The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2025)
  4. Bayesian Inference of A Unified Estimand ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Bayesian Inference of A Unified Estimand under Survival Models with Cure Fraction
Volume 3, Issue 1 (2025), pp. 28–41
Hongfei Li   Qian H. Li   Ming-Hui Chen  

Authors

 
Placeholder
https://doi.org/10.51387/24-NEJSDS70
Pub. online: 12 September 2024      Type: Methodology Article      Open accessOpen Access
Area: Cancer Research

Accepted
20 July 2024
Published
12 September 2024

Abstract

Cure models are gaining more and more popularity for modeling time-to-event data for different forms of cancer, for which a considerable proportion of patients are considered “cured.” Two types of cure models are widely used, the mixture cure model (MCM) and the promotion time cure model (PTCM). In this article, we propose a unified estimand Δ for comparing treatment and control groups under the survival models with cure fraction, which focuses on whether the treatment extends survival for patients. In addition, we introduce a general framework of Bayesian inference under the cure models. Simulation studies demonstrate that regardless of whether the model is correctly specified, the inference of the unified estimand Δ yields desirable empirical performance. We analyze the ECOG’s melanoma cancer data E1684 via the unified estimand Δ under different models to further demonstrate the proposed methodology.

References

[1] 
Berkson, J. and Gage, R. P. (1952). Survival Curve for Cancer Patients. Journal of American Statistical Association 47(259) 501–515.
[2] 
Breslow, N. E., Edler, L. and Berger, J. (1984). A Two-Sample Censored-Data Rank Test for Acceleration. Biometrics 40(4) 1049–1062. https://doi.org/10.2307/2531155.
[3] 
Chen, M. -H., Ibrahim, J. G. and Sinha, D. (1999). A New Bayesian Model for Survival Data with a Surviving Fraction. Journal of the American Statistical Association 94(447) 909–919. https://doi.org/10.1080/01621459.1999.10474196. MR1723307
[4] 
Chen, M. -H., Shao, Q. -M. and Ibrahim, J. G. (2000). Other Topics. In Monte Carlo Methods in Bayesian Computation 307–355. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4612-1276-8_10.
[5] 
Chen, Q., Zeng, D., Ibrahim, J. G., Chen, M. H., Pan, Z. and Xue, X. (2015). Quantifying the average of the time-varying hazard ratio via a class of transformations. Lifetime Data Analysis 21(2) 259–279. https://doi.org/10.1007/s10985-014-9301-0. MR3324230
[6] 
Cox, T. F. and Czanner, G. (2016). A practical divergence measure for survival distributions that can be estimated from Kaplan-Meier curves. Statistics in Medicine 35(14) 2406–2421. https://doi.org/10.1002/sim.6868. MR3513521
[7] 
Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38(4) 1041–1046. https://doi.org/10.2307/2529885.
[8] 
Farewell, V. T. (1986). Mixture models in survival analysis: Are they worth the risk? Canadian Journal of Statistics 14(3) 257–262. https://doi.org/10.2307/3314804. MR0859638
[9] 
Fleming, T. R. and Harrington, D. P. (1981). A class of hypothesis tests for one and two sample censored survival data. Communications in Statistics - Theory and Methods 10(8) 763–794. https://doi.org/10.1080/03610928108828073.
[10] 
Food and Drug Administration (2021). E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity Analysis in Clinical Trials. https://www.federalregister.gov/documents/2021/05/12/2021-10066/e9r1-statistical-principles-for-clinical-trials-addendum-estimands-and-sensitivity-analysis-in.
[11] 
Food and Drug Administration (2023). Adjusting for Covariates in Randomized Clinical Trials for Drugs and Biological Products. https://www.federalregister.gov/documents/2023/05/26/2023-11263/adjusting-for-covariates-in-randomized-clinical-trials-for-drugs-and-biological-products-guidance.
[12] 
Gray, R. J. and Tsiatis, A. A. (1989). A linear rank test for use when the main interest is in differences in cure rates. Biometrics 45(3) 899–904. https://doi.org/10.2307/2531691.
[13] 
Ibrahim, J. G., Chen, M. -H. and Sinha, D. (2001). Cure Rate Models. In Bayesian Survival Analysis 155–207. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4757-3447-8_5. MR1876598
[14] 
Ibrahim, J. G., Chen, M. and Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88(2) 551–564. https://doi.org/10.1093/biomet/88.2.551. MR1844851
[15] 
Kirkwood, J. M., Strawderman, M. H., Ernstoff, M. S., Smith, T. J., Borden, E. C. and Blum, R. H. (1996). Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. Journal of Clinical Oncology 14(1) 7–17. https://doi.org/10.1200/JCO.1996.14.1.7.
[16] 
Lee, J. W. (1996). Some Versatile Tests Based on the Simultaneous Use of Weighted Log-Rank Statistics. Biometrics 52(2) 721–725. https://doi.org/10.2307/2532911.
[17] 
Lee, S. H. (2007). On the versatility of the combination of the weighted log-rank statistics. Computational Statistics and Data Analysis 51(12) 6557–6564. https://doi.org/10.1016/j.csda.2007.03.006. MR2408615
[18] 
Li, H., Tiwari, R. and Li, Q. H. (2022). Conditional borrowing external data to establish a hybrid control arm in randomized clinical trials. Journal of Biopharmaceutical Statistics 32(6) 954–968. https://doi.org/10.1080/10543406.2021.2021227.
[19] 
Lin, R. S., Lin, J., Roychoudhury, S., Anderson, K. M., Hu, T., Huang, B., Leon, L. F., Liao, J. J. Z., Liu, R., Luo, X., Mukhopadhyay, P., Qin, R., Tatsuoka, K., Wang, X., Wang, Y., Zhu, J., Chen, T. -T. and Iacona, R. (2020). Alternative Analysis Methods for Time to Event Endpoints Under Nonproportional Hazards: A Comparative Analysis. Statistics in Biopharmaceutical Research 12(2) 187–198. https://doi.org/10.1080/19466315.2019.1697738.
[20] 
Pepe, M. S. and Fleming, T. R. (1991). Weighted Kaplan-Meier Statistics: Large Sample and Optimality Considerations. Journal of the Royal Statistical Society: Series B (Methodological) 53(2) 341–352. https://doi.org/10.1111/j.2517-6161.1991.tb01827.x. MR1108331
[21] 
Royston, P. and Parmar, M. K. (2013). Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Medical Research Methodology 13(1) 152. https://doi.org/10.1186/1471-2288-13-152.
[22] 
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B, Statistical methodology 64(4) 583–639. https://doi.org/10.1111/1467-9868.00353. MR1979380
[23] 
Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox Proportional Hazards Cure Model. Biometrics 56(1) 227–236. https://doi.org/10.1111/j.0006-341X.2000.00227.x. MR1767631
[24] 
Yin, G. and Ibrahim, J. G. (2005). Cure Rate Models: A Unified Approach. The Canadian Journal of Statistics / La Revue Canadienne de Statistique 33(4) 559–570. https://doi.org/10.1002/cjs.5550330407. MR2232380
[25] 
Zhang, J., Guo, Y., Zhou, J. and Rasmussen, H. E. (2023). PubPredict: Prediction of progression and survival in oncology leveraging publications and early efficacy data. Pharmaceutical Statistics 22(5) 963–973. https://doi.org/10.1002/pst.2321. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pst.2321.

Full article PDF XML
Full article PDF XML

Copyright
© 2025 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Cure model E1684 MCMC Bayesian hypothesis testing Covariate adjustment G-computation

Metrics
since December 2021
187

Article info
views

178

Full article
views

57

PDF
downloads

27

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy