The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2025)
  4. Linear Mixed-effects Models for Censored ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Linear Mixed-effects Models for Censored Data with Serial Correlation Errors Using the Multivariate Student’s t-distribution
Volume 3, Issue 1 (2025), pp. 119–134
Kelin Zhong   Rommy C. Olivari   Aldo M. Garay     All authors (4)

Authors

 
Placeholder
https://doi.org/10.51387/24-NEJSDS68
Pub. online: 30 July 2024      Type: Methodology Article      Open accessOpen Access
Area: Statistical Methodology

Accepted
6 July 2024
Published
30 July 2024

Abstract

The purpose of this paper is to develop a practical framework for the analysis of the linear mixed-effects models for censored or missing data with serial correlation errors, using the multivariate Student’s t-distribution, being a flexible alternative to the use of the corresponding normal distribution. We propose an efficient ECM algorithm for computing the maximum likelihood estimates for these models with standard errors of the fixed effects and likelihood function as a by-product. This algorithm uses closed-form expressions at the E-step, which relies on formulas for the mean and variance of a truncated multivariate Student’s t-distribution. In order to illustrate the usefulness of the proposed new methodology, artificial and a real dataset are analyzed. The proposed algorithm and methods are implemented in the R package ARpLMEC.

References

[1] 
Abad, A. A., Litière, S. and Molenberghs, G. (2010). Testing for misspecification in generalized linear mixed models. Biostatistics 11(4) 771–786.
[2] 
Arellano-Valle, R. B. and Bolfarine, H. (1995). On some characterizations of the t-distribution. Statistics & Probability Letters 25(1) 79–85. https://doi.org/10.1016/0167-7152(94)00208-P. MR1364821
[3] 
Barndorff-Nielsen, O. and Schou, G. (1973). On the parametrization of autoregressive models by partial autocorrelations. Journal of Multivariate Analysis 3(4) 408–419. https://doi.org/10.1016/0047-259X(73)90030-4. MR0343510
[4] 
Bartolucci, F. and Farcomeni, A. (2009). A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. Journal of the American Statistical Association 104(486) 816–831. https://doi.org/10.1198/jasa.2009.0107. MR2751454
[5] 
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3) 307–327. https://doi.org/10.1016/0304-4076(86)90063-1. MR0853051
[6] 
Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics 69(3) 542–547.
[7] 
Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. MR0436499
[8] 
Box, G. E. P., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons. MR3379415
[9] 
Chi, E. M. and Reinsel, G. C. (1989). Models for longitudinal data with random effects and AR(1) errors. Journal of the American Statistical Association 84(406) 452–459. MR1010333
[10] 
Drikvandi, R. (2020). Nonlinear mixed-effects models with misspecified random-effects distribution. Pharmaceutical Statistics 19(3) 187–201.
[11] 
Drikvandi, R., Verbeke, G. and Molenberghs, G. (2017). Diagnosing misspecification of the random-effects distribution in mixed models. Biometrics 73(1) 63–71. https://doi.org/10.1111/biom.12551. MR3632352
[12] 
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4) 987–1007. https://doi.org/10.2307/1912773. MR0666121
[13] 
Garay, A. M., Castro, L. M., Leskow, J. and Lachos, V. H. (2017). Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution. Statistical Methods in Medical Research 26(2) 542–566. https://doi.org/10.1177/0962280214551191. MR3635923
[14] 
Lachos, V. H., Ghosh, P. and Arellano-Valle, R. B. (2010). Likelihood based inference for skew-normal independent linear mixed models. Statistica Sinica 20(1) 303–322. MR2640696
[15] 
Lachos, V. H., A. Matos, L., Castro, L. M. and Chen, M.-H. (2019). Flexible longitudinal linear mixed models for multiple censored responses data. Statistics in Medicine 38(6) 1074–1102. https://doi.org/10.1002/sim.8017. MR3916716
[16] 
Lin, T. I. and Lee, J. C. (2007). Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution. Journal of Statistical Planning and Inference 137(2) 484–495. https://doi.org/10.1016/j.jspi.2005.12.010. MR2298952
[17] 
Lin, T. I. and Lee, J. C. (2003). On modelling data from degradation sample paths over time. Australian & New Zealand Journal of Statistics 45(3) 257–270. https://doi.org/10.1111/1467-842X.00282. MR1999510
[18] 
Lin, T. I. and Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25(8) 1397–1412. https://doi.org/10.1002/sim.2384. MR2226794
[19] 
Lin, T.-I. and Wang, W.-L. (2020). Multivariate-t linear mixed models with censored responses, intermittent missing values and heavy tails. Statistical Methods in Medical Research 29(5) 1288–1304. https://doi.org/10.1177/0962280219857103. MR4097145
[20] 
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 44(2) 226–233. MR0676213
[21] 
Matos, L. A., Prates, M. O., Chen, M. H. and Lachos, V. H. (2013). Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution. Statistica Sinica 23 1323–1342. MR3114716
[22] 
Matos, L. A., Castro, L. M. and Lachos, V. H. (2016). Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads. Test 25(4) 627–653. https://doi.org/10.1007/s11749-016-0486-2. MR3554408
[23] 
Matos, L. A., Bandyopadhyay, D., Castro, L. M. and Lachos, V. H. (2015). Influence assessment in censored mixed-effects models using the multivariate Student’s t distribution. Journal of Multivariate Analysis 141 104–117. https://doi.org/10.1016/j.jmva.2015.06.014. MR3390061
[24] 
Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 81 633–648. https://doi.org/10.1093/biomet/80.2.267. MR1243503
[25] 
Muñoz, A., Carey, V., Schouten, J. P., Segal, M. and Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48 733–742.
[26] 
Olivari, R. C., Garay, A. M., Lachos, V. H. and Matos, L. A. (2021). Mixed-effects models for censored data with autoregressive errors. Journal of Biopharmaceutical Statistics 31(3) 273–294.
[27] 
Olivari, R. C., Zhong, K., Garay, A. M. and Lachos, V. H. (2022). ARpLMEC: Fitting autoregressive censored mixed-effects models. R package version 2.3. https://CRAN.R-project.org/package=ARpLMEC.
[28] 
Pinheiro, J. C., Liu, C. H. and Wu, Y. N. (2001). Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate t-distribution. Journal of Computational and Graphical Statistics 10 249–276. https://doi.org/10.1198/10618600152628059. MR1939700
[29] 
Schumacher, F. L., Lachos, V. H. and Dey, D. K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics 45(4) 375–392. https://doi.org/10.1002/cjs.11338. MR3729976
[30] 
Vaida, F. and Liu, L. (2009). Fast implementation for normal mixed effects models with censored response. Journal of Computational and Graphical Statistics 18(4) 797–817. https://doi.org/10.1198/jcgs.2009.07130. MR2750442
[31] 
Valeriano, K., Matos, L. A. and Morales, C. G. (2022). relliptical: The truncated elliptical family of distributions. R package version 1.1.0. https://CRAN.R-project.org/package=relliptical.
[32] 
Wang, W.-L. (2013). Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes. Biometrical Journal 55(4) 554–571. https://doi.org/10.1002/bimj.201200001. MR3079990
[33] 
Wang, W.-L., Lin, T.-I. and Lachos, V. H. (2018). Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Statistical Methods in Medical Research 27(1) 48–64. https://doi.org/10.1177/0962280215620229. MR3745654

Full article PDF XML
Full article PDF XML

Copyright
© 2025 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
AR(p) models Censored data Damped exponential correlation EM algorithm Linear mixed effects models Student’s t-distribution

Funding
The research of Aldo M. Garay was supported by Grant APQ-0950-1.02/22 from Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco FACEPE - Brazil and by Grant 441476/2023-6 from National Council for Scientific and Technological Development – CNPq – Brazil. Victor H. Lachos acknowledges the partial financial support from the Office of the Vice President for Research and UConn - CLAS’s Summer Research Funding Initiative 2023.

Metrics
since December 2021
346

Article info
views

65

Full article
views

86

PDF
downloads

29

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy