The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2025)
  4. Heteroscedastic Growth Curve Modeling wi ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Heteroscedastic Growth Curve Modeling with Shape-Restricted Splines
Volume 3, Issue 1 (2025), pp. 1–15
Jieying Jiao   Wenling Song   Yishu Xue     All authors (4)

Authors

 
Placeholder
https://doi.org/10.51387/24-NEJSDS69
Pub. online: 28 October 2024      Type: Methodology Article      Open accessOpen Access
Area: Biomedical Research

Accepted
8 July 2024
Published
28 October 2024

Abstract

Growth curve analysis (GCA) has a wide range of applications in various fields where growth trajectories need to be modeled. Heteroscedasticity is often present in the error term, which can not be handled with sufficient flexibility by standard linear fixed or mixed-effects models. One situation that has been addressed is where the error variance is characterized by a linear predictor with certain covariates. A frequently encountered scenario in GCA, however, is one in which the variance is a smooth function of the mean with known shape restrictions. A naive application of standard linear mixed-effects models would underestimate the variance of the fixed effects estimators and, consequently, the uncertainty of the estimated growth curve. We propose to model the variance of the response variable as a shape-restricted (increasing/decreasing; convex/concave) function of the marginal or conditional mean using shape-restricted splines. A simple iteratively reweighted fitting algorithm that takes advantage of existing software for linear mixed-effects models is developed. For inference, a parametric bootstrap procedure is recommended. Our simulation study shows that the proposed method gives satisfactory inference with moderate sample sizes. The utility of the method is demonstrated using two real-world applications.

