The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 2 (2023)
  4. Gamma-Minimax Wavelet Shrinkage for Sign ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Gamma-Minimax Wavelet Shrinkage for Signals with Low SNR
Volume 1, Issue 2 (2023), pp. 159–171
Dixon Vimalajeewa   Anirban DasGupta   Fabrizio Ruggeri     All authors (4)

Authors

 
Placeholder
https://doi.org/10.51387/23-NEJSDS43
Pub. online: 29 June 2023      Type: Methodology Article      Open accessOpen Access
Area: Statistical Methodology

Accepted
15 June 2023
Published
29 June 2023

Abstract

In this paper, we propose a method for wavelet denoising of signals contaminated with Gaussian noise when prior information about the ${L^{2}}$-energy of the signal is available. Assuming the independence model, according to which the wavelet coefficients are treated individually, we propose simple, level-dependent shrinkage rules that turn out to be Γ-minimax for a suitable class of priors.
The proposed methodology is particularly well suited in denoising tasks when the signal-to-noise ratio is low, which is illustrated by simulations on a battery of some standard test functions. Comparison to some commonly used wavelet shrinkage methods is provided.

References

[1] 
Abramovich, F., Besbeas, P. and Sapatinas, T. (2002). Empirical Bayes approach to block wavelet function estimation. Computational Statistics & Data Analysis 39(4) 435–451. https://doi.org/10.1016/S0167-9473(01)00085-8. MR1910021
[2] 
Amato, U. and Vuza, D. T. (1997). Wavelet approximation of a function from samples affected by noise. Rev. Roumanie & Mathematics with Applications 36(5) 101–111. https://doi.org/10.1016/S0898-1221(98)00153-9. MR1639374
[3] 
Angelini, C. and Vidakovic, B. (2004). Γ-minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications. Statistica Sinica 14(1) 103–125. MR2036764
[4] 
Antoniadis, A., Bigot, J. and Sapatinas, T. (2001). Wavelet estimators in nonparametric regression: a comparative simulation study. Journal of Statistical Software 6 1–83. MR4024218
[5] 
Berger, J. O. (1984). The Robust Bayesian Viewpoint. In Robustness of Bayesian Analysis (J. K. Eds, ed.), 63–124. Elsevier Science Publisher, USA. MR0785367
[6] 
Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. Springer Verlag, New York. https://doi.org/10.1007/978-1-4757-4286-2. MR0804611
[7] 
Bickel, P. J. (1981). Minimax estimation of the mean of a normal distribution when the parameter space is Restricted. The Annals of Statistics 9(6) 1301–1309. MR0630112
[8] 
Bickel, P. J. and Collins, J. R. (1983). Minimizing Fisher information over mixtures of distributions. Sankhy: The Indian Journal of Statistics, Series A (1961–2002) 45(1) 1–19. MR0749349
[9] 
Bischoff, W. and Fieger, W. (1992). Minimax estimators and Γ-minimax estimators for a bounded normal mean under the loss ${\ell _{p}}(\theta ,d)=|\theta -d{|^{p}}$. Metrika 39 185–197. https://doi.org/10.1007/BF02614000. MR1173577
[10] 
Cai, T. T. (1999). Adaptive wavelet estimation: a block thresholding and oracle inequality approach. The Annals of Statistics 27(3) 898–924. https://doi.org/10.1214/aos/1018031262. MR1724035
[11] 
Casella, G. and Strawderman, W. E. (1981). Estimating a bounded normal mean. The Annals of Statistics 9(4) 870–878. MR0619290
[12] 
Chipman, H. A., Kolaczyk, E. D. and McCulloch, R. E. (1997). Adaptive Bayesian wavelet shrinkage. Journal of the American Statistical Association 92(440) 1413–1421.
[13] 
Clarke, B. S. and Barron, A. R. (1994). Jeffreys’ prior is asymptotically least favorable under entropy risk. Journal of Statistical Planning and Inference 41 37–60. https://doi.org/10.1016/0378-3758(94)90153-8. MR1292146
[14] 
Clyde, M. and George, E. I. (2000). Flexible empirical Bayes estimation for wavelets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62(4) 681–698. https://doi.org/10.1111/1467-9868.00257. MR1796285
