Non-inferiority Clinical Trials: Treating Margin as Missing Information
Volume 2, Issue 1 (2024), pp. 104–111
Pub. online: 1 February 2024
Type: Methodology Article
Open Access
Area: Cancer Research
Accepted
2 January 2024
2 January 2024
Published
1 February 2024
1 February 2024
Abstract
Non-inferiority (NI) clinical trials’ goal is to demonstrate that a new treatment is not worse than a standard of care by a certain amount called margin. The choice of non-inferiority margin is not straightforward as it depends on historical data, and clinical experts’ opinion. Knowing the “true”, objective clinical margin would be helpful for design and analysis of non-inferiority trials, but it is not possible in practice. We propose to treat non-inferiority margin as missing information. In order to recover an objective margin, we believe it is essential to conduct a survey among a group of representative clinical experts. We introduce a novel framework, where data obtained from a survey are combined with NI trial data, so that both an estimated clinically acceptable margin and its uncertainty are accounted for when claiming non-inferiority. Through simulations, we compare several methods for implementing this framework. We believe the proposed framework would lead to better informed decisions regarding new potentially non-inferior treatments and could help resolve current practical issues related to the choice of the margin.
References
Akande, O., Li, F. and Reiter, J. (2017). An Empirical Comparison of Multiple Imputation Methods for Categorical Data. The American Statistician 71(2) 162–170. https://doi.org/10.1080/00031305.2016.1277158. MR3668704
CHMP (2006). Committee for Medicinal Products for Human Use (CHMP) Guideline on the Choice of the Non-Inferiority Margin. Statistics in Medicine 25(10) 1628. https://doi.org/10.1002/sim.3367. MR2542359
Daniels, M. J. and Hogan, J. W. (2008) Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman and Hall/CRC. MR2656068
Eriksson, B. I., Dahl, O. E., Rosencher, N., Kurth, A. A., van Dijk, C. N., Frostick, S. P., Prins, M. H., Hettiarachchi, R., Hantel, S., Schnee, J. et al. (2007). Dabigatran Etexilate versus Enoxaparin for Prevention of Venous Thromboembolism after Total Hip Replacement: A Randomised, Double-Blind, Non-Inferiority Trial. The Lancet 370(9591) 949–956.
Eriksson, B. I., Dahl, O. E., Huo, M. H., Kurth, A. A., Hantel, S., Hermansson, K., Schnee, J. M., Friedman, R. J., Group, R. q. N. I. S. et al. (2011). Oral Dabigatran versus Enoxaparin for Thromboprophylaxis after Primary Total Hip Arthroplasty (RE-NOVATE II). Thrombosis and Haemostasis 105(04) 721–729.
Harel, O. (2007). Inferences on Missing Information under Multiple Imputation and Two-Stage Multiple Imputation. Statistical Methodology 4(1) 75–89. https://doi.org/10.1016/j.stamet.2006.03.002. MR2339010
Harel, O. and Zhou, X.-H. (2007). Multiple Imputation: Review of Theory, Implementation and Software. Statistics in Medicine 26(16) 3057–3077. https://doi.org/10.1002/sim.2787. MR2380504
Hung, H. J., Wang, S.-J. and O’Neill, R. (2005). A Regulatory Perspective on Choice of Margin and Statistical Inference Issue in Non-Inferiority Trials. Biometrical Journal: Journal of Mathematical Methods in Biosciences 47(1) 28–36. https://doi.org/10.1002/bimj.200410084. MR2135887