References

[1] 
Akaike, H. (1998). Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike 199–213 Springer. MR1486823
[2] 
Andrews, D. W. K. (1999). Estimation When a Parameter is on a Boundary. Econometrica 67(6) 1341–1383. Accessed 2023-05-02. https://doi.org/10.1111/1468-0262.00082. MR1720781
[3] 
Barlow, R. E. and Brunk, H. D. (1972). The Isotonic Regression Problem and Its Dual. Journal of the American Statistical Association 67(337) 140–147. MR0314205
[4] 
Bolker, B. (2016). Wald Errors of Variances. Online; accessed Jan 3, 2022.
[5] 
Carroll, R. J. (1982). Adapting for Heteroscedasticity in Linear Models. The Annals of Statistics 10(4) 1224–1233. MR0673657
[6] 
Carter, R. L., Resnick, M. B., Ariet, M., Shieh, G. and Vonesh, E. F. (1992). A Random Coefficient Growth Curve Analysis of Mental Development in Low-Birth-Weight Infants. Statistics in Medicine 11(2) 243–256.
[7] 
Cole, T. J. (1988). Fitting Smoothed Centile Curves to Reference Data. Journal of the Royal Statistical Society. Series A (Statistics in Society) 151(3) 385–418.
[8] 
Cole, T. J. and Green, P. J. (1992). Smoothing Reference Centile Curves: The LMS Method and Penalized Likelihood. Statistics in Medicine 11(10) 1305–1319.
[9] 
Curran, P. J., Obeidat, K. and Losardo, D. (2010). Twelve Frequently Asked Questions About Growth Curve Modeling. Journal of Cognition and Development 11(2) 121–136.
[10] 
Curry, H. B. and Schoenberg, I. J. (1966). On Pólya Frequency Functions IV: the Fundamental Spline Functions and Their Limits. Journal d’Analyse Mathématique 17(1) 71–107. https://doi.org/10.1007/BF02788653. MR0218800
[11] 
Das, S. and Krishen, A. (1999). Some Bootstrap Methods in Nonlinear Mixed-Effect Models. Journal of Statistical Planning and Inference 75(2) 237–245. https://doi.org/10.1016/S0378-3758(98)00145-1. MR1678974
[12] 
Desdicioglu, K., Malas, M. A. and Evcil, E. (2010). Foetal Development of the Pancreas. Folia Morphologica 69 216–224.
[13] 
Diggle, P. J. and Verbyla, A. P. (1998). Nonparametric Estimation of Covariance Structure in Longitudinal Data. Biometrics 54(2) 401–415.
[14] 
Hand, D. J. and Crowder, M. J. (1996) Practical Longitudinal Data Analysis. Routledge, Boca Raton.
[15] 
Hata, K., Hata, T. and Kitao, M. (1988). Ultrasonographic Identification and Measurement of the Human Fetal Pancreas in Utero. International Journal of Gynecology & Obstetrics 26(1) 61–64.
[16] 
Healy, M. J. R., Rasbash, J. and Yang, M. (1988). Distribution-Free Estimation of Age-Related Centiles. Annals of Human Biology 15(1) 17–22.
[17] 
Hedeker, D., Mermelstein, R. and Demirtas, H. (2008). An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data. Biometrics 64(2) 627–634. https://doi.org/10.1111/j.1541-0420.2007.00924.x. MR2432437
[18] 
Hedeker, D., Mermelstein, R. J. and Demirtas, H. (2012). Modeling Between-subject and Within-subject Variances in Ecological Momentary Assessment Data Using Mixed-effects Location Scale Models. Statistics in Medicine 31(27) 3328–3336. https://doi.org/10.1002/sim.5338. MR3041814
[19] 
Hill, L. M., Peterson, C., Rivello, D., Hixson, J. and Belfar, H. L. (1989). Sonographic Detection of the Fetal Pancreas. Journal of Clinical Ultrasound 17(7) 475–479.
[20] 
Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-Coefficient Models and Basis Function Approximations for the Analysis of Repeated Measurements. Biometrika 89(1) 111–128. https://doi.org/10.1093/biomet/89.1.111. MR1888349
[21] 
Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data. Statistica Sinica 14 763–788. MR2087972
[22] 
Krakowiak-Sarnowska, E., Flisiski, P., Szpinda, M., Sarnowski, J., Lisewski, P. and Flisiski, M. (2005). Morphometry of the Pancreas in Human Foetuses. Folia Morphologica 64 29–32.
[23] 
Lambert, P. C., Abrams, K. R., Jones, D. R., Halligan, A. W. F. and Shennan, A. (2001). Analysis of Ambulatory Blood Pressure Monitor Data Using a Hierarchical Model Incorporating Restricted Cubic Splines and Heterogeneous Within-Subject Variances. Statistics in Medicine 20(24) 3789–3805.
[24] 
Liang, K. -Y. and Zeeger, S. L. (1986). Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 73(1) 13–22. https://doi.org/10.1093/biomet/73.1.13. MR0836430
[25] 
MacKinnon, J. G. and White, H. (1985). Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties. Journal of Econometrics 29(3) 305–325. https://doi.org/10.1016/0304-4076(85)90158-7.
[26] 
McArdle, J. J. and Nesselroade, J. R. (2003). Growth Curve Analysis in Contemporary Psychological Research. Handbook of Psychology: Research Methods in Psychology 447–480.
[27] 
Meyer, M. C. (2008). Inference Using Shape-Restricted Regression Splines. The Annals of Applied Statistics 2(3) 1013–1033. https://doi.org/10.1214/08-AOAS167. MR2516802
[28] 
Muller, H. -G. and Stadtmuller, U. (1987). Estimation of Heteroscedasticity in Regression Analysis. The Annals of Statistics 15(2) 610–625. https://doi.org/10.1214/aos/1176350364. MR0888429
[29] 
Nelder, J. A. and Lee, Y. (1998). Joint Modeling of Mean and Dispersion. Technometrics 40(2) 168–171.
[30] 
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team (2022). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-157. https://CRAN.R-project.org/package=nlme.
[31] 
Quinn, A., Blanco, C., Perego, C., Finzi, G., La Rosa, S., Capella, C., Guardado-Mendoza, R., Casiraghi, F., Gastaldelli, A., Johnson, M., Dick, E. and Folli, F. (2012). The Ontogeny of the Endocrine Pancreas in the Fetal/Newborn Baboon. The Journal of Endocrinology 214 289–299. https://doi.org/10.1530/JOE-12-0070.
