A Compartment Model of Human Mobility and Early Covid-19 Dynamics in NYC
Volume 1, Issue 1 (2023), pp. 110–121
Pub. online: 4 January 2022
Type: Statistical Methodology
Open Access
Accepted
20 June 2021
20 June 2021
Published
4 January 2022
4 January 2022
Abstract
In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental system that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general statistical-mechanistic Bayesian hierarchical model. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides quantifiable evidence for how reductions in human mobility altered early case dynamics in New York City.
References
Betancourt, M. (2018). A Conceptual Introduction to Hamiltonian Monte Carlo. 1701.02434.
Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., Valensise, C. M., Scala, A., Quattrociocchi, W. and Pammolli, F. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences 117(27) 15530–15535. https://doi.org/10.1073/pnas.2007658117. https://www.pnas.org/content/117/27/15530.full.pdf.
Chatzilena, A., van Leeuwen, E., Ratmann, O., Baguelin, M. and Demiris, N. (2019). Contemporary statistical inference for infectious disease models using Stan. Epidemics 29 100367. https://doi.org/10.1016/j.epidem.2019.100367.
Cutler, D. M. and Summers, L. H. (2020). The COVID-19 Pandemic and the $16 Trillion Virus. JAMA 324(15) 1495–1496. https://doi.org/10.1001/jama.2020.19759.
Diekmann, O., Heesterbeek, J. A. P. and Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society, Interface / the Royal Society 7 873–885. https://doi.org/10.1098/rsif.2009.0386.
Dietz, K. and Heesterbeek, J. A. P. (2002). Daniel Bernoulli’s epidemiological model revisited. Mathematical biosciences 180 1–21. https://doi.org/10.1016/S0025-5564(02)00122-0. MR1950745
Dukic, V., Lopes, H. and Polson, N. (2012). Tracking Epidemics with Google Flu Trends Data and a State-Space SEIR Model. Journal of The American Statistical Association 107. https://doi.org/10.1080/01621459.2012.713876. MR3036404
Gandhi, M., Yokoe, D. and Havlir, D. (2020). Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. New England Journal of Medicine 382. https://doi.org/10.1056/NEJMe2009758.
Gelman, A. and Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457–472. https://doi.org/10.1214/ss/1177011136.
Gu, Y. (2020). COVID-19 Projections Using Machine Learning. https://covid19-projections.com.
Hao, X., Cheng, S., Wu, D., Wu, T., Lin, X. and Wang, C. (2020). Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584 1–7. https://doi.org/10.1038/s41586-020-2554-8.
Heffernan, J., Smith, R. J. and Wahl, L. M. (2005). Perspectives on the Basic Reproductive Ratio. Journal of the Royal Society, Interface / the Royal Society 2 281–293. https://doi.org/10.1098/rsif.2005.0042.
Hoffman, M. and Gelman, A. (2011). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15. MR3214779
Ives, A. R. and Bozzuto, C. (2020). State-by-State estimates of R0 at the start of COVID-19 outbreaks in the USA. medRxiv. https://doi.org/10.1101/2020.05.17.20104653.
Kobayashi, G., Sugasawa, S., Tamae, H. and Ozu, T. (2020). Predicting intervention effect for COVID-19 in Japan: state space modeling approach. BioScience Trends 14. https://doi.org/10.5582/bst.2020.03133.
Lauer, S., Grantz, K., Bi, Q., Jones, F., Zheng, Q., Meredith, H., Azman, A., Reich, N. and Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine 172. https://doi.org/10.7326/M20-0504.
Madjid, M., Safavi-Naeini, P., Solomon, S. and Vardeny, O. (2020). Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiology 5. https://doi.org/10.1001/jamacardio.2020.1286.
Neal, R. (2012). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo. https://doi.org/10.1201/b10905-6. MR2858447
Øksendal, B. (2003) Stochastic Differential Equations: An Introduction with Applications. Hochschultext / Universitext. Springer. https://books.google.com/books?id=kXw9hB4EEpUC.
Osthus, D., Hickmann, K., Caragea, P., Higdon, D. and Del Valle, S. (2017). Forecasting seasonal influenza with a state-space SIR model. The Annals of Applied Statistics 11 202–224. https://doi.org/10.1214/16-AOAS1000. MR3634321
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007) Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed. Cambridge University Press, USA. MR2371990
Shiode, N., Shiode, S., Rod-Thatcher, E., Rana, S. and Vinten-Johansen, P. (2015). The mortality rates and the space-time patterns of John Snow’s cholera epidemic map. International Journal of Health Geographics 14 21. https://doi.org/10.1186/s12942-015-0011-y.
Stan Development Team (2020) Stan Modeling Language Users Guide and Reference Manual, Version 2.21.0. http://mc-stan.org/.
Struthers, A. and Potter, M. (2019) Differential Equations: For Scientists and Engineers. https://doi.org/10.1007/978-3-030-20506-5. MR3967751
Särkkä, S. and Solin, A. (2019) Applied Stochastic Differential Equations. Institute of Mathematical Statistics Textbooks. Cambridge University Press. https://doi.org/10.1017/9781108186735. MR3931353
Treiber, M. and Kanagaraj, V. (2015). Comparing numerical integration schemes for time-continuous car-following models. Physica A: Statistical Mechanics and its Applications 419 183–195. https://doi.org/10.1016/j.physa.2014.09.061.
Wang, C., Liu, L., Hao, X., Guo, H., Wang, Q., Huang, J., He, N., Yu, H., Lin, X., Pan, A., Wei, S. and Wu, T. (2020). Evolving Epidemiology and Impact of Non-pharmaceutical Interventions on the Outbreak of Coronavirus Disease 2019 in Wuhan, China. https://doi.org/10.1101/2020.03.03.20030593.
Wang, L., Zhou, Y., He, J., Zhu, B., Wang, F., Tang, L., Eisenberg, M. and Song, P. X. K. (2020). An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China. medRxiv. https://doi.org/10.1101/2020.02.29.20029421.
Wang, W., Ding, Z. and Gui, Z. (2018). A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process. Physica A: Statistical Mechanics and its Applications 509. https://doi.org/10.1016/j.physa.2018.06.099. MR3834095