Irrigation Zone Delineation by Coupling Neural Networks with Spatial Statistics
Pub. online: 31 October 2024
Type: Spatial And Environmental Statistics
Open Access
Accepted
21 August 2024
21 August 2024
Published
31 October 2024
31 October 2024
Abstract
Variable rate irrigation (VRI) seeks to increase the efficiency of irrigation by spatially adjusting water output within an agricultural field. Central to the success of VRI technology is establishing homogeneous irrigation zones. In this research, we propose a fusion of statistical modeling and deep learning by using artificial neural networks to map irrigation zones from simple-to-measure predictors. We further couple our neural network model with spatial correlation to capture smooth variations in the irrigation zones. We demonstrate the effectiveness of our model to define irrigation zones for a farm of winter wheat crop in Rexburg, Idaho.
References
Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association 88(422) 669–679. MR1224394
Berrett, C. and Calder, C. A. (2016). Bayesian spatial binary classification. Spatial Statistics 16 72–102. https://doi.org/10.1016/j.spasta.2016.01.004. MR3493089
Bornn, L., Shaddick, G. and Zidek, J. V. (2012). Modeling nonstationary processes through dimension expansion. Journal of the American Statistical Association 107(497) 281–289. https://doi.org/10.1080/01621459.2011.646919. MR2949359
Chen, W., Li, Y., Reich, B. J. and Sun, Y. (2024). Deepkriging: Spatially dependent deep neural networks for spatial prediction. Statistica Sinica 34 291–311. https://doi.org/10.5705/ss.202021.0277. MR4683573
D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D. et al. (2020). Underspecification presents challenges for credibility in modern machine learning. arXiv preprint arXiv:2011.03395.
Dixon, M. F., Polson, N. G. and Sokolov, V. O. (2019). Deep learning for spatio-temporal modeling: Dynamic traffic flows and high frequency trading. Applied Stochastic Models in Business and Industry 35(3) 788–807. https://doi.org/10.1002/asmb.2399. MR3974250
Friedman, J., Hastie, T., Tibshirani, R. et al. (2001) The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York. https://doi.org/10.1007/978-0-387-21606-5. MR1851606
Ghosh, M., Maiti, T., Kim, D., Chakraborty, S. and Tewari, A. (2004). Hierarchical Bayesian neural networks: an application to a prostate cancer study. Journal of the American Statistical Association 99(467) 601–608. https://doi.org/10.1198/016214504000000665. MR2086386
Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7(2) 223–242. https://doi.org/10.2307/3318737. MR1828504
Heaton, M. J., Christensen, W. F. and Terres, M. A. (2017). Nonstationary Gaussian process models using spatial hierarchical clustering from finite differences. Technometrics 59(1) 93–101. https://doi.org/10.1080/00401706.2015.1102763. MR3604192
Higgs, M. D. and Hoeting, J. A. (2010). A clipped latent variable model for spatially correlated ordered categorical data. Computational Statistics & Data Analysis 54(8) 1999–2011. https://doi.org/10.1016/j.csda.2010.02.024. MR2640303
Hughes, J. and Haran, M. (2013). Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75(1) 139–159. https://doi.org/10.1111/j.1467-9868.2012.01041.x. MR3008275
Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. and Sohl-Dickstein, J. (2017). Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165.
Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E. and Ghahramani, Z. (2018). Gaussian process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271.
McDermott, P. L. and Wikle, C. K. (2019). Bayesian recurrent neural network models for forecasting and quantifying uncertainty in spatial-temporal data. Entropy 21(2) 184. https://doi.org/10.3390/e21020184. MR3923929
Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
O’Shaughnessy, S. A., Evett, S. R., Andrade, A., Workneh, F., Price, J. A. and Rush, C. M. (2015). Site-specific variable rate irrigation as a means to enhance water use efficiency. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation – A Tribute to the Career of Terry Howell, Sr. Conference Proceedings 1–21. American Society of Agricultural and Biological Engineers.
Polson, N. G. and Sokolov, V. (2019). Bayesian regularization: From Tikhonov to horseshoe. Wiley Interdisciplinary Reviews: Computational Statistics 11(4) 1463. https://doi.org/10.1002/wics.1463. MR3999526
Ramachandran, P., Zoph, B. and Le, Q. V. (2017). Searching for activation functions. arXiv preprint arXiv:1710.05941.
Saha, A., Basu, S. and Datta, A. (2023). Random forests for spatially dependent data. Journal of the American Statistical Association 118(541) 665–683. https://doi.org/10.1080/01621459.2021.1950003. MR4571149
Sauer, A., Gramacy, R. B. and Higdon, D. (2020). Active learning for deep Gaussian process surrogates. arXiv preprint arXiv:2012.08015. https://doi.org/10.1080/00401706.2021.2008505. MR4543056
Shand, L. and Li, B. (2017). Modeling nonstationarity in space and time. Biometrics 73(3) 759–768. https://doi.org/10.1111/biom.12656. MR3713110
Sigrist, F. (2022). Gaussian process boosting. The Journal of Machine Learning Research 23(1) 10565–10610. MR4577671
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1) 267–288. MR1379242
Tran, M. -N., Nguyen, N., Nott, D. and Kohn, R. (2020). Bayesian deep net GLM and GLMM. Journal of Computational and Graphical Statistics 29(1) 97–113. https://doi.org/10.1080/10618600.2019.1637747. MR4085867
Wani, M. A., Bhat, F. A., Afzal, S. and Khan, A. I. (2020) Advances in Deep Learning. Springer. https://doi.org/10.1007/978-981-13-6794-6. MR3966423
Wikle, C. K. (2019). Comparison of deep neural networks and deep hierarchical models for spatio-temporal data. Journal of Agricultural, Biological and Environmental Statistics 24(2) 175–203. https://doi.org/10.1007/s13253-019-00361-7. MR3945276
Zammit-Mangion, A., Kaminski, M. D., Tran, B. -H., Filippone, M. and Cressie, N. (2023). Spatial Bayesian neural networks. arXiv preprint arXiv:2311.09491. https://doi.org/10.1016/j.spasta.2024.100825. MR4731204
Zhan, W. and Datta, A. (2023). Neural networks for geospatial data. arXiv preprint arXiv:2304.09157.