Considerations for Single-Arm Trials to Support Accelerated Approval of Oncology Drugs
Pub. online: 16 December 2024
Type: Cancer Research
Open Access
Accepted
29 November 2024
29 November 2024
Published
16 December 2024
16 December 2024
Abstract
In the last two decades, single-arm trials (SATs) have been effectively used to study anticancer therapies in well-defined patient populations using durable response rates as an objective and interpretable study endpoints. With a growing trend of regulatory accelerated approval (AA) requiring randomized controlled trials (RCTs), some confusions have arisen about the roles of SATs in AA. This review is intended to elucidate necessary and desirable conditions under which an SAT may be considered appropriate for AA. Specifically, the paper describes (1) two necessary conditions for designing an SAT, (2) eight desirable conditions that help either optimize the study design and doses or interpret the study results, and (3) three additional considerations for construction of estimands, adaptive designs, and timely communication with relevant regulatory agencies. Three examples are presented to demonstrate how SATs can or cannot provide sufficient evidence to support regulatory decision. Conditions and considerations presented in this review may serve as a set of references for sponsors considering SATs to support regulatory approval of anticancer drugs.
References
FDA (2014). Guidance for Industry: Expedited Programs for Serious Conditions – Drugs and Biologics. https://www.fda.gov/media/86377/download.
Ribeiro, T. B., Bennett, C. L., Colunga-Lozano, L. E., Araujo, A. P. V., Hozo, I. and Djulbegovic, B. (2023). Increasing FDA accelerated approval of single-arm trials in oncology (1992 to 2020). Journal of Clinical Epidemiology 159 151–158. https://doi.org/0.1016/j.jclinepi.2023.04.001.
Marcal, A. (2023). Conditional Marketing Authorisation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D343E590E22584671C9848FE827A6EA08C177D950DC4?noSaveAs=1.
Naci, H., Davis, C., Savovi, J., Higgins, J. P., Sterne, J. A., Gyawali, B., Romo-Sandoval, X., Handley, N. and Booth, C. M. (2019). Design characteristics, risk of bias, and reporting of randomised controlled trials supporting approvals of cancer drugs by European Medicines Agency, 2014-16: cross sectional analysis. BMJ 366 5221. https://doi.org/10.1136/bmj.l5221.
Zhang, H., Liu, S., Ge, C., Liu, X., Liu, Y., Yin, C., Li, Y., An, J., Yan, Z. and Chen, X. (2023). Single-arm trials for domestic oncology drug approvals in China. Cancer Biology & Medicine 20(11) 799–805. https://doi.org/10.20892/j.issn.2095-3941.2023.0360.
Hatogai, K., Kato, Y. and Hirase, C. (2021). Efficacy evaluation of anticancer agents in single-arm clinical trials: analysis of review reports from Pharmaceuticals and Medical Devices Agency. Acta Oncology. https://doi.org/10.1080/0284186X.2021.1871946.
Cramer, A., Sørup, F. K., Christensen, H. R., Petersen, T. S. and Karstoft, K. (2023). Withdrawn accelerated approvals for cancer indications in the USA: what is the marketing authorisation status in the EU? The Lancet Oncology 24(9) 385–394. https://doi.org/10.1016/S1470-2045(23)00357-1.
Koole, S. N., Huisman, A. H., Timmers, L., Westgeest, H. M., van Breugel, E., Sonke, G. S. and van Doorn, S. B. v. W. (2024). Lessons learned from postmarketing withdrawals of expedited approvals for oncology drug indications. The Lancet Oncology 25(3) 126–135. https://doi.org/10.1016/S1470-2045(23)00592-2.
Mellgard, G. S., Fojo, T. and Bates, S. E. (2024). Lessons from withdrawn accelerated approvals in oncology. Nature Cancer 5 211–215. https://doi.org/10.1038/s43018-023-00696-8.
Agrawal, S., Arora, S., Amiri-Kordestani, L., de Claro, R. A., Fashoyin-Aje, L., Gormley, N., Kim, T., Lemery, S., Mehta, G. U. and Scott, E. C. (2023). Use of Single-Arm Trials for US Food and Drug Administration Drug Approval in Oncology, 2002-2021. JAMA Oncology 9(2) 266–272. https://dx.doi.org/10.1001/jamaoncol.2022.5985.
FDA (2023). Clinical Trial Considerations to Support Accelerated Approval of Oncology Therapeutics—Guidance for Industry. https://www.fda.gov/media/166431/download.
EMA (2023). Reflection paper on establishing efficacy based on single5 arm trials submitted as pivotal evidence in a marketing authorisation–Considerations on evidence from single-arm trials. https://www.ema.europa.eu/system/files/documents/scientific-guideline/reflection_paper_on_single_arm_trials_en.pdf.
NMPA (2023). Guidance on Single-Arm Trials Supporting Approval of Anticancer Drugs. https://www.cde.org.cn/zdyz/domesticinfopage?zdyzIdCODE=610bd41855e7c9afeb694271015d3cd8.
Grayling, M. J. and Mander, A. P. (2016). Do single-arm trials have a role in drug development plans incorporating randomised trials? Pharmaceutical Statistics 15(2) 143–151. https://doi.org/10.1002/pst.1726.
Shah, M., Rahman, A., Theoret, M. R. and Pazdur, R. (2021). The drug-dosing conundrum in oncology–when less is more. The New England Journal of Medicine 385(16) 1445–1447. https://doi.org/10.1056/NEJMp2109826.
Moon, H. (2022). FDA initiatives to support dose optimization in oncology drug development: the less may be the better. Translational and Clinical Pharmacology 30(2) 71–74. https://doi.org/10.12793/tcp.2022.30.e9.
Goldberg, P. (2021). Pazdur expresses “profound concerns” about single-arm studies of PD-1/PD-L1 drugs; ODAC nixes retifanlimab for anal cancer. The Cancer Letter 47(25) 28–30. https://cancerletter.com/the-cancer-letter/20210625_5.
Merino, M., Kasamon, Y., Theoret, M., Pazdur, R., Kluetz, P. and Gormley, N. (2023). Irreconcilable Differences: The Divorce Between Response Rates, Progression-Free Survival, and Overall Survival. Journal of Clinical Oncology 41(15) 2706–2712. https://doi.org/10.1200/JCO.23.00225.
Tenhunen, O., Lasch, F., Pean, E., Schiel, A., and Turpeinen, M. (2020). Single-arm clinical trials as pivotal evidence for cancer drug approval: a retrospective cohort study of centralized European marketing authorizations between 2010 and 2019. Clinical Pharmacology and Therapeutics 108(3) 653–660. https://doi.org/10.1002/cpt.1965.
Agrawal, S., Arora, S., Vallejo, J. J., Gwise, T., Chuk, M. K., Amiri-Kordestani, L., Pazdur, R., Kluetz, P. G. and Beaver, J. A. (2021). Use of single-arm trials to support malignant hematology and oncology drug and biologic approvals: A 20-year FDA experience. Journal of Clinical Oncology 39(15suppl) 13572. https://doi.org/10.1200/JCO.2021.39.15_suppl.e13572.
Mulder, J., Teerenstra, S., van Hennik, P., Pasmooij, A., Stoyanova-Beninska, V., Voest, E. and de Boer, A. (2023). Single-arm trials supporting the approval of anticancer medicinal products in the European Union: contextualization of trial results and observed clinical benefit. ESMO Open 8(2) 101209. https://doi.org/10.1016/j.esmoop.2023.101209.
Lu, E., Shatzel, J., Shin, F. and Prasad, V. (2017). What constitutes an “unmet medical need” in oncology? An empirical evaluation of author usage in the biomedical literature. In Seminars in Oncology 44 8–12. Elsevier. https://doi.org/10.1053/j.seminoncol.2017.02.009.
Caimi, P. F., Ai, W., Alderuccio, J. P., Ardeshna, K. M., Hamadani, M., Hess, B., Kahl, B. S., Radford, J., Solh, M. and Stathis, A. (2021). Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. The Lancet Oncology 22(6) 790–800. https://doi.org/10.1016/S1470-2045(21)00139-X.
Rosner, S. and Levy, B. (2023). Relapsed small-cell lung cancer: a disease of continued unmet need. The Lancet Respiratory Medicine 11(1) 6–8. https://doi.org/10.1016/S2213-2600(22)00389-7.
Hoimes, C. J., Flaig, T. W., Milowsky, M. I., Friedlander, T. W., Bilen, M. A., Gupta, S., Srinivas, S., Merchan, J. R., McKay, R. R. and Petrylak, D. P. (2023). Enfortumab vedotin plus pembrolizumab in previously untreated advanced urothelial cancer. Journal of Clinical Oncology 41(1) 22–31. https://doi.org/10.1200/JCO.22.01643.
Hashmi, M., Rassen, J. and Schneeweiss, S. (2021). Single-arm oncology trials and the nature of external controls arms. Journal of Comparative Effectiveness Research 10(12) 1053–1066. https://doi.org/10.2217/cer-2021-0003.
Oda, Y. and Narukawa, M. (2022). Response rate of anticancer drugs approved by the Food and Drug Administration based on a single-arm trial. BMC Cancer 22(1) 277. https://doi.org/10.1186/s12885-022-09383-w.
FDA (2019). Rare Diseases: Natural History Studies for Drug Development. Guidance for Industry (Draft guidance). https://www.fda.gov/media/122425/download.
Delgado, A. and Guddati, A. K. (2021). Clinical endpoints in oncology–a primer. American Journal of Cancer Research 11(4) 1121–1131. https://www.ajcr.us/ISSN:2156-6976/ajcr0130927.
FDA (2024). OCE Rare Cancers Program–Promoting development of new drug and biological products to treat patients with rare cancers. https://www.fda.gov/about-fda/oncology-center-excellence/oce-rare-cancers-program.
NCI (2022). Targeted Therapy to Treat Cancer. https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies.
Topalian, S. L., Taube, J. M., Anders, R. A. and Pardoll, D. M. (2016). Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nature Reviews Cancer 16(5) 275–287. https://doi.org/10.1038/nrc.2016.36.
Sang, W., Shi, M., Yang, J., Cao, J., Xu, L., Yan, D., Song, X., Sun, C., Li, D. and Zhu, F. (2019). Combination of Anti-CD19 and Anti-CD20 Chimeric Antigen Receptor T Cells for Relapsed and Refractory Diffuse Larger B Cell Lymphoma: An Open-Label, Single-Arm, Phase I/II Trial. Blood 134 1590. https://doi.org/10.1182/blood-2019-127640.
Fu, Z., Li, S., Han, S., Shi, C. and Zhang, Y. (2022). Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy 7(1) 93. https://doi.org/10.1038/s41392-022-00947-7.
Westphalen, C. B., Martins-Branco, D., Beal, J., Cardone, C., Coleman, N., Schram, A., Halabi, S., Michiels, S., Yap, C., André, F. et al. (2024). The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Annals of Oncology 35(11) 936–953. https://doi.org/10.1016/j.annonc.2024.07.730.
FDA (2023). Optimizing the Dosage of Human Prescription Drugs and Biological Products for the Treatment of Oncologic Diseases—Guidance for Industry. https://www.fda.gov/media/164555/download.
Yuan, Y., Zhou, H. and Liu, S. (2024). Statistical and practical considerations in planning and conduct of dose-optimization trials. Clinical Trials. https://doi.org/10.1177/17407745231207085.
Liu, S. and Johnson, V. E. (2016). A robust Bayesian dose-finding design for phase I/II clinical trials. Biostatistics 17(2) 249–263. https://doi.org/10.1093/biostatistics/kxv040. MR3515998.
Yuan, S., Huang, Z., Liu, J. and Ji, Y. (2024). Pharmacometrics-Enabled DOse OPtimization (PEDOOP) for seamless phase I-II trials in oncology. Journal of Biopharmaceutical Statistics 1–20. https://doi.org/10.1080/10543406.2024.2364716.
Agrawal, S., Feng, Y., Roy, A., Kollia, G. and Lestini, B. (2016). Nivolumab dose selection: challenges, opportunities, and lessons learned for cancer immunotherapy. Journal for Immunotherapy of Cancer 4 1–11. https://doi.org/10.1186/s40425-016-0177-2.
Zhou, T. and Ji, Y. (2024). Statistical Frameworks for Oncology Dose-Finding Designs with Late-Onset Toxicities: A Review. Statistical Science 39(2) 243–261. https://doi.org/10.1214/23-STS895. MR4741494.
Zhao, Y., Yuan, Y., Korn, E. L. and Freidlin, B. (2024). Backfilling Patients in Phase I Dose-Escalation Trials Using Bayesian Optimal Interval Design (BOIN). Clinical Cancer Research 30(4) 673–679. https://doi.org/10.1158/1078-0432.CCR-23-2585.
Guo, B. and Yuan, Y. (2023). DROID: dose-ranging approach to optimizing dose in oncology drug development. Biometrics 79(4) 2907–2919. https://doi.org/10.1111/biom.13840. MR4680693.
Wirth, L. J., Sherman, E., Robinson, B., Solomon, B., Kang, H., Lorch, J., Worden, F., Brose, M., Patel, J. and Leboulleux, S. (2020). Efficacy of selpercatinib in RET-altered thyroid cancers. New England Journal of Medicine 383(9) 825–835. https://doi.org/10.1001/10.1056/NEJMoa2005651.
Jiang, Z., Mi, G., Lin, J., Lorenzato, C. and Ji, Y. (2024). A Multi-Arm Two-Stage (MATS) design for proof-of-concept and dose optimization in early-phase oncology trials. Contemporary Clinical Trials 132 107278. https://doi.org/10.1016/j.cct.2023.107278.
Lyu, J., Zhou, T., Yuan, S., Guo, W. and Ji, Y. (2023). MUCE: Bayesian hierarchical modelling for the design and analysis of phase 1b multiple expansion cohort trials. Journal of the Royal Statistical Society Series C: Applied Statistics 72(3) 649–669. https://doi.org/10.1093/jrsssc/qlad025. MR4752686.
Wang, S., Thall, P. F., Takeda, K. and Yuan, Y. (2024). ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Biometrics 80(4) 105. https://doi.org/10.1093/biomtc/ujae105.
Dejardin, D., Huang, B., Yuan, Y., Beyer, U., Fridlyand, J. and Zhu, J. (2024). Dose Optimization for Novel Oncology Agents: Design Options and Strategies. Statistics in Biopharmaceutical Research 1–20. https://doi.org/10.1080/19466315.2024.2308856.
Korn, E., Moscow, J. A. and Freidlin, B. (2023). Dose optimization during drug development: whether and when to optimize. JNCI: Journal of the National Cancer Institute 115(5) 492–497. https://doi.org/10.1093/jnci/djac232.
Papachristos, A., Patel, J., Vasileiou, M. and Patrinos, G. P. (2023). Dose optimization in oncology drug development: the emerging role of pharmacogenomics, pharmacokinetics, and pharmacodynamics. Cancers 15(12) 3233. https://doi.org/10.3390/cancers15123233.
Lemery, S. and Pazdur, R. (2022). Approvals in 2021: dangling accelerated approvals, drug dosing, new approvals and beyond. Nature Reviews Clinical Oncology 19(4) 217–218. https://doi.org/10.1038/s41571-022-00605-5.
Ribeiro, T. B., Colunga-Lozano, L. E., Araujo, A. P. V., Bennett, C. L., Hozo, I. and Djulbegovic, B. (2022). Single-arm clinical trials that supported FDA Accelerated Approvals have modest effect sizes and at high risk of bias. Journal of Clinical Epidemiology 148 193–195. https://doi.org/10.1016/j.jclinepi.2022.01.018.
Mullard, A. (2023). Accelerated approval draft guidance paves way for “one-trial” programmes, warns against single-armed trials. Nature Reviews Drug Discovery 22 342–343. https://doi.org/10.1038/d41573-023-00062-4.