Hung, H. J., Wang, S.-J. and O’Neill, R. (2007). Issues with Statistical Risks for Testing Methods in Noninferiority Trial without a Placebo Arm. Journal of Biopharmaceutical Statistics 17(2) 201–213. https://doi.org/10.1080/10543400601177343. MR2345704
Hung, H. J., Wang, S.-J. and O’Neill, R. (2009). Challenges and Regulatory Experiences with Non-Inferiority Trial Design without Placebo Arm. Biometrical Journal: Journal of Mathematical Methods in Biosciences 51(2) 324–334. https://doi.org/10.1002/bimj.200800219. MR2668686
Julious, S. A. and Owen, R. J. (2011). A Comparison of Methods for Sample Size Estimation for Non-Inferiority Studies with Binary Outcomes. Statistical Methods in Medical Research 20(6) 595–612. https://doi.org/10.1177/0962280210378945. MR2866347
Little, R. J. and Rubin, D. B. (2014) Statistical Analysis with Missing Data 333. John Wiley & Sons. https://doi.org/10.1002/9781119013563. MR1925014
Liu, Q., Li, Y. and Odem- Davis, K. (2015). On Robustness of Noninferiority Clinical Trial Designs against Bias, Variability, and Nonconstancy. Journal of Biopharmaceutical Statistics 25(1) 206–225. https://doi.org/10.1080/10543406.2014.923738. MR3301347
Ng, T.-H. (2008). Noninferiority Hypotheses and Choice of Noninferiority Margin. Statistics in Medicine 27(26) 5392–5406. https://doi.org/10.1002/sim.3367. MR2542359
Rabe, B. A., Day, S., Fiero, M. H. and Bell, M. L. (2018). Missing Data Handling in Non-Inferiority and Equivalence Trials: A Systematic Review. Pharmaceutical Statistics 41(4) 815–830. https://doi.org/10.1002/sim.9251. MR4386982
Radford, J., Illidge, T., Counsell, N., Hancock, B., Pettengell, R., Johnson, P., Wimperis, J., Culligan, D., Popova, B., Smith, P., McMillan, A., Brownell, A., Kruger, A., Lister, A., Hoskin, P., O’Doherty, M. and Barrington, S. (2015). Results of a Trial of PET-Directed Therapy for Early-Stage Hodgkin’s Lymphoma. New England Journal of Medicine 372(17) 1598–1607. https://doi.org/10.1056/NEJMoa1408648.
Rubin, D. B. (1976). Inference and Missing Data. Biometrika 63(3) 581–592. https://doi.org/10.1093/biomet/63.3.581. MR0455196
Rubin, D. B. (2004) Multiple Imputation for Nonresponse in Surveys 81. John Wiley & Sons. MR2117498
Schafer, J. L. (1997) Analysis of Incomplete Multivariate Data. Chapman and Hall/CRC. https://doi.org/10.1201/9781439821862. MR1692799
Schiller, P., Burchardi, N., Niestroj, M. and Kieser, M. (2012). Quality of Reporting of Clinical Non-Inferiority and Equivalence Randomised Trials – Update and Extension. Trials 13 214. https://doi.org/10.1186/1745-6215-13-214.
Sidi, Y. and Harel, O. (2021). Noninferiority Clinical Trials With Binary Outcome: Statistical Methods Used in Practice. Statistics in Biopharmaceutical Research 13(4) 476–482. https://doi.org/10.1080/19466315.2020.1796780.
VanderBeek, B. L., Ying, G.-S. and Hubbard, R. A. (2021). Survival Analysis vs Longitudinal Modeling With Multiple Imputation—A False Dichotomy. JAMA Ophthalmology 139(5) 588. https://doi.org/10.1001/jamaophthalmol.2021.0508.
White, I. R. and Royston, P. (2009). Imputing Missing Covariate Values for the Cox Model. Statistics in Medicine 28(15) 1982–1998. https://doi.org/10.1002/sim.3618. https://doi.org/10.1002/sim.3618. MR2750806
Zhao, Y., Herring, A. H., Zhou, H., Ali, M. W. and Koch, G. G. (2014). A Multiple Imputation Method for Sensitivity Analysis of Time-to-Event Data with Possibly Informative Censoring. Journal of Biopharmaceutical Statistics 24(2) 229–253. https://doi.org/10.1080/10543406.2013.860769. MR3196139