[15] 
Dasgupta, A. (1985). Bayes minimax estimation in multiparameter families when the parameter space is restricted to a bounded convex set. Sankhy: The Indian Journal of Statistics, Series A (1961–2002) 47(3) 326–332. MR0863726
[16] 
Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3) 425–455. https://doi.org/10.1093/biomet/81.3.425. MR1311089
[17] 
Donoho, D. L., Liu, R. C. and MacGibbon, B. (1990). Minimax risk over hyperrectangles, and implications. The Annals of Statistics 18(3) 1416–1437. https://doi.org/10.1214/aos/1176347758. MR1062717
[18] 
Ferguson, T. S. (1967) Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York. MR0215390
[19] 
George, E. I., Liang, F. and Xu, X. (2012). From minimax shrinkage estimation to minimax shrinkage prediction. Statistical Science 27(1) 82–94. https://doi.org/10.1214/11-STS383. MR2953497
[20] 
Ghosh, M. N. (1964). Uniform approximation of minimax point estimates. The Annals of Mathematical Statistics 35(3) 1031–1047. https://doi.org/10.1214/aoms/1177703262. MR0164418
[21] 
Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society: Series B (Methodological) 14(1) 107–114. MR0077033
[22] 
Huang, H. -C. and Cressie, N. (2000). Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data. Technometrics 42(3) 262–276. https://doi.org/10.2307/1271081. MR1801033
[23] 
Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics 35(1) 73–101. https://doi.org/10.1214/aoms/1177703732. MR0161415
[24] 
Ibragimov, I. A. and Hasminskii, R. Z. (1981) Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York. MR0620321
[25] 
Kiefer, J. (1957). Invariance, minimax sequential estimation, and continuous time processes. The Annals of Mathematical Statistics 28(3) 573–601. https://doi.org/10.1214/aoms/1177706874. MR0092325
[26] 
Lehmann, E. L. (1959) Testing Statistical Hypotheses. Wiley, New York. MR0107933
[27] 
Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association 103(482) 681–686. https://doi.org/10.1198/016214508000000337. MR2524001
[28] 
Reményi, N. and Vidakovic, B. (2013). Bayesian wavelet shrinkage strategies: A review. In Multiscale Signal Analysis and Modeling, 317–346. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4145-8_14. MR3024475
[29] 
Robbins, H. E. (1951). Asymptotically subminimax solutions of compound statistical decision Problems. In Proceedings of Second Berkeley Symposium Mathematics and Statistics and Probability, 241–259. University of California Berkeley Press, California. MR0044803
[30] 
Shang, Z. (2011) Bayesian variable selection: Theory and applications 73. Citeseer. MR2982337
[31] 
Sousa, A. R. d. S., Garcia, N. L. and Vidakovic, B. (2021). Bayesian wavelet shrinkage with beta priors. Computational Statistics 36 1341–1363. https://doi.org/10.1007/s00180-020-01048-1. MR4255812
[32] 
Vidakovic, B. (2000). Γ-minimax: A paradigm for conservative robust Bayesians. In Robust Bayesian Analysis 241–259. Springer. https://doi.org/10.1007/978-1-4612-1306-2_13. MR1795219
[33] 
Vidakovic, B. and Ruggeri, F. (2001). BAMS method: Theory and simulations. Sankhy: The Indian Journal of Statistics, Series B 63(2) 234–249. MR1895791
[34] 
Wijsman, R. A. (1970). Continuity of the Bayes risk. The Annals of Mathematical Statistics 41(3) 1083–1085.

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2023 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Wavelet Regression Shrinkage Bounded Normal Mean Γ-minimaxity Least Favorable Prior Contamination Class Low Signal-to-Noise Ratio

Funding
The work of Dixon Vimalajeewa was supported by H. O. Hartley endowment at Texas A&M University.

Metrics
since December 2021
286

Article info
views

160

Full article
views

275

PDF
downloads

63

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy