Heteroscedastic Growth Curve Modeling with Shape-Restricted Splines
Pub. online: 28 October 2024
Type: Biomedical Research
Open Access
Accepted
8 July 2024
8 July 2024
Published
28 October 2024
28 October 2024
Abstract
Growth curve analysis (GCA) has a wide range of applications in various fields where growth trajectories need to be modeled. Heteroscedasticity is often present in the error term, which can not be handled with sufficient flexibility by standard linear fixed or mixed-effects models. One situation that has been addressed is where the error variance is characterized by a linear predictor with certain covariates. A frequently encountered scenario in GCA, however, is one in which the variance is a smooth function of the mean with known shape restrictions. A naive application of standard linear mixed-effects models would underestimate the variance of the fixed effects estimators and, consequently, the uncertainty of the estimated growth curve. We propose to model the variance of the response variable as a shape-restricted (increasing/decreasing; convex/concave) function of the marginal or conditional mean using shape-restricted splines. A simple iteratively reweighted fitting algorithm that takes advantage of existing software for linear mixed-effects models is developed. For inference, a parametric bootstrap procedure is recommended. Our simulation study shows that the proposed method gives satisfactory inference with moderate sample sizes. The utility of the method is demonstrated using two real-world applications.
References
Akaike, H. (1998). Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike 199–213 Springer. MR1486823
Andrews, D. W. K. (1999). Estimation When a Parameter is on a Boundary. Econometrica 67(6) 1341–1383. Accessed 2023-05-02. https://doi.org/10.1111/1468-0262.00082. MR1720781
Barlow, R. E. and Brunk, H. D. (1972). The Isotonic Regression Problem and Its Dual. Journal of the American Statistical Association 67(337) 140–147. MR0314205
Carroll, R. J. (1982). Adapting for Heteroscedasticity in Linear Models. The Annals of Statistics 10(4) 1224–1233. MR0673657
Curry, H. B. and Schoenberg, I. J. (1966). On Pólya Frequency Functions IV: the Fundamental Spline Functions and Their Limits. Journal d’Analyse Mathématique 17(1) 71–107. https://doi.org/10.1007/BF02788653. MR0218800
Das, S. and Krishen, A. (1999). Some Bootstrap Methods in Nonlinear Mixed-Effect Models. Journal of Statistical Planning and Inference 75(2) 237–245. https://doi.org/10.1016/S0378-3758(98)00145-1. MR1678974
Hedeker, D., Mermelstein, R. and Demirtas, H. (2008). An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data. Biometrics 64(2) 627–634. https://doi.org/10.1111/j.1541-0420.2007.00924.x. MR2432437
Hedeker, D., Mermelstein, R. J. and Demirtas, H. (2012). Modeling Between-subject and Within-subject Variances in Ecological Momentary Assessment Data Using Mixed-effects Location Scale Models. Statistics in Medicine 31(27) 3328–3336. https://doi.org/10.1002/sim.5338. MR3041814
Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-Coefficient Models and Basis Function Approximations for the Analysis of Repeated Measurements. Biometrika 89(1) 111–128. https://doi.org/10.1093/biomet/89.1.111. MR1888349
Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data. Statistica Sinica 14 763–788. MR2087972
Liang, K. -Y. and Zeeger, S. L. (1986). Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 73(1) 13–22. https://doi.org/10.1093/biomet/73.1.13. MR0836430
MacKinnon, J. G. and White, H. (1985). Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties. Journal of Econometrics 29(3) 305–325. https://doi.org/10.1016/0304-4076(85)90158-7.
Meyer, M. C. (2008). Inference Using Shape-Restricted Regression Splines. The Annals of Applied Statistics 2(3) 1013–1033. https://doi.org/10.1214/08-AOAS167. MR2516802
Muller, H. -G. and Stadtmuller, U. (1987). Estimation of Heteroscedasticity in Regression Analysis. The Annals of Statistics 15(2) 610–625. https://doi.org/10.1214/aos/1176350364. MR0888429
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team (2022). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-157. https://CRAN.R-project.org/package=nlme.
Quinn, A., Blanco, C., Perego, C., Finzi, G., La Rosa, S., Capella, C., Guardado-Mendoza, R., Casiraghi, F., Gastaldelli, A., Johnson, M., Dick, E. and Folli, F. (2012). The Ontogeny of the Endocrine Pancreas in the Fetal/Newborn Baboon. The Journal of Endocrinology 214 289–299. https://doi.org/10.1530/JOE-12-0070.
Rice, J. A. and Wu, C. O. (2001). Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves. Biometrics 57(1) 253–259. https://doi.org/10.1111/j.0006-341X.2001.00253.x. MR1833314
Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized Additive Models for Location, Scale and Shape (with Discussion). Applied Statistics 54 507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x. MR2137253
Rigby, R. A. and Stasinopoulos, D. M. (2014). Automatic Smoothing Parameter Selection in GAMLSS With an Application to Centile Estimation. Statistical Methods in Medical Research 23(4) 318–332. https://doi.org/10.1177/0962280212473302. MR3246533
Rigby, R. A., Stasinopoulos, D. M. and Voudouris, V. (2013). Discussion: A Comparison of GAMLSS with Quantile Regression. Statistical Modelling 13(4) 335–348. https://doi.org/10.1177/1471082X13494316. MR3179531
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics 461–464. MR0468014
Smyth, G. K. (1989). Generalized Linear Models with Varying Dispersion. Journal of the Royal Statistical Society: Series B (Methodological) 51(1) 47–60. MR0984992
Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V. and De Bastiani, F. (2017) Flexible Regression and Smoothing: Using GAMLSS in R. CRC Press, Boca Raton, FL. https://doi.org/10.1177/1471082X18759144. MR3799717
Wang, T. and Merkle, E. C. (2018). merDeriv: Derivative Computations for Linear Mixed Effects Models with Application to Robust Standard Errors. Journal of Statistical Software, Code Snippets 87(1) 1–16. https://doi.org/10.18637/jss.v087.c01.
Wang, X. and Li, F. (2008). Isotonic Smoothing Spline Regression. Journal of Computational and Graphical Statistics 17(1) 21–37. https://doi.org/10.1198/106186008X285627. MR2424793
Wei, Y., Pere, A., Koenker, R. and He, X. (2006). Quantile Regression Methods for Reference Growth Charts. Statistics in Medicine 25(8) 1369–1382. https://doi.org/10.1002/sim.2271. MR2226792
White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 48(4) 817–838. https://doi.org/10.2307/1912934. MR0575027
Wu, C. O. and Tian, X. (2018) Nonparametric Models for Longitudinal Data: with Implementation in R. CRC Press. https://doi.org/10.1201/b20631. MR3838457
Zeileis, A. (2004). Econometric Computing with HC and HAC Covariance Matrix Estimators. Journal of Statistical Software 11(10) 1–17. https://doi.org/10.18637/jss.v011.i10.
Zeileis, A. (2006). Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software 16(9) 1–16. https://doi.org/10.18637/jss.v016.i09.
Zeileis, A., Köll, S. and Graham, N. (2020). Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R. Journal of Statistical Software 95(1) 1–36. https://doi.org/10.18637/jss.v095.i01.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. and Smith, G. M. (2009) Mixed Effects Models and Extensions in Ecology With R. Springer, New York. https://doi.org/10.1007/978-0-387-87458-6. MR2722501