The evolving focus in statistics and data science education highlights the growing importance of computing. This paper presents the Data Jamboree, a live event that combines computational methods with traditional statistical techniques to address real-world data science problems. Participants, ranging from novices to experienced users, followed workshop leaders in using open-source tools like Julia, Python, and R to perform tasks such as data cleaning, manipulation, and predictive modeling. The Jamboree showcased the educational benefits of working with open data, providing participants with practical, hands-on experience. We compared the tools in terms of efficiency, flexibility, and statistical power, with Julia excelling in performance, Python in versatility, and R in statistical analysis and visualization. The paper concludes with recommendations for designing similar events to encourage collaborative learning and critical thinking in data science.
We are pleased to launch the first issue of the New England Journal of Statistics in Data Science (NEJSDS). NEJSDS is the official journal of the New England Statistical Society (NESS) under the leadership of Vice President for Journal and Publication and sponsored by the College of Liberal Arts and Sciences, University of Connecticut. The aims of the journal are to serve as an interface between statistics and other disciplines in data science, to encourage researchers to exchange innovative ideas, and to promote data science methods to the general scientific community. The journal publishes high quality original research, novel applications, and timely review articles in all aspects of data science, including all areas of statistical methodology, methods of machine learning, and artificial intelligence, novel algorithms, computational methods, data management and manipulation, applications of data science methods, among others. We encourage authors to submit collaborative work driven by real life problems posed by researchers, administrators, educators, or other stakeholders, and which require original and innovative solutions from data scientists.