Mishra-Kalyani, P., Kordestani, L. A., Rivera, D., Singh, H., Ibrahim, A., DeClaro, R., Shen, Y., Tang, S., Sridhara, R. and Kluetz, P. (2022). External control arms in oncology: current use and future directions. Annals of Oncology. https://doi.org/10.1016/j.annonc.2021.12.015.
FDA (2018). Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics Guidance for Industry. https://www.fda.gov/media/71195/download.
FDA (2020). Hematologic Malignancies: Regulatory Considerations for Use of Minimal Residual Disease in Development of Drug and Biological Products for Treatment. https://www.fda.gov/media/134605/download.
Bou Zeid, N. and Yazbeck, V. (2023). PI3k inhibitors in NHL and CLL: an unfulfilled promise. Blood and Lymphatic Cancer: Targets and Therapy 13 1–12. https://doi.org/10.2147/BLCTT.S309171.
Prasad, V., Kim, C., Burotto, M. and Vandross, A. (2015). The strength of association between surrogate end points and survival in oncology: a systematic review of trial-level meta-analyses. JAMA Internal Medicine 175(8) 1389–1398. https://doi.org/10.1001/jamainternmed.2015.2829.
Burtness, B., Harrington, K. J., Greil, R., Soulières, D., Tahara, M., de Castro, G., Psyrri, A., Basté, N., Neupane, P. and Bratland, Å. (2019). Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. The Lancet 394(10212) 1915–1928. https://doi.org/10.1016/S0140-6736(19)32591-7.
Huang, L., Kang, D., Zhao, C. and Liu, X. (2024). Correlation between surrogate endpoints and overall survival in unresectable hepatocellular carcinoma patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Nature Scientific Reports 14(1) 4327. https://doi.org/10.1038/s41598-024-54945-6.
FDA (2023). Benefit-Risk Assessment for New Drug and Biological Products. https://www.fda.gov/media/152544/download.
ESMO (2023). The ESMO-Magnitude of Clinical Benefit Scale (ESMO-MCBS). https://www.esmo.org/guidelines/esmo-mcbs/about-the-esmo-mcbs.
Daniele, P., Mamolo, C., Cappelleri, J. C., Bell, T., Neuhof, A., Tremblay, G., Musat, M. and Forsythe, A. (2023). Overall and complete response rates as potential surrogates for overall survival in relapsed/refractory multiple myeloma. Future Oncology 19(6) 463–471. https://doi.org/10.2217/fon-2022-0932.
Califf, R. M. (2017). Benefit-risk assessments at the US Food and Drug Administration: finding the balance. JAMA 317(7) 693–694. https://doi.org/10.1001/jama.2017.0410.
FDA (2023). Demonstrating Substantial Evidence of Effectiveness With One Adequate and Well-Controlled Clinical Investigation and Confirmatory Evidence. https://www.fda.gov/media/172166/download.
ICH (2009). S9 Nonclinical Evaluation for Anticancer Pharmaceuticals. https://www.fda.gov/media/73161/download.
Araujo, D., Greystoke, A., Bates, S., Bayle, A., Calvo, E., Castelo-Branco, L., de Bono, J., Drilon, A., Garralda, E. and Ivy, P. (2023). Oncology phase I trial design and conduct: time for a change–MDICT Guidelines 2022. Annals of Oncology 34(1) 48–60. https://doi.org/10.1016/j.annonc.2022.09.158.
Gao, J. J., Osgood, C. L., Feng, Z., Bloomquist, E. W., Tang, S., Chang, C. G., Ricks, T. K., Hou, S. C., Pierce, W. F. and Rivera, D. R. (2023). FDA Approval Summary: Ribociclib Indicated for Male Patients with Hormone Receptor–Positive, HER2-Negative Advanced or Metastatic Breast Cancer. Clinical Cancer Research 29(24) 5008–5011. https://doi.org/10.1158/1078-0432.CCR-23-1133.
Martini, D. J., Lalani, A. q. K. A., Bossé, D., Steinharter, J. A., Harshman, L. C., Hodi, F. S., Ott, P. A. and Choueiri, T. K. (2017). Response to single agent PD-1 inhibitor after progression on previous PD-1/PD-L1 inhibitors: a case series. Journal for ImmunoTherapy of Cancer 5 1–5. https://doi.org/10.1186/s40425-017-0273-y.
Chen, J., Yuan, S., Yung, G., Ye, J., Tian, H. and Lin, J. (2023). Considerations for Master Protocols Using External Controls. https://doi.org/10.48550/arXiv.2307.05050.
FDA (2023). Considerations for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products. https://www.fda.gov/media/164960/download.
Kempf, L., Goldsmith, J. C. and Temple, R. (2018). Challenges of developing and conducting clinical trials in rare disorders. American Journal of Medical Genetics Part A 176(4) 773–783. https://doi.org/10.1002/ajmg.a.38413.
Feinberg, B. A., Gajra, A., Zettler, M. E., Phillips, T. D., Phillips Jr, E. G. and Kish, J. K. (2020). Use of real-world evidence to support FDA approval of oncology drugs. Value in Health 23(10) 1358–1365. https://doi.org/10.1016/j.jval.2020.06.006.
ICH (2021). E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity Analysis in Clinical Trials. https://www.fda.gov/media/148473/download.
Englert, S., Mercier, F., Pilling, E. A., Homer, V., Habermehl, C., Zimmermann, S. and Kan-Dobrosky, N. (2023). Defining estimands for efficacy assessment in single arm phase 1b or phase 2 clinical trials in oncology early development. Pharmaceutical Statistics 22(5) 921–937. https://doi.org/10.1002/pst.2319.
Chen, J., Scharfstein, D., Wang, H., Yu, B., Song, Y., He, W., Scott, J., Lin, X. and Lee, H. (2024). Estimands in Real-World Evidence Studies. Statistics in Biopharmaceutical Research 16(2) 257–269. https://doi.org/10.1080/19466315.2023.2259829.
Lai, T. L., Lavori, P. W., Shih, M. C. and Sikic, B. (2012). Clinical trial designs for testing biomarker-based personalized therapies. Clinical Trials 9(2) 141–154. https://doi.org/10.1177/1740774512437252.
Shi, H., Zhang, T. and Yin, G. (2020). START: single-to-double arm transition design for phase II clinical trials. Pharmaceutical Statistics 19(4) 454–467. https://doi.org/10.1002/pst.2005.
Beckman, R., Antonijevic, Z., Kalamegham, R. and Chen, C. (2016). Adaptive design for a confirmatory basket trial in multiple tumor types based on a putative predictive biomarker. Clinical Pharmacology & Therapeutics 100(6) 617–625. https://doi.org/10.1002/cpt.446.
Woodcock, J. and LaVange, L. M. (2017). Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. New England Journal of Medicine 377(1) 62–70. https://doi.org/10.1056/NEJMra1510062.
Yu, Z., Wu, L., Bunn, V., Li, Q. and Lin, J. (2023). Evolution of phase II oncology trial design: From single arm to master protocol. Therapeutic Innovation & Regulatory Science 57(4) 823–838. https://doi.org/10.1007/s43441-023-00500-w.
Subbiah, V., Burris III, H. A. and Kurzrock, R. (2024). Revolutionizing cancer drug development: harnessing the potential of basket trials. Cancer 130(2) 186–200. https://doi.org/10.1002/cncr.35085.
NMPA (2020). Guidance on Technical Communications of Pre-Pivotal Single-Arm Clinical Trials for Anti-Cancer Drugs to Support Marketing Authorization. https://www.cde.org.cn/main/news/viewInfoCommon/2a6d7894c0ee2aaa37fd1ca8e941cdab.
Zou, L., Qi, Y., Jiang, Y., Tang, L., Du, Y., Zhao, B., Sun, Y., Xiang, M., Ma, J. and Yang, Z. (2023). Criteria and regulatory considerations for the conditional approval of innovative antitumor drugs in China: from the perspective of clinical reviewers. Cancer Communications 43(2) 171. https://doi.org/10.1002/cac2.12400.
Gökbuget, N., Stanze, D., Beck, J., Diedrich, H., Horst, H. -A., Hüttmann, A., Kobbe, G., Kreuzer, K. -A., Leimer, L., Reichle, A. et al. (2012). Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood, The Journal of the American Society of Hematology 120(10) 2032–2041. https://doi.org/10.1182/blood-2011-12-399287.
Raponi, S., Stefania De Propris, M., Intoppa, S., Laura Milani, M., Vitale, A., Elia, L., Perbellini, O., Pizzolo, G., Foá, R. and Guarini, A. (2011). Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leukemia & lymphoma 52(6) 1098–1107. https://doi.org/10.3109/10428194.2011.559668.
Hoffmann, P., Hofmeister, R., Brischwein, K., Brandl, C., Crommer, S., Bargou, R., Itin, C., Prang, N. and Baeuerle, P. A. (2005). Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. International Journal of Cancer 115(1) 98–104. https://doi.org/10.1002/ijc.20908.
Przepiorka, D., Ko, C. -W., Deisseroth, A., Yancey, C. L., Candau-Chacon, R., Chiu, H. -J., Gehrke, B. J., Gomez-Broughton, C., Kane, R. C. and Kirshner, S. (2015). FDA approval: blinatumomab. Clinical Cancer Research 21(18) 4035–4039. https://doi.org/10.1158/1078-0432.CCR-15-0612.
Topp, M. S., Gökbuget, N., Stein, A. S., Zugmaier, G., O’Brien, S., Bargou, R. C., Dombret, H., Fielding, A. K., Heffner, L. and Larson, R. A. (2015). Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. The Lancet Oncology 16(1) 57–66. https://doi.org/10.1016/S1470-2045(14)71170-2.
FDA (2014). Application Number: 125557Orig1s000 Statistical Review(s). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125557Orig1s000StatR.pdf.
Morton, M., Melnitchouk, N. and Bleday, R. (2018). Squamous cell carcinoma of the anal canal. Current Problems in Cancer 42(5) 486–492. https://doi.org/10.1016/j.currproblcancer.2018.11.001.
Rao, S., Guren, M., Khan, K., Brown, G., Renehan, A. G., Steigen, S., Deutsch, E., Martinelli, E. and Arnold, D. (2021). Anal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 32(9) 1087–1100. https://doi.org/10.1016/j.annonc.2021.06.015.
Sharma, G., Baca, Y., Xiu, J., Farrell, A. P., Sledge Jr, G. W., Saeed, A., Shields, A. F., Prakash, A., Goel, S. and Weinberg, B. A. (2024). Uncovering actionable genetic alterations and immune predictive biomarkers for anal squamous cell carcinomas in the era of immunotherapy: PD-L1 and beyond. Journal of Clinical Oncology 42(16 suppl) 3518. https://doi.org/10.1200/JCO.2024.42.16_suppl.3518.
Rao, S., Anandappa, G., Capdevila, J., Dahan, L., Evesque, L., Kim, S., Saunders, M. P., Gilbert, D., Jensen, L. H. and Samalin, E. (2022). A phase II study of retifanlimab (INCMGA00012) in patients with squamous carcinoma of the anal canal who have progressed following platinum-based chemotherapy (POD1UM-202). ESMO Open 7(4) 100529. https://doi.org/10.1016/j.esmoop.2022.100529.
Richardson, N. C., Kasamon, Y., Pazdur, R. and Gormley, N. (2022). The saga of PI3K inhibitors in haematological malignancies: survival is the ultimate safety endpoint. The lancet Cncology 23(5) 563–566. https://doi.org/10.1016/S1470-2045(22)00200-5.
D’Sa, S. and Zucca, E. (2024) Fast Facts: Marginal Zone Lymphoma. Karger Medical and Scientific Publishers. https://doi.org/10.1159/isbn.978-3-318-07362-1.
FDA (2022). Phosphatidylinositol 3-Kinase (PI3K) Inhibitors in Hematologic Malignancies. https://www.fda.gov/media/157762/download.
Banerjee, T., Kim, M. S., Haslam, A. and Prasad, V. (2023). Clinical trials portfolio and regulatory history of Idelalisib in indolent non-Hodgkin lymphoma: a systematic review and meta-analysis. JAMA Internal Medicine 183(5) 435–441. https://doi.org/10.1001/jamainternmed.2023.0190.