Up-and-Down: The Most Popular, Most Reliable, and Most Overlooked Dose-Finding Design
Pub. online: 17 December 2024
Type: Statistical Methodology
Open Access
Accepted
5 November 2024
5 November 2024
Published
17 December 2024
17 December 2024
Abstract
Up-and-Down designs (UDDs) are ubiquitous for dose-finding in a wide variety of scientific, engineering, and clinical fields. They are defined by a few simple rules that generate a random walk around the target percentile. UDDs’ combination of robust, tractable behavior, straightforward usage, and good dose-finding performance, has won the trust of practitioners and their consulting analysts across fields and continents. In contrast, in recent decades the statistical dose-finding design field has turned a cold shoulder towards UDDs, and it is quite possible that many younger dose-finding methods researchers are not even aware of this design approach.
We present a concise overview of UDDs and their current state-of-the-art methodology, with references for further inquiry. We also revisit the performance comparison between UDDs and novel, more complicated design approaches such as the Continual Reassessment Method and the Bayesian Optimal Interval design, which we group under the term “Aim-for-Target” designs. UDDs fare very well in the comparison, particularly in terms of robustness to sources of variability.
References
Anscombe, F. J. (1956). On Estimating Binomial Response Relations. Biometrika 43 461–464. https://doi.org/10.1093/biomet/43.3-4.461. MR0081598
Baldi Antognini, A., Bortot, P. and Giovagnoli, A. (2008). Randomized group up and down experiments. Annals of the Institute of Statistical Mathematics 60 45–59. https://doi.org/10.1007/s10463-006-0081-5. MR2400060
Brownlee, K. A., Hodges Jr., J. L. and Rosenblatt, M. (1953). The up-and-down method with small samples. JASA 48 262–277. MR0055644
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2022) Introduction to algorithms, 4th Edition. MIT press. MR2572804
Derman, C. (1957). Non-parametric up-and-down experimentation. Ann. Math. Stat. 28 795–798. https://doi.org/10.1214/aoms/1177706895. MR0090956
Diaconis, P. and Stroock, D. (1991). Geometric Bounds for Eigenvalues of Markov Chains. Ann. App. Prob. 1 36–61. MR1097463
Durham, S. D. and Flournoy, N. (1995). Up-and-down Designs I: Stationary Treatment Distributions. In Adaptive Designs (N. Flournoy and W. F. Rosenberger, eds.) 139–157. Institute of Mathematical Statistics. https://doi.org/10.1214/lnms/1215451483. MR1477678
Durham, S. D. and Flournoy, N. (1994). Random Walks for Quantile Estimation. In Statistical Decision Theory and Related Topics, V (S. S. Gupta and J. O. Berger, eds.) 467–476. Springer-Verlag Inc. MR1286322
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80(1) 27–38. https://doi.org/10.1093/biomet/80.1.27. MR1225212
Flournoy, N. and Oron, A. P. (2015). Up-and-down designs for dose-finding. In Handbook of Design and Analysis of Experiments (D. Bingham, A. M. Dean, M. Morris and J. Stufken, eds.) 24, 862–898. CRC Press, Chapman Hall. MR3699370
Flournoy, N. and Oron, A. P. (2020). Bias Induced by Adaptive dose-finding designs. Journal of Applied Statistics 47(13-15) 2431–2442. https://doi.org/10.1080/02664763.2019.1649375. https://doi.org/10.1080/02664763.2019.1649375. MR4149564
Flournoy, N., Durham, S. D. and Rosenberger, W. F. (1995). Toxicity in Sequential Dose-response Experiments. Sequential Analysis 14 217–227. https://doi.org/10.1080/07474949508836333. MR1365660
Flournoy, N., Moler, J. and Plo, F. (2020). Performance measures in dose-finding experiments. International Statistical Review 88(3) 728–751. https://doi.org/10.1111/insr.12363. MR4180676
Gezmu, M. The geometric up-and-down design for allocating dosage levels (1996). PhD thesis, American University, Washington, DC. MR2695534
Gezmu, M. and Flournoy, N. (2006). Group up-and-down designs for dose-finding. J Stat. Plan. Inf. 136(6) 1749–1764. https://doi.org/10.1016/j.jspi.2005.08.002. MR2255594
Giovagnoli, A. and Pintacuda, N. (1998). Properties of Frequency Distributions Induced by General ‘up-and-down’ Methods for Estimating Quantiles. J Stat. Plan. Inf. 74 51–63. https://doi.org/10.1016/S0378-3758(98)00076-7. MR1665120
Heijmans, R. (1999). When does the expectation of a ratio equal the ratio of expectations? Statistical Papers 40 107–115. https://doi.org/10.1007/BF02927114. MR1668879
Hughes, B. D. (1995) Random Walks and Random Environments. Vol. 1. Oxford Science Publications. The Clarendon Press Oxford University Press, New York. Random walks. MR1420619
Ivanova, A., Flournoy, N. and Chung, Y. (2007). Cumulative cohort design for dose-finding. J Stat. Plan. Inf. 137 2316–2317. https://doi.org/10.1016/j.jspi.2006.07.009. MR2325437
Langlie, H. J. (1962). A Reliability Test Method for “One-Shot” Items. Technical Report No. U-1792, Ford Motor Company, Ford Motor Company Aeronautics Division. https://apps.dtic.mil/sti/citations/tr/ADP014612.
Lee, S. M. and Cheung, Y. K. (2011). Calibration of prior variance in the Bayesian continual reassessment method. Stat. Med. 30 2081–2089. https://doi.org/10.1002/sim.4139. MR2829158
Liu, S. and Yuan, Y. (2015). Bayesian optimal interval designs for phase I clinical trials. Journal of the Royal Statistical Society: Series C: Applied Statistics 507–523. https://doi.org/10.1111/rssc.12089. MR3325461
Maeda, A., Villela-Franyutti, D., Lumbreras-Marquez, M. I., Murthy, A., Fields, K. G., Justice, S. and Tsen, L. C. (2023). Labor analgesia initiation with Dural puncture Epidural Versus Conventional Epidural techniques: a Randomized biased-Coin Sequential Allocation Trial to determine the effective dose for 90% of patients of Bupivacaine. Anesthesia & Analgesia 10–1213.
Morris, M. D. (1988). Small-Sample Confidence Limits for Parameters under Inequality Constraints with Application to Quantal Bioassay. Biometrics 44 1083–1092. https://doi.org/10.2307/2531737. MR0981001
Narayana, T. V. Sequential procedures in probit analysis (1953). PhD thesis, University of North Carolina. MR2938682
OECD (2022) Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. https://www.oecd-ilibrary.org/content/publication/9789264071049-en.
O’Quigley, J., Pepe, M. and Fisher, L. (1990). Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 33–48. https://doi.org/10.2307/2531628. MR1059105
Oron, A. P. and Hoff, P. D. (2009). The k-in-a-row up-and-down design, revisited. Stat. Med. 28(13) 1805–1820. https://doi.org/10.1002/sim.3590. https://doi.org/10.1002/sim.3590. MR2751599
Oron, A. P., Azriel, D. and Hoff, P. D. (2011). Dose–finding designs: The role of convergence properties. Int. J Biostat. 7(1) 39. https://doi.org/10.2202/1557-4679.1298. MR2873999
Parasuraman, S. (2011). Toxicological screening. Journal of Pharmacology and Pharmacotherapeutics 2(2) 74–79. https://doi.org/10.4103/0976-500X.81895.
Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statistics 22 400–407. MR0042668 (13,144j).
Shi, L., Khalij, L., Gautrelet, C., Shi, C. and Benasciutti, D. (2024). Two-phase optimized experimental design for fatigue limit testing. Probabilistic Engineering Mechanics 75 103551. https://doi.org/10.1016/j.probengmech.2023.103551.
Silvapulle, M. J. (1981). On the existence of maximum likelihood estimators for the binomial response models. Journal of the Royal Statistical Society. Series B (Methodological) 310–313. MR0637943
Stylianou, M. and Flournoy, N. (2002). Dose Finding Using the Biased Coin Up-and-down Design and Isotonic Regression. Biometrics 58(1) 171–177. https://doi.org/10.1111/j.0006-341X.2002.00171.x. MR1891376
Tsutakawa, R. K. (1967). Asymptotic Properties of the Block Up-and-down Method in Bio-assay. Ann. Math. Stat. 38 1822–1828. https://doi.org/10.1214/aoms/1177698615. MR0217951
Wu, C. F. J. (1985). Efficient Sequential Designs with Binary Data. Journal of the American Statistical Association 80(392) 974–984. MR0819603
Zhao, H., Li, X., Tang, N., Jiang, X., Guo, Z. and Lin, H. (2018). Dielectric properties of fluoronitriles/CO2 and SF6/N2 mixtures as a possible SF6-substitute gas. IEEE Transactions on Dielectrics and Electrical Insulation 25(4) 1332–1339. https://doi.org/10.1109/TDEI.2018.007139.