herring, A. H., Olshan, A. F. and others. (2022). Derivation of maternal dietary patterns accounting for regional heterogeneity. J R Stat Soc C: Appl Stat 71(5) 1957–1977. https://doi.org/10.1111/rssc.12604. MR4511136
[116] 
Subar, A. F., Thompson, F. E., Kipnis, V., Midthune, D., Hurwitz, P., McNutt, S., McIntosh, A. and Rosenfeld, S. (2001). Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154(12) 1089–1099.
[117] 
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3) 209–249.
[118] 
Tapsell, L. C., Neale, E. P., Satija, A. and Hu, F. B. (2016). Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv Nutr 7(3) 445–454.
[119] 
Teng, J. H., Lin, K. C. and Ho, B. S. (2007). Application of classification tree and logistic regression for the management and health intervention plans in a community-based study. J Eval Clin Pract 13(5) 741–748.
[120] 
Thompson, F. E., Kirkpatrick, S. I., Subar, A. F., Reedy, J., Schap, T. E., Wilson, M. M. and Krebs-Smith, S. M. (2015). The National Cancer Institute’s dietary assessment primer: a resource for diet research. J Acad Nutr Diet 115(12) 1986–1995.
[121] 
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1) 267–288. MR1379242
[122] 
Trichopoulou, A., Kouris-Blazos, A., Vassilakou, T., Gnardellis, C., Polychronopoulos, E., Venizelos, M., Lagiou, P., Wahlqvist, M. L. and Trichopoulos, D. (1995). Diet and survival of elderly Greeks: a link to the past. Am J Clin Nutr 61(6 Suppl) 1346–1350.
[123] 
Tuglus, C. and van der Laan, M. J. (2008). Discussion of: Treelets – An adaptive multi-scale basis for sparse unordered data. Ann Appl Stat 2(2) 489. https://doi.org/10.1214/08-AOAS137F. MR2524342
[124] 
Turati, F., Edefonti, V., Bravi, F., Ferraroni, M., Talamini, R., Giacosa, A., Montella, M., Parpinel, M., La Vecchia, C. and Decarli, A. (2012). Adherence to the European food safety authority’s dietary recommendations and colorectal cancer risk. Eur J Clin Nutr 66(4) 517–522.
[125] 
Van Havre, Z., White, N., Rousseau, J. and Mengersen, K. (2015). Overfitting Bayesian mixture models with an unknown number of components. PloS one 10(7) 0131739.
[126] 
Varraso, R., Garcia-Aymerich, J., Monier, F., Le Moual, N., De Batlle, J., Miranda, G., Pison, C., Romieu, I., Kauffmann, F. and Maccario, J. (2012). Assessment of dietary patterns in nutritional epidemiology: principal component analysis compared with confirmatory factor analysis. Am J Clin Nutr 96(5) 1079–1092.
[127] 
Weikert, C. and Schulze, M. B. (2016). Evaluating dietary patterns: the role of reduced rank regression. Curr Opin Clin Nutr Metab Care 19(5) 341–346.
[128] 
Westenbrink, S., Roe, M., Oseredczuk, M., Castanheira, I. and Finglas, P. (2016). EuroFIR quality approach for managing food composition data; where are we in 2014? Food Chem 193 69–74.
[129] 
Willett, W. and Stampfer, M. J. (1986). Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124(1) 17–27.
[130] 
Willett, W. C., Stampfer, M. J., Underwood, B. A., Speizer, F. E., Rosner, B. and Hennekens, C. H. (1983). Validation of a dietary questionnaire with plasma carotenoid and alpha-tocopherol levels. Am J Clin Nutr 38(4) 631–639.
[131] 
Willett, W. (2012) Nutritional epidemiology 40. Oxford University Press.
[132] 
Williams, C. M. (2022). Mechanistic evidence underpinning dietary policy: bringing the jigsaw pieces together? Proc Nutr Soc 1–8.
[133] 
Yoon, P. W., Rasmussen, S. A., Lynberg, M. C., Moore, C. A., Anderka, M., Carmichael, S. L., Costa, P., Druschel, C., Hobbs, C. A., Romitti, P. A. and others. (2001). The National Birth Defects Prevention Study. Public Health Rep 116(Suppl 1) 32–40.
[134] 
Zhang, F., Tapera, T. M. and Gou, J. (2018). Application of a new dietary pattern analysis method in nutritional epidemiology. BMC Med Res Methodol 18(1) 119.
[135] 
Zhao, J., Li, Z., Gao, Q., Zhao, H., Chen, S., Huang, L., Wang, W. and Wang, T. (2021). A review of statistical methods for dietary pattern analysis. Nutr J 20(1) 37.

Full article PDF XML
Full article PDF XML

Copyright
© 2024 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Dietary patterns Cluster analysis Factor analysis Reduced rank regression Multi-study factor analysis Robust profile clustering

Funding
This research is supported by the U.S.A.’s National Institutes of Health, grant NIGMS/NIH COBRE CBHD P20GM109035 (RDV).

Metrics
since December 2021
376

Article info
views

466

Full article
views

355

PDF
downloads

65

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy