Gamma-Minimax Wavelet Shrinkage for Signals with Low SNR
Volume 1, Issue 2 (2023), pp. 159–171
Pub. online: 29 June 2023
Type: Statistical Methodology
Open Access
Accepted
15 June 2023
15 June 2023
Published
29 June 2023
29 June 2023
Abstract
In this paper, we propose a method for wavelet denoising of signals contaminated with Gaussian noise when prior information about the ${L^{2}}$-energy of the signal is available. Assuming the independence model, according to which the wavelet coefficients are treated individually, we propose simple, level-dependent shrinkage rules that turn out to be Γ-minimax for a suitable class of priors.
The proposed methodology is particularly well suited in denoising tasks when the signal-to-noise ratio is low, which is illustrated by simulations on a battery of some standard test functions. Comparison to some commonly used wavelet shrinkage methods is provided.
References
Abramovich, F., Besbeas, P. and Sapatinas, T. (2002). Empirical Bayes approach to block wavelet function estimation. Computational Statistics & Data Analysis 39(4) 435–451. https://doi.org/10.1016/S0167-9473(01)00085-8. MR1910021
Amato, U. and Vuza, D. T. (1997). Wavelet approximation of a function from samples affected by noise. Rev. Roumanie & Mathematics with Applications 36(5) 101–111. https://doi.org/10.1016/S0898-1221(98)00153-9. MR1639374
Angelini, C. and Vidakovic, B. (2004). Γ-minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications. Statistica Sinica 14(1) 103–125. MR2036764
Antoniadis, A., Bigot, J. and Sapatinas, T. (2001). Wavelet estimators in nonparametric regression: a comparative simulation study. Journal of Statistical Software 6 1–83. MR4024218
Berger, J. O. (1984). The Robust Bayesian Viewpoint. In Robustness of Bayesian Analysis (J. K. Eds, ed.), 63–124. Elsevier Science Publisher, USA. MR0785367
Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. Springer Verlag, New York. https://doi.org/10.1007/978-1-4757-4286-2. MR0804611
Bickel, P. J. (1981). Minimax estimation of the mean of a normal distribution when the parameter space is Restricted. The Annals of Statistics 9(6) 1301–1309. MR0630112
Bickel, P. J. and Collins, J. R. (1983). Minimizing Fisher information over mixtures of distributions. Sankhy: The Indian Journal of Statistics, Series A (1961–2002) 45(1) 1–19. MR0749349
Bischoff, W. and Fieger, W. (1992). Minimax estimators and Γ-minimax estimators for a bounded normal mean under the loss ${\ell _{p}}(\theta ,d)=|\theta -d{|^{p}}$. Metrika 39 185–197. https://doi.org/10.1007/BF02614000. MR1173577
Cai, T. T. (1999). Adaptive wavelet estimation: a block thresholding and oracle inequality approach. The Annals of Statistics 27(3) 898–924. https://doi.org/10.1214/aos/1018031262. MR1724035
Casella, G. and Strawderman, W. E. (1981). Estimating a bounded normal mean. The Annals of Statistics 9(4) 870–878. MR0619290
Clarke, B. S. and Barron, A. R. (1994). Jeffreys’ prior is asymptotically least favorable under entropy risk. Journal of Statistical Planning and Inference 41 37–60. https://doi.org/10.1016/0378-3758(94)90153-8. MR1292146
Clyde, M. and George, E. I. (2000). Flexible empirical Bayes estimation for wavelets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62(4) 681–698. https://doi.org/10.1111/1467-9868.00257. MR1796285
Dasgupta, A. (1985). Bayes minimax estimation in multiparameter families when the parameter space is restricted to a bounded convex set. Sankhy: The Indian Journal of Statistics, Series A (1961–2002) 47(3) 326–332. MR0863726
Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3) 425–455. https://doi.org/10.1093/biomet/81.3.425. MR1311089
Donoho, D. L., Liu, R. C. and MacGibbon, B. (1990). Minimax risk over hyperrectangles, and implications. The Annals of Statistics 18(3) 1416–1437. https://doi.org/10.1214/aos/1176347758. MR1062717
Ferguson, T. S. (1967) Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York. MR0215390
George, E. I., Liang, F. and Xu, X. (2012). From minimax shrinkage estimation to minimax shrinkage prediction. Statistical Science 27(1) 82–94. https://doi.org/10.1214/11-STS383. MR2953497
Ghosh, M. N. (1964). Uniform approximation of minimax point estimates. The Annals of Mathematical Statistics 35(3) 1031–1047. https://doi.org/10.1214/aoms/1177703262. MR0164418
Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society: Series B (Methodological) 14(1) 107–114. MR0077033
Huang, H. -C. and Cressie, N. (2000). Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data. Technometrics 42(3) 262–276. https://doi.org/10.2307/1271081. MR1801033
Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics 35(1) 73–101. https://doi.org/10.1214/aoms/1177703732. MR0161415
Ibragimov, I. A. and Hasminskii, R. Z. (1981) Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York. MR0620321
Kiefer, J. (1957). Invariance, minimax sequential estimation, and continuous time processes. The Annals of Mathematical Statistics 28(3) 573–601. https://doi.org/10.1214/aoms/1177706874. MR0092325
Lehmann, E. L. (1959) Testing Statistical Hypotheses. Wiley, New York. MR0107933
Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association 103(482) 681–686. https://doi.org/10.1198/016214508000000337. MR2524001
Reményi, N. and Vidakovic, B. (2013). Bayesian wavelet shrinkage strategies: A review. In Multiscale Signal Analysis and Modeling, 317–346. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4145-8_14. MR3024475
Robbins, H. E. (1951). Asymptotically subminimax solutions of compound statistical decision Problems. In Proceedings of Second Berkeley Symposium Mathematics and Statistics and Probability, 241–259. University of California Berkeley Press, California. MR0044803
Shang, Z. (2011) Bayesian variable selection: Theory and applications 73. Citeseer. MR2982337
Sousa, A. R. d. S., Garcia, N. L. and Vidakovic, B. (2021). Bayesian wavelet shrinkage with beta priors. Computational Statistics 36 1341–1363. https://doi.org/10.1007/s00180-020-01048-1. MR4255812
Vidakovic, B. (2000). Γ-minimax: A paradigm for conservative robust Bayesians. In Robust Bayesian Analysis 241–259. Springer. https://doi.org/10.1007/978-1-4612-1306-2_13. MR1795219
Vidakovic, B. and Ruggeri, F. (2001). BAMS method: Theory and simulations. Sankhy: The Indian Journal of Statistics, Series B 63(2) 234–249. MR1895791