Modern machine learning algorithms are capable of providing remarkably accurate point-predictions; however, questions remain about their statistical reliability. Unlike conventional machine learning methods, conformal prediction algorithms return confidence sets (i.e., set-valued predictions) that correspond to a given significance level. Moreover, these confidence sets are valid in the sense that they guarantee finite sample control over type 1 error probabilities, allowing the practitioner to choose an acceptable error rate. In our paper, we propose inductive conformal prediction (ICP) algorithms for the tasks of text infilling and part-of-speech (POS) prediction for natural language data. We construct new ICP-enhanced algorithms for POS tagging based on BERT (bidirectional encoder representations from transformers) and BiLSTM (bidirectional long short-term memory) models. For text infilling, we design a new ICP-enhanced BERT algorithm. We analyze the performance of the algorithms in simulations using the Brown Corpus, which contains over 57,000 sentences. Our results demonstrate that the ICP algorithms are able to produce valid set-valued predictions that are small enough to be applicable in real-world applications. We also provide a real data example for how our proposed set-valued predictions can improve machine generated audio transcriptions.
Anomaly detection plays an important role in traffic operations and control. Missingness in spatial-temporal datasets prohibits anomaly detection algorithms from learning characteristic rules and patterns due to the lack of large amounts of data. This paper proposes an anomaly detection scheme for the 2021 Algorithms for Threat Detection (ATD) challenge based on Gaussian process models that generate features used in a logistic regression model which leads to high prediction accuracy for sparse traffic flow data with a large proportion of missingness. The dataset is provided by the National Science Foundation (NSF) in conjunction with the National Geospatial-Intelligence Agency (NGA), and it consists of thousands of labeled traffic flow records for 400 sensors from 2011 to 2020. Each sensor is purposely downsampled by NSF and NGA in order to simulate missing completely at random, and the missing rates are 99%, 98%, 95%, and 90%. Hence, it is challenging to detect anomalies from the sparse traffic flow data. The proposed scheme makes use of traffic patterns at different times of day and on different days of week to recover the complete data. The proposed anomaly detection scheme is computationally efficient by allowing parallel computation on different sensors. The proposed method is one of the two top performing algorithms in the 2021 ATD challenge.
The English Premier League is well-known for being not only one of the most popular professional sports leagues in the world, but also one of the toughest competitions to predict. The first purpose of this research was to verify the consistency between goal scoring in the English Premier League and the Poisson process; specifically, the relationships between the number of goals scored in a match and the Poisson distribution, the time between goals throughout the course of a season and the exponential distribution, and the time location of goals during football games and the continuous uniform distribution. We found that the Poisson process and the three probability distributions accurately describe Premier League goal scoring. In addition, Poisson regression was utilized to predict outcomes for a Premier League season, using different sets of season data and with a large number of simulations being involved. We examined and compared various soccer metrics from our simulation results, including an English club’s chances of being the champions, finishing in the top four and bottom three, and relegation points.
Joint species distribution modeling is attracting increasing attention in the literature these days, recognizing the fact that single species modeling fails to take into account expected dependence/interaction between species. This short paper offers discussion that attempts to illuminate five noteworthy technical issues associated with such modeling in the context of plant data. In this setting, the joint species distribution work in the literature considers several types of species data collection. For convenience of discussion, we focus on joint modeling of presence/absence data. For such data, the primary modeling strategy has been through introduction of latent multivariate normal random variables.
These issues address the following: (i) how the observed presence/absence data is linked to the latent normal variables as well as the resulting implications with regard to modeling the data sites as independent or spatially dependent, (ii) the incompatibility of point referenced and areal referenced presence/absence data in spatial modeling of species distribution, (iii) the effect of modeling species independently/marginally rather than jointly within site, with regard to assessing species distribution, (iv) the interpretation of species dependence under the use of latent multivariate normal specification, and (v) the interpretation of clustering of species associated with specific joint species distribution modeling specifications.
It is hoped that, by attempting to clarify these issues, ecological modelers and quantitative ecologists will be able to better appreciate some subtleties that are implicit in this growing collection of modeling ideas. In this regard, this paper can serve as a useful companion piece to the recent survey/comparison article by [33] in Methods in Ecology and Evolution.
In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental system that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general statistical-mechanistic Bayesian hierarchical model. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides quantifiable evidence for how reductions in human mobility altered early case dynamics in New York City.