The New England Journal of Statistics in Data Science logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 3 (2023)
  4. Construction of Supersaturated Designs w ...

The New England Journal of Statistics in Data Science

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Construction of Supersaturated Designs with Small Coherence for Variable Selection
Volume 1, Issue 3 (2023), pp. 323–333
Youran Qi   Peter Chien  

Authors

 
Placeholder
https://doi.org/10.51387/23-NEJSDS34
Pub. online: 5 June 2023      Type: Methodology Article      Open accessOpen Access
Area: Machine Learning and Data Mining

Accepted
19 April 2023
Published
5 June 2023

Abstract

The supersaturated design is often used to discover important factors in an experiment with a large number of factors and a small number of runs. We propose a method for constructing supersaturated designs with small coherence. Such designs are useful for variable selection methods such as the Lasso. Examples are provided to illustrate the proposed method.

References

[1] 
Bertsimas, D., King, A. and Mazumder, R. Best subset selection via a modern optimization lens. The Annals of Statistics 44(2) 813–852 (2016). https://doi.org/10.1214/15-AOS1388. MR3476618
[2] 
Booth, K. H. and Cox, D. R. Some systematic supersaturated designs. Technometrics 4(4) 489–495 (1962). https://doi.org/10.2307/1266285. MR0184369
[3] 
Box, G. E. and Meyer, R. D. An analysis for unreplicated fractional factorials. Technometrics 28(1) 11–18 (1986). https://doi.org/10.2307/1269599. MR0824728
[4] 
Bulutoglu, D. A. and Cheng, C. S. Hidden projection properties of some nonregular fractional factorial designs and their applications. The Annals of Statistics 31(3) 1012–1026 (2003). https://doi.org/10.1214/aos/1056562472. MR1994740
[5] 
Chai, F. S., Das, A., Singh, R. and Stufken, J. Discriminating between superior $UE({s^{2}})$-optimal supersaturated designs. Statistics and Applications 18(2) (2020).
[6] 
Chen, J. and Lin, D. K. On the identifiability of a supersaturated design. Journal of Statistical Planning and Inference 72(1–2) 99–107 (1998). https://doi.org/10.1016/S0378-3758(98)00025-1. MR1655185
[7] 
Davenport, M. A., Duarte, M. F., Eldar, Y. C. and Kutyniok, G. Introduction to Compressed Sensing. Citeseer (2012). https://doi.org/10.1017/CBO9780511794308.002. MR2963166
[8] 
Deng, L. Y. and Lin, D. K. Criteria for supersaturated designs. In Proceedings of the Section on Physical and Engineering Sciences 124–128. American Statistical Association (1994).
[9] 
DuMouchel, W. and Jones, B. A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model. Technometrics 36(1) 37–47 (1994).
[10] 
Fan, J. and Lv, J. Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society, Series B 70(5) 849–911 (2008). https://doi.org/10.1111/j.1467-9868.2008.00674.x. MR2530322
[11] 
Fan, J., Feng, Y. and Song, R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. Journal of the American Statistical Association 106(494) 544–557 (2011). https://doi.org/10.1198/jasa.2011.tm09779. MR2847969
[12] 
Friedman, J., Hastie, T. and Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1) 1–22 (2010).
[13] 
JMP (version 11). SAS Institute Inc., Cary, NC (1989–2007).
[14] 
Jones, B., Lin, D. K. and Nachtsheim, C. J. Bayesian D-optimal supersaturated designs. Journal of Statistical Planning and Inference 138(1) 86–92 (2008). https://doi.org/10.1016/j.jspi.2007.05.021. MR2369616
[15] 
Jones, B. and Majumdar, D. Optimal supersaturated designs. Journal of the American Statistical Association 109(508) 1592–1600 (2014). https://doi.org/10.1080/01621459.2014.938810. MR3293612
[16] 
Jones, B., Lekivetz, R., Majumdar, D., Nachtsheim, C. J. and Stallrich, J. W. Construction, properties, and analysis of group-orthogonal supersaturated designs. Technometrics 62(3) 403–414 (2020). https://doi.org/10.1080/00401706.2019.1654926. MR4125505
[17] 
Li, R. and Lin, D. K. Data analysis in supersaturated designs. Statistics & Probability Letters 59(2) 135–144 (2002). https://doi.org/10.1016/S0167-7152(02)00140-2. MR1927525
[18] 
Lin, D. K. A new class of supersaturated designs. Technometrics 35(1) 28–31 (1993).
[19] 
Lin, D. K. Generating systematic supersaturated designs. Technometrics 37(2) 213–225 (1995). https://doi.org/10.2307/1269765. MR1365722
[20] 
Liu, Y., Ruan, S. and Dean, A. M. Construction and analysis of $E({s^{2}})$ efficient supersaturated designs. Journal of Statistical Planning and Inference 137(5) 1516–1529 (2007). https://doi.org/10.1016/j.jspi.2006.09.001. MR2303773
[21] 
Marley, C. J. and Woods, D. C. A comparison of design and model selection methods for supersaturated experiments. Computational Statistics & Data Analysis 54(12) 3158–3167 (2010). https://doi.org/10.1016/j.csda.2010.02.017. MR2727742
[22] 
Osborne, M. R., Presnell, B. and Turlach, B. A. Knot selection for regression splines via the lasso. Computing Science and Statistics. 44–49 (1998).
[23] 
Plackett, R. L. and Burman, J. P. The design of optimum multifactorial experiments. Biometrika 33(4) 305–325 (1946). https://doi.org/10.1093/biomet/33.4.305. MR0016624
[24] 
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/.
[25] 
Shen, X., Pan, W., Zhu, Y. and Zhou, H. On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics 65(5) 807–832 (2013). https://doi.org/10.1007/s10463-012-0396-3. MR3105798
[26] 
Singh, R. and Stufken, J. Selection of two-level supersaturated designs for main effects models. Technometrics 65 1–9 (2022). https://doi.org/10.1080/00401706.2022.2102080. MR4543063
[27] 
Tang, B. and Wu, C. F. J. A method for constructing supersaturated designs and its $E({s^{2}})$ optimality. Canadian Journal of Statistics 25(2) 191–201 (1997). https://doi.org/10.2307/3315731. MR1463319
[28] 
Tibshirani, R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B 58 267–288 (1996). MR1379242
[29] 
Weese, M. L., Smucker, B. J. and Edwards, D. J. Searching for powerful supersaturated designs. Journal of Quality Technology 47(1) 66–84 (2015).
[30] 
Weese, M. L., Stallrich, J. W., Smucker, B. J. and Edwards, D. J. Strategies for supersaturated screening: Group orthogonal and constrained var (s) designs. Technometrics 63(4) 443–455 (2021). https://doi.org/10.1080/00401706.2020.1850529. MR4331445
[31] 
Welch, L. R. Lower bounds on the maximum cross correlation of signals (corresp.). IEEE Transactions on Information Theory 20(3) 397–399 (1974).
[32] 
Wu, C. F. J. Construction of supersaturated designs through partially aliased interactions. Biometrika 80(3) 661–669 (1993). https://doi.org/10.1093/biomet/80.3.661. MR1248029
[33] 
Wu, C. F. J. and Hamada, M. S. Experiments: planning, analysis, and optimization 2nd ed. John Wiley & Sons, Hoboken, NJ (2009). MR2583259
[34] 
Zhao, P. and Yu, B. On model selection consistency of Lasso. Journal of Machine Learning Research 7 2541–2563 (2006). MR2274449

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2023 New England Statistical Society
by logo by logo
Open access article under the CC BY license.

Keywords
Design of Experiments Supersaturated Design Unbalanced Design Coherence Linear Model Variable Selection

Metrics
since December 2021
828

Article info
views

130

Full article
views

216

PDF
downloads

82

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

The New England Journal of Statistics in Data Science

  • ISSN: 2693-7166
  • Copyright © 2021 New England Statistical Society

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer
Powered by PubliMill  •  Privacy policy