The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Additional Considerations for Single-Arm ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Additional Considerations for Single-Arm Trials to Support Accelerated Approval of Oncology Drugs
Feinan Lu   Tao Wang   Ying Lu     All authors (4)

Authors

 
Placeholder
https://doi.org/10.51387/25-NEJSDS89
Pub. online: 1 July 2025      Type: Research Communication      Open accessOpen Access
Area: Cancer Research

Accepted
24 May 2025
Published
1 July 2025

References

[1] 
Cao, S. and Pan, J. (2025). Comments on “Considerations for Single-Arm Trials in Oncology Drug Accelerated Approval”. The New England Journal of Statistics in Data Science.
[2] 
Lu, F., Wang, T., Lu, Y. and Chen, J. (2025). Considerations for Single-Arm Trials to Support Accelerated Approval of Oncology Drugs. The New England Journal of Statistics in Data Science 3(1) 16–27.
[3] 
Smith, G. C. and Pell, J. P. (2003). Parachute use to prevent death and major trauma related to gravitational challenge: sys-tematic review of randomised controlled trials. BMJ 327(7429) 1459–1461.
[4] 
Chawla, S. P., Pang, S. S., Jain, D., Jeffrey, S., Chawla, N. S., Song, P. Y., Hall, F. L. and Gordon, E. M. (2025). Gene and Cell Therapy for Sarcomas: A Review. Cancers 17(7) 1125.
[5] 
FDA (2023). Clinical Trial Considerations to Support Accelerated Approval of Oncology Therapeutics—Guidance for Industry.
[6] 
NMPA (2023). Guidance on Single-Arm Trials Supporting Approval of Anticancer Drugs.
[7] 
EMA (2024). Reflection paper on establishing efficacy based onsingle-arm trials submitted as pivotal evidence in a marketingauthorisation–Considerations on evidence from single-arm trials.
[8] 
Gray, C., Ralphs, E., Fox, M. P., Lash, T. L., Liu, G., Kou, T. D., Rivera, D. R., Bosco, J., Braun, K. V. N., Grimson, F. et al. (2024). Use of quantitative bias analysis to evaluate single-arm trials with real-world data external controls. Pharmacoepidemiology and drug safety 33(5) 5796.
[9] 
Gupta, A., Hsu, G., Kent, S., Duffield, S. J., Merinopoulou, E., Lockhart, A., Arora, P., Ray, J., Wilkinson, S. and Scheuer, N. (2025). Quantitative Bias Analysis for Single-ArmTrials With External Control Arms. JAMA Network Open 8(3) 252152–252152.
[10] 
Ding, P., Fang, Y., Faries, D., Gruber, S., Lee, H., Lee, J. -Y., Mishra-Kalyani, P., Shan, M., van der Laan, M., Yang, S. et al. (2024). Sensitivity Analysis for Unmeasured Confounding inMedical Product Development and Evaluation Using Real WorldEvidence. arXiv preprint arXiv:2307.07442.
[11] 
Ho, M., Gruber, S., Fang, Y., Faris, D. E., Mishra-Kalyani, P., Benkeser, D. and van der Laan, M. (2024). Examples ofapplying RWE causal-inference roadmap to clinical studies. Statistics in Biopharmaceutical Research 16(1) 26–39.
[12] 
FDA (2023). Considerations for the Design and Conduct of Ex-ternally Controlled Trials for Drug and Biological Products.
[13] 
Hashmi, M., Rassen, J. and Schneeweiss, S. (2021). Single-armoncology trials and the nature of external controls arms. Journal of Comparative Effectiveness Research 10(12) 1053–1066.
[14] 
Mishra-Kalyani, P., Kordestani, L. A., Rivera, D., Singh, H., Ibrahim, A., DeClaro, R., Shen, Y., Tang, S., Sridhara, R. and Kluetz, P. (2022). External control arms in oncology:current use and future directions. Annals of Oncology 33(4) 376–383.
[15] 
ICH (2021). E9(R1) Statistical Principles for Clinical Trials: Ad-dendum: Estimands and Sensitivity Analysis in Clinical Trials.
[16] 
Chen, J., Scharfstein, D., Wang, H., Yu, B., Song, Y., He, W., Scott, J., Lin, X. and Lee, H. (2024). Estimands in Real-WorldEvidence Studies. Statistics in Biopharmaceutical Research 16(2) 257–269.
[17] 
Levenson, M., He, W., Chen, L., Dharmarajan, S., Izem, R., Meng, Z., Pang, H. and Rockhold, F. (2023). Statistical Con-sideration for Fit-for-Use Real-World Data to Support RegulatoryDecision Making in Drug Development. Statistics in Biopharmaceutical Research 15(3) 689–696.
[18] 
Gruber, S., Lee, H., Phillips, R., Ho, M. and van der Laan, M. (2023). Developing a Targeted Learning-based statistical anal-ysis plan. Statistics in Biopharmaceutical Research 15(3) 468–475.
[19] 
FDA (2018). Clinical Trial Endpoints for the Approval of CancerDrugs and Biologics.
[20] 
Mittal, A., Kim, M. S., Dunn, S., Wright, K. and Gyawali, B. (2024). Frequently asked questions on surrogate endpoints inoncology—opportunities, pitfalls, and the way forward. EClinicalMedicine: Part of The Lancet Discovery Science.
[21] 
Liu, L., Choi, J., Musoro, J. Z., Sauerbrei, W., Amdal, C. D., Alanya, A., Barbachano, Y., Cappelleri, J. C., Falk, R. S. and Fiero, M. H. (2023). Single-arm studies involving patient-reported outcome data in oncology: a literature review on currentpractice. The Lancet Oncology 24(5) 197–206.
[22] 
Di Maio, M. (2023). The value of patient-reported outcomes insingle-arm cancer trials. Cancer Investigation 41(5) 491–494.
[23] 
Gupta, M., Akhtar, O. S., Bahl, B., Mier-Hicks, A., Attwood, K., Catalfamo, K., Gyawali, B. and Torka, P. (2024). Health-related quality of life outcomes reporting associ-ated with FDA approvals in haematology and oncology. BMJ Oncology 3(1) 000369.
[24] 
Balar, A. V., Castellano, D., O’Donnell, P. H., Grivas, P., Vuky, J., Powles, T., Plimack, E. R., Hahn, N. M., de Wit, R. and Pang, L. (2017). First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable ormetastatic urothelial cancer (KEYNOTE-052): a multicentre,single-arm, phase 2 study. The Lancet Oncology 18(11) 1483–1492.
[25] 
Oda, Y. and Narukawa, M. (2022). Response rate of anticancerdrugs approved by the Food and Drug Administration based ona single-arm trial. BMC Cancer 22(1) 277.
[26] 
NMPA (2023). Guidance on the Design and Protocol Contents ofReal-World Studies.
[27] 
Yao, S., Shang, Q., Ouyang, M., Zhou, H., Yao, Z., Liu, Y. and Luo, S. (2025). Designing Single-Arm Clinical Trials: Prin-ciples, Applications, and Methodological Considerations. Annals of Clinical Epidemiology 25011.
[28] 
O’Malley, A. J., Normand, S. q. L. T. and Kuntz, R. E. (2002). Sample size calculation for a historically controlled clinicaltrial with adjustment for covariates. Journal of Biopharmaceutical Statistics 12(2) 227–247.
[29] 
Englert, S. and Kieser, M. (2012). Adaptive designs for single-arm phase II trials in oncology. Pharmaceutical Statistics 11(3) 241–249.
[30] 
Schmidli, H., Gsteiger, S., Roychoudhury, S., O’Hagan, A., Spiegelhalter, D. and Neuenschwander, B. (2014). Robustmeta-analytic-predictive priors in clinical trials with historicalcontrol information. Biometrics 70(4) 1023–1032. https://doi.org/10.1111/biom.12242. MR3295763
[31] 
Viele, K., Berry, S., Neuenschwander, B., Amzal, B., Chen, F., Enas, N., Hobbs, B., Ibrahim, J. G., Kinnersley, N. and Lindborg, S. (2014). Use of historical control data for assessingtreatment effects in clinical trials. Pharmaceutical Statistics 13(1) 41–54.
[32] 
Rahman, R. and Iftakhar Alam, M. (2022). Stopping for ef-ficacy in single-arm phase II clinical trials. Journal of Applied Statistics 49(10) 2447–2466. https://doi.org/10.1080/02664763.2021.1904846. MR4440947
[33] 
Seeger, J. D., Davis, K. J., Iannacone, M. R., Zhou, W., Dreyer, N., Winterstein, A. G., Santanello, N., Gertz, B. and Berlin, J. A. (2020). Methods for external control groups for single arm trials or long-term uncontrolled extensions to randomized clinical trials. Pharmacoepidemiology and Drug Safety 29(11) 1382–1392.
[34] 
Rippin, G., Ballarini, N., Sanz, H., Largent, J., Quinten, C. and Pignatti, F. (2022). A review of causal inference for external comparator arm studies. Drug Safety 45(8) 815–837.
[35] 
Yue, L. Q., Lu, N. and Xu, Y. (2014). Designing premarket observational comparative studies using existing data as controls: challenges and opportunities. Journal of Biopharmaceutical Statistics 24(5) 994–1010. https://doi.org/10.1080/10543406.2014.926367. MR3246540
[36] 
Chen, J., Ho, M., Lee, K., Song, Y., Fang, Y., Goldstein, B. A., He, W., Irony, T., Jiang, Q. and van der Laan, M. (2023). The Current Landscape in Biostatistics of Real-World Data and Evidence: Clinical Study Design and Analysis. Statistics in Biopharmaceutical Research 15(1) 29–42.

Full article PDF XML
Full article PDF XML

Copyright
© 2025 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Funding
Ying Lu’s research was supported in part by Grant from NCI 5P01CA25790703.

Metrics
since December 2021
2

Article info
views

0

Full article
views

1

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy