The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 1 (2023)
  4. A Compartment Model of Human Mobility an ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

A Compartment Model of Human Mobility and Early Covid-19 Dynamics in NYC
Volume 1, Issue 1 (2023), pp. 110–121
Ian Frankenburg   Sudipto Banerjee  

Authors

 
Placeholder
https://doi.org/10.51387/21-NEJSDS2
Pub. online: 4 January 2022      Type: Methodology Article      Open accessOpen Access
Area: Statistical Methodology

Accepted
20 June 2021
Published
4 January 2022

Abstract

In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental system that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general statistical-mechanistic Bayesian hierarchical model. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides quantifiable evidence for how reductions in human mobility altered early case dynamics in New York City.

References

[1] 
Betancourt, M. (2018). A Conceptual Introduction to Hamiltonian Monte Carlo. 1701.02434.
[2] 
Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., Valensise, C. M., Scala, A., Quattrociocchi, W. and Pammolli, F. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences 117(27) 15530–15535. https://doi.org/10.1073/pnas.2007658117. https://www.pnas.org/content/117/27/15530.full.pdf.
[3] 
Chatzilena, A., van Leeuwen, E., Ratmann, O., Baguelin, M. and Demiris, N. (2019). Contemporary statistical inference for infectious disease models using Stan. Epidemics 29 100367. https://doi.org/10.1016/j.epidem.2019.100367.
[4] 
Cutler, D. M. and Summers, L. H. (2020). The COVID-19 Pandemic and the $16 Trillion Virus. JAMA 324(15) 1495–1496. https://doi.org/10.1001/jama.2020.19759.
[5] 
Diekmann, O., Heesterbeek, J. A. P. and Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society, Interface / the Royal Society 7 873–885. https://doi.org/10.1098/rsif.2009.0386.
[6] 
Dietz, K. and Heesterbeek, J. A. P. (2002). Daniel Bernoulli’s epidemiological model revisited. Mathematical biosciences 180 1–21. https://doi.org/10.1016/S0025-5564(02)00122-0. MR1950745
[7] 
Dukic, V., Lopes, H. and Polson, N. (2012). Tracking Epidemics with Google Flu Trends Data and a State-Space SEIR Model. Journal of The American Statistical Association 107. https://doi.org/10.1080/01621459.2012.713876. MR3036404
[8] 
Gandhi, M., Yokoe, D. and Havlir, D. (2020). Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. New England Journal of Medicine 382. https://doi.org/10.1056/NEJMe2009758.
[9] 
Gelman, A. and Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457–472. https://doi.org/10.1214/ss/1177011136.
[10] 
Gu, Y. (2020). COVID-19 Projections Using Machine Learning. https://covid19-projections.com.
[11] 
Hao, X., Cheng, S., Wu, D., Wu, T., Lin, X. and Wang, C. (2020). Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584 1–7. https://doi.org/10.1038/s41586-020-2554-8.
[12] 
Heffernan, J., Smith, R. J. and Wahl, L. M. (2005). Perspectives on the Basic Reproductive Ratio. Journal of the Royal Society, Interface / the Royal Society 2 281–293. https://doi.org/10.1098/rsif.2005.0042.
[13] 
Hoffman, M. and Gelman, A. (2011). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15. MR3214779
[14] 
Ives, A. R. and Bozzuto, C. (2020). State-by-State estimates of R0 at the start of COVID-19 outbreaks in the USA. medRxiv. https://doi.org/10.1101/2020.05.17.20104653.
[15] 
Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences 115(772) 700–721.
[16] 
Kobayashi, G., Sugasawa, S., Tamae, H. and Ozu, T. (2020). Predicting intervention effect for COVID-19 in Japan: state space modeling approach. BioScience Trends 14. https://doi.org/10.5582/bst.2020.03133.
[17] 
Lauer, S., Grantz, K., Bi, Q., Jones, F., Zheng, Q., Meredith, H., Azman, A., Reich, N. and Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine 172. https://doi.org/10.7326/M20-0504.
[18] 
Madjid, M., Safavi-Naeini, P., Solomon, S. and Vardeny, O. (2020). Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiology 5. https://doi.org/10.1001/jamacardio.2020.1286.
[19] 
Neal, R. (2012). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo. https://doi.org/10.1201/b10905-6. MR2858447
[20] 
Øksendal, B. (2003) Stochastic Differential Equations: An Introduction with Applications. Hochschultext / Universitext. Springer. https://books.google.com/books?id=kXw9hB4EEpUC.
[21] 
Osthus, D., Hickmann, K., Caragea, P., Higdon, D. and Del Valle, S. (2017). Forecasting seasonal influenza with a state-space SIR model. The Annals of Applied Statistics 11 202–224. https://doi.org/10.1214/16-AOAS1000. MR3634321
[22] 
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.
[23] 
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007) Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed. Cambridge University Press, USA. MR2371990
[24] 
Shiode, N., Shiode, S., Rod-Thatcher, E., Rana, S. and Vinten-Johansen, P. (2015). The mortality rates and the space-time patterns of John Snow’s cholera epidemic map. International Journal of Health Geographics 14 21. https://doi.org/10.1186/s12942-015-0011-y.
[25] 
Stan Development Team (2020) Stan Modeling Language Users Guide and Reference Manual, Version 2.21.0. http://mc-stan.org/.
[26] 
Struthers, A. and Potter, M. (2019) Differential Equations: For Scientists and Engineers. https://doi.org/10.1007/978-3-030-20506-5. MR3967751
[27] 
Särkkä, S. and Solin, A. (2019) Applied Stochastic Differential Equations. Institute of Mathematical Statistics Textbooks. Cambridge University Press. https://doi.org/10.1017/9781108186735. MR3931353
[28] 
Treiber, M. and Kanagaraj, V. (2015). Comparing numerical integration schemes for time-continuous car-following models. Physica A: Statistical Mechanics and its Applications 419 183–195. https://doi.org/10.1016/j.physa.2014.09.061.
[29] 
U. S. Census Bureau (2019). 2010 Census.
[30] 
Wang, C., Liu, L., Hao, X., Guo, H., Wang, Q., Huang, J., He, N., Yu, H., Lin, X., Pan, A., Wei, S. and Wu, T. (2020). Evolving Epidemiology and Impact of Non-pharmaceutical Interventions on the Outbreak of Coronavirus Disease 2019 in Wuhan, China. https://doi.org/10.1101/2020.03.03.20030593.
[31] 
Wang, L., Zhou, Y., He, J., Zhu, B., Wang, F., Tang, L., Eisenberg, M. and Song, P. X. K. (2020). An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China. medRxiv. https://doi.org/10.1101/2020.02.29.20029421.
[32] 
Wang, W., Ding, Z. and Gui, Z. (2018). A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process. Physica A: Statistical Mechanics and its Applications 509. https://doi.org/10.1016/j.physa.2018.06.099. MR3834095

Full article PDF XML
Full article PDF XML

Copyright
© 2023 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Bayesian Analysis Statistical-Mechanistic Modeling Covid-19

Metrics
since December 2021
988

Article info
views

498

Full article
views

452

PDF
downloads

212

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy