The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 1 (2024)
  4. The Total i3+3 (Ti3+3) Design for Assess ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

The Total i3+3 (Ti3+3) Design for Assessing Multiple Types and Grades of Toxicity in Phase I Trials
Volume 2, Issue 1 (2024), pp. 72–85
Meizi Liu   Yuan Ji   Ji Lin  

Authors

 
Placeholder
https://doi.org/10.51387/22-NEJSDS7
Pub. online: 4 October 2022      Type: Methodology Article      Open accessOpen Access
Area: Cancer Research

Published
4 October 2022

Abstract

Phase I trials investigate the toxicity profile of a new treatment and identify the maximum tolerated dose for further evaluation. Most phase I trials use a binary dose-limiting toxicity endpoint to summarize the toxicity profile of a dose. In reality, reported toxicity information is much more abundant, including various types and grades of adverse events. Building upon the i3+3 design (Liu et al., 2020), we propose the Ti3+3 design, in which the letter “T” represents “total” toxicity. The proposed design takes into account multiple toxicity types and grades by computing the toxicity burden at each dose. The Ti3+3 design aims to achieve desirable operating characteristics using a simple statistics framework that utilizes“toxicity burden interval” (TBI). Simulation results show that Ti3+3 demonstrates comparable performance with existing more complex designs.