[32] 
Ramsay, J. O. (1988). Monotone Regression Splines in Action. Statistical Science 3 425–461.
[33] 
Rice, J. A. and Wu, C. O. (2001). Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves. Biometrics 57(1) 253–259. https://doi.org/10.1111/j.0006-341X.2001.00253.x. MR1833314
[34] 
Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized Additive Models for Location, Scale and Shape (with Discussion). Applied Statistics 54 507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x. MR2137253
[35] 
Rigby, R. A. and Stasinopoulos, D. M. (2014). Automatic Smoothing Parameter Selection in GAMLSS With an Application to Centile Estimation. Statistical Methods in Medical Research 23(4) 318–332. https://doi.org/10.1177/0962280212473302. MR3246533
[36] 
Rigby, R. A., Stasinopoulos, D. M. and Voudouris, V. (2013). Discussion: A Comparison of GAMLSS with Quantile Regression. Statistical Modelling 13(4) 335–348. https://doi.org/10.1177/1471082X13494316. MR3179531
[37] 
Robert-Granié, C., Heude, B. and Foulley, J. -L. (2002). Modelling the Growth Curve of Maine-Anjou Beef Cattle Using Heteroskedastic Random Coefficients Models. Genetics Selection Evolution 34(4) 1–23.
[38] 
Robert-Granié, C., Heude, B. and Foulley, J. -L. (2002). Modelling the Growth Curve of Maine-Anjou Beef Cattle Using Heteroskedastic Random Coefficients Models. Genetics Selection Evolution 34(4) 423.
[39] 
Rossi, R. J. (2018) Mathematical Statistics: An Introduction to Likelihood Based Inference. John Wiley & Sons, Hoboken, NJ.
[40] 
Royston, P. and Wright, E. M. (1998). A Method for Estimating Age-Specific Reference Intervals (‘Normal Ranges’) Based on Fractional Polynomials and Exponential Transformation. Journal of the Royal Statistical Society: Series A (Statistics in Society) 161(1) 79–101.
[41] 
Sandland, R. L. and McGilchrist, C. A. (1979). Stochastic Growth Curve Analysis. Biometrics 35(1) 255–271.
[42] 
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics 461–464. MR0468014
[43] 
Smyth, G. K. (1989). Generalized Linear Models with Varying Dispersion. Journal of the Royal Statistical Society: Series B (Methodological) 51(1) 47–60. MR0984992
[44] 
Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V. and De Bastiani, F. (2017) Flexible Regression and Smoothing: Using GAMLSS in R. CRC Press, Boca Raton, FL. https://doi.org/10.1177/1471082X18759144. MR3799717
[45] 
Stone, A., Shiffman, S., Atienza, A. and Nebeling, L. (2007) The Science of Real-Time Data Capture: Self-Reports in Health Research. Oxford University Press, Oxford, England.
[46] 
Strydhorst, S., Hall, L. and Perrott, L. (2018). Plant Growth Regulators: What Agronomists Need to Know. Crops & Soils 51(6) 22–26.
[47] 
Thai, H. -T., Mentré, F., Holford, N. H., Veyrat-Follet, C. and Comets, E. (2013). A Comparison of Bootstrap Approaches for Estimating Uncertainty of Parameters in Linear Mixed-Effects Models. Pharmaceutical Statistics 12(3) 129–140.
[48] 
Wang, T. and Merkle, E. C. (2018). merDeriv: Derivative Computations for Linear Mixed Effects Models with Application to Robust Standard Errors. Journal of Statistical Software, Code Snippets 87(1) 1–16. https://doi.org/10.18637/jss.v087.c01.
[49] 
Wang, W. and Yan, J. (2021). Shape-Restricted Regression Splines with R Package splines2. Journal of Data Science 19(3) 498–517.
[50] 
Wang, X. and Li, F. (2008). Isotonic Smoothing Spline Regression. Journal of Computational and Graphical Statistics 17(1) 21–37. https://doi.org/10.1198/106186008X285627. MR2424793
[51] 
Wei, Y., Pere, A., Koenker, R. and He, X. (2006). Quantile Regression Methods for Reference Growth Charts. Statistics in Medicine 25(8) 1369–1382. https://doi.org/10.1002/sim.2271. MR2226792
[52] 
White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 48(4) 817–838. https://doi.org/10.2307/1912934. MR0575027
[53] 
Wu, C. O. and Tian, X. (2018) Nonparametric Models for Longitudinal Data: with Implementation in R. CRC Press. https://doi.org/10.1201/b20631. MR3838457
[54] 
Wu, H. and Zhang, J. -T. (2002). The Study of Long-Term HIV Dynamics Using Semi-Parametric Non-Linear Mixed-Effects Models. Statistics in Medicine 21 3655–3675.
[55] 
Yan, J. and Fine, J. (2004). Estimating Equations for Association Structures (Pkg: P859-880). Statistics in Medicine 23(6) 859–874.
[56] 
Zee, B. C. (1998). Growth Curve Model Analysis for Quality of Life Data. Statistics in Medicine 17(5–7) 757–766.
[57] 
Zeileis, A. (2004). Econometric Computing with HC and HAC Covariance Matrix Estimators. Journal of Statistical Software 11(10) 1–17. https://doi.org/10.18637/jss.v011.i10.
[58] 
Zeileis, A. (2006). Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software 16(9) 1–16. https://doi.org/10.18637/jss.v016.i09.
[59] 
Zeileis, A., Köll, S. and Graham, N. (2020). Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R. Journal of Statistical Software 95(1) 1–36. https://doi.org/10.18637/jss.v095.i01.
[60] 
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. and Smith, G. M. (2009) Mixed Effects Models and Extensions in Ecology With R. Springer, New York. https://doi.org/10.1007/978-0-387-87458-6. MR2722501

Full article PDF XML
Full article PDF XML

Copyright
© 2025 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Shape-restricted splines Linear mixed-effects model Parametric bootstrap

Metrics
since December 2021
173

Article info
views

198

Full article
views

43

PDF
downloads

19

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy