Linear Mixed-effects Models for Censored Data with Serial Correlation Errors Using the Multivariate Student’s t-distribution
Pub. online: 30 July 2024
Type: Statistical Methodology
Open Access
Accepted
6 July 2024
6 July 2024
Published
30 July 2024
30 July 2024
Abstract
The purpose of this paper is to develop a practical framework for the analysis of the linear mixed-effects models for censored or missing data with serial correlation errors, using the multivariate Student’s t-distribution, being a flexible alternative to the use of the corresponding normal distribution. We propose an efficient ECM algorithm for computing the maximum likelihood estimates for these models with standard errors of the fixed effects and likelihood function as a by-product. This algorithm uses closed-form expressions at the E-step, which relies on formulas for the mean and variance of a truncated multivariate Student’s t-distribution. In order to illustrate the usefulness of the proposed new methodology, artificial and a real dataset are analyzed. The proposed algorithm and methods are implemented in the R package ARpLMEC.
References
Arellano-Valle, R. B. and Bolfarine, H. (1995). On some characterizations of the t-distribution. Statistics & Probability Letters 25(1) 79–85. https://doi.org/10.1016/0167-7152(94)00208-P. MR1364821
Barndorff-Nielsen, O. and Schou, G. (1973). On the parametrization of autoregressive models by partial autocorrelations. Journal of Multivariate Analysis 3(4) 408–419. https://doi.org/10.1016/0047-259X(73)90030-4. MR0343510
Bartolucci, F. and Farcomeni, A. (2009). A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. Journal of the American Statistical Association 104(486) 816–831. https://doi.org/10.1198/jasa.2009.0107. MR2751454
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3) 307–327. https://doi.org/10.1016/0304-4076(86)90063-1. MR0853051
Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. MR0436499
Box, G. E. P., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons. MR3379415
Chi, E. M. and Reinsel, G. C. (1989). Models for longitudinal data with random effects and AR(1) errors. Journal of the American Statistical Association 84(406) 452–459. MR1010333
Drikvandi, R., Verbeke, G. and Molenberghs, G. (2017). Diagnosing misspecification of the random-effects distribution in mixed models. Biometrics 73(1) 63–71. https://doi.org/10.1111/biom.12551. MR3632352
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4) 987–1007. https://doi.org/10.2307/1912773. MR0666121
Garay, A. M., Castro, L. M., Leskow, J. and Lachos, V. H. (2017). Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution. Statistical Methods in Medical Research 26(2) 542–566. https://doi.org/10.1177/0962280214551191. MR3635923
Lachos, V. H., Ghosh, P. and Arellano-Valle, R. B. (2010). Likelihood based inference for skew-normal independent linear mixed models. Statistica Sinica 20(1) 303–322. MR2640696
Lachos, V. H., A. Matos, L., Castro, L. M. and Chen, M.-H. (2019). Flexible longitudinal linear mixed models for multiple censored responses data. Statistics in Medicine 38(6) 1074–1102. https://doi.org/10.1002/sim.8017. MR3916716
Lin, T. I. and Lee, J. C. (2007). Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution. Journal of Statistical Planning and Inference 137(2) 484–495. https://doi.org/10.1016/j.jspi.2005.12.010. MR2298952
Lin, T. I. and Lee, J. C. (2003). On modelling data from degradation sample paths over time. Australian & New Zealand Journal of Statistics 45(3) 257–270. https://doi.org/10.1111/1467-842X.00282. MR1999510
Lin, T. I. and Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25(8) 1397–1412. https://doi.org/10.1002/sim.2384. MR2226794
Lin, T.-I. and Wang, W.-L. (2020). Multivariate-t linear mixed models with censored responses, intermittent missing values and heavy tails. Statistical Methods in Medical Research 29(5) 1288–1304. https://doi.org/10.1177/0962280219857103. MR4097145
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 44(2) 226–233. MR0676213
Matos, L. A., Prates, M. O., Chen, M. H. and Lachos, V. H. (2013). Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution. Statistica Sinica 23 1323–1342. MR3114716
Matos, L. A., Castro, L. M. and Lachos, V. H. (2016). Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads. Test 25(4) 627–653. https://doi.org/10.1007/s11749-016-0486-2. MR3554408
Matos, L. A., Bandyopadhyay, D., Castro, L. M. and Lachos, V. H. (2015). Influence assessment in censored mixed-effects models using the multivariate Student’s t distribution. Journal of Multivariate Analysis 141 104–117. https://doi.org/10.1016/j.jmva.2015.06.014. MR3390061
Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 81 633–648. https://doi.org/10.1093/biomet/80.2.267. MR1243503
Olivari, R. C., Zhong, K., Garay, A. M. and Lachos, V. H. (2022). ARpLMEC: Fitting autoregressive censored mixed-effects models. R package version 2.3. https://CRAN.R-project.org/package=ARpLMEC.
Pinheiro, J. C., Liu, C. H. and Wu, Y. N. (2001). Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate t-distribution. Journal of Computational and Graphical Statistics 10 249–276. https://doi.org/10.1198/10618600152628059. MR1939700
Schumacher, F. L., Lachos, V. H. and Dey, D. K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics 45(4) 375–392. https://doi.org/10.1002/cjs.11338. MR3729976
Vaida, F. and Liu, L. (2009). Fast implementation for normal mixed effects models with censored response. Journal of Computational and Graphical Statistics 18(4) 797–817. https://doi.org/10.1198/jcgs.2009.07130. MR2750442
Valeriano, K., Matos, L. A. and Morales, C. G. (2022). relliptical: The truncated elliptical family of distributions. R package version 1.1.0. https://CRAN.R-project.org/package=relliptical.
Wang, W.-L. (2013). Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes. Biometrical Journal 55(4) 554–571. https://doi.org/10.1002/bimj.201200001. MR3079990
Wang, W.-L., Lin, T.-I. and Lachos, V. H. (2018). Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Statistical Methods in Medical Research 27(1) 48–64. https://doi.org/10.1177/0962280215620229. MR3745654