References

[1] 
National Cancer Institute. (2018). Common terminology criteria for adverse events (ctcae). Version 3.0.
[2] 
Storer, B. E. (1989). Design and analysis of phase i clinical trials. Biometrics 925–937. https://doi.org/10.2307/2531693. MR1029610
[3] 
O’Quigley, J., Pepe, M. and Fisher, L. (1990). Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 33–48. https://doi.org/10.2307/2531628. MR1059105
[4] 
Ji, Y., Liu, P., Li, Y. and Bekele, B. N. (2010). A modified toxicity probability interval method for dose-finding trials. Clinical Trials 7(6) 653–663.
[5] 
Ji, Y. and Wang, S. -J. (2013). Modified toxicity probability interval design: a safer and more reliable method than the 3+ 3 design for practical phase i trials. journal of Clinical Oncology 31(14) 1785.
[6] 
Liu, S. and Yuan, Y. (2015). Bayesian optimal interval designs for phase i clinical trials. Journal of the Royal Statistical Society: Series C (Applied Statistics) 64(3) 507–523. https://doi.org/10.1111/rssc.12089. MR3325461
[7] 
Yan, F., Mandrekar, S. J. and Yuan, Y. (2017). Keyboard: a novel bayesian toxicity probability interval design for phase i clinical trials. Clinical Cancer Research 23(15) 3994–4003.
[8] 
Liu, M., Wang, S.-J. and Ji, Y. (2020). The i3+3 design for phase i clinical trials. Journal of Biopharmaceutical Statistics 30(2) 294–304.
[9] 
U.S. Food and Drug Administration (2022). Project optimus. https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
[10] 
Penel, N., Adenis, A., Clisant, S. and Bonneterre, J. (2011). Nature and subjectivity of dose-limiting toxicities in contemporary phase 1 trials: comparison of cytotoxic versus non-cytotoxic drugs. Investigational new drugs 29(6) 1414–1419.
[11] 
Le Tourneau, C., Diéras, V., Tresca, P., Cacheux, W. and Paoletti, X. (2010). Current challenges for the early clinical development of anticancer drugs in the era of molecularly targeted agents. Targeted oncology 5(1) 65–72.
[12] 
Shah, M., Rahman, A., Theoret, M. R. and Pazdur, R. (2021). The drug-dosing conundrum in oncology-when less is more. The New England journal of medicine 385(16) 1445–1447.
[13] 
Bekele, B. N. and Thall, P. F. (2004). Dose-finding based on multiple toxicities in a soft tissue sarcoma trial. Journal of the American Statistical Association 99(465) 26–35. https://doi.org/10.1198/016214504000000043. MR2061885
[14] 
Yuan, Z., Chappell, R. and Bailey, H. (2007). The continual reassessment method for multiple toxicity grades: a bayesian quasi-likelihood approach. Biometrics 63(1) 173–179. https://doi.org/10.1111/j.1541-0420.2006.00666.x. MR2345586
[15] 
Lee, S. M., Hershman, D., Martin, P., Leonard, J. and Cheung, K. (2009). Validation of toxicity burden score for use in phase i clinical trials. Journal of Clinical Oncology 27(15_suppl) 2514.
[16] 
Lee, S. M., Cheng, B. and Cheung, Y. K. (2011). Continual reassessment method with multiple toxicity constraints. Biostatistics 12(2) 386–398.
[17] 
Van Meter, E. M., Garrett-Mayer, E. and Bandyopadhyay, D. (2012). Dose-finding clinical trial design for ordinal toxicity grades using the continuation ratio model: an extension of the continual reassessment method. Clinical trials 9(3) 303–313.
[18] 
Ezzalfani, M., Zohar, S., Qin, R., Mandrekar, S. J. and Le Deley, M. -C. (2013). Dose-finding designs using a novel quasi-continuous endpoint for multiple toxicities. Statistics in medicine 32(16) 2728–2746. https://doi.org/10.1002/sim.5737. MR3069903
[19] 
Mu, R., Yuan, Y., Xu, J., Mandrekar, S. J. and Yin, J. (2019). gboin: a unified model-assisted phase i trial design accounting for toxicity grades, and binary or continuous end points. Journal of the Royal Statistical Society: Series C (Applied Statistics) 68(2) 289–308. https://doi.org/10.1111/rssc.12263. MR3902995
[20] 
Hobbs, B. P., Thall, P. F. and Lin, S. H. (2016). Bayesian group sequential clinical trial design using total toxicity burden and progression-free survival. Journal of the Royal Statistical Society: Series C (Applied Statistics) 65(2) 273–297. https://doi.org/10.1111/rssc.12117. MR3456689
[21] 
Milton, D. R., Lin, S. H. and Hobbs, B. P. (2020). Comparing radiation modalities with trimodality therapy using total toxicity burden. International Journal of Radiation Oncology, Biology, Physics 107(5) 1001–1005.
[22] 
Lin, S. H., Hobbs, B. P., Verma, V., Tidwell, R. S., Smith, G. L., Lei, X., Corsini, E. M., Mok, I., Wei, X., Yao, L. et al. (2020). Randomized phase iib trial of proton beam therapy versus intensity-modulated radiation therapy for locally advanced esophageal cancer. Journal of Clinical Oncology 38(14) 1569.
[23] 
Morita, S., Thall, P. F. and Müller, P. (2008). Determining the effective sample size of a parametric prior. Biometrics 64(2) 595–602. https://doi.org/10.1111/j.1541-0420.2007.00888.x. MR2432433
[24] 
Robertson, T. (1988). Order restricted statistical inference. Technical report.
[25] 
U.S. Food and Drug Administration (2022). Adverse event reporting system.
[26] 
Guo, W., Wang, S. -J., Yang, S., Lynn, H. and Ji, Y. (2017). A bayesian interval dose-finding design addressing ockham’s razor: mtpi-2. Contemporary clinical trials 58. 23–33.
[27] 
Ivanova, A., Flournoy, N. and Chung, Y. (2007). Cumulative cohort design for dose-finding. journal of Statistical Planning and Inference 137(7) 2316–2327. https://doi.org/10.1016/j.jspi.2006.07.009. MR2325437
[28] 
Mair, P., Hornik, K. and de Leeuw, J. (2009). Isotone optimization in r: pool-adjacent-violators algorithm (pava) and active set methods. Journal of statistical software 32(5) 1–24.
[29] 
Lee, S. M. and Cheung, Y. K. (2009). Model calibration in the continual reassessment method. Clinical Trials 3(6) 227–238.

Full article PDF XML
Full article PDF XML

Copyright
© 2024 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Interval design Multiple toxicity grades Rule-based design Toxicity burden

Metrics
since December 2021
689

Article info
views

322

Full article
views

349

PDF
downloads

121

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy