Meta-analysis of Censored Adverse Events
Volume 2, Issue 3 (2024), pp. 380–392
Pub. online: 11 June 2024
Type: Statistical Methodology
Open Access
Accepted
3 January 2024
3 January 2024
Published
11 June 2024
11 June 2024
Abstract
Meta-analysis is a powerful tool for assessing drug safety by combining treatment-related toxicological findings across multiple studies, as clinical trials are typically underpowered for detecting adverse drug effects. However, incomplete reporting of adverse events (AEs) in published clinical studies is frequently encountered, especially if the observed number of AEs is below a pre-specified study-dependent threshold. Ignoring the censored AE information, often found in lower frequency, can significantly bias the estimated incidence rate of AEs. Despite its importance, this prevalent issue in meta-analysis has received little statistical or analytic attention in the literature. To address this challenge, we propose a Bayesian approach to accommodating the censored and possibly rare AEs for meta-analysis of safety data. Through simulation studies, we demonstrate that the proposed method can improve accuracy in point and interval estimation of incidence probabilities, particularly in the presence of censored data. Overall, the proposed method provides a practical solution that can facilitate better-informed decisions regarding drug safety.
Supplementary material
Supplementary MaterialThe Supplementary Material includes the JAGS model specification (Section A) for the application in Section 4, the additional results of Table 2 (Section B) under Scenarios 5 and 6 in Section 3.2, and a comprehensive forest plot across all 125 clinical studies (Section C).
References
Bhaumik, D. K., Amatya, A., Normand, S. q. L. T., Greenhouse, J., Kaizar, E., Neelon, B. and Gibbons, R. D. (2012). Meta-analysis of rare binary adverse event data. Journal of the American Statistical Association 107(498) 555–567. https://doi.org/10.1080/01621459.2012.664484. MR2980067
Bradburn, M. J., Deeks, J. J., Berlin, J. A. and Russell Localio, A. (2007). Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statistics in Medicine 26(1) 53–77. https://doi.org/10.1002/sim.2528. MR2312699
Burke, D. L., Ensor, J. and Riley, R. D. (2017). Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Statistics in Medicine 36(5) 855–875. https://doi.org/10.1002/sim.7141. MR3597661
Cai, T., Parast, L. and Ryan, L. (2010). Meta-analysis for rare events. Statistics in Medicine 29(20) 2078–2089. https://doi.org/10.1002/sim.3964. MR2756556
Carriere, K. C. (2001). How good is a normal approximation for rates and proportions of low incidence events? Communications in Statistics – Simulation and Computation 30(2) 327–337. https://doi.org/10.1081/SAC-100002370. MR1864235
Casella, G. and Berger, R. L. (2002) Statistical Inference 2. Duxbury Pacific Grove, CA. MR1051420
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1(3) 515–534. https://doi.org/10.1214/06-BA117A. MR2221284
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. Chapman and Hall/CRC. MR1385925
Gelman, A., Jakulin, A., Pittau, M. G. and Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics 2(4) 1360–1383. https://doi.org/10.1214/08-AOAS191. MR2655663
Horn, L., Gettinger, S. N., Gordon, M. S., Herbst, R. S., Gandhi, L., Felip, E., Sequist, L. V., Spigel, D. R., Antonia, S. J., Balmanoukian, A. et al. (2018). Safety and clinical activity of atezolizumab monotherapy in metastatic non-small-cell lung cancer: final results from a phase I study. European Journal of Cancer 101 201–209.
Hsu, C., Lee, S.-H., Ejadi, S., Even, C., Cohen, R. B., Le Tourneau, C., Mehnert, J. M., Algazi, A., van Brummelen, E. M., Saraf, S. et al. (2017). Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1–positive nasopharyngeal carcinoma: results of the KEYNOTE-028 study. Journal of Clinical Oncology 35(36) 4050–4056.
Kalaycioglu, O., Copas, A., King, M. and Omar, R. Z. A comparison of multiple-imputation methods for handling missing data in repeated measurements observational studies. Journal of the Royal Statistical Society. Series A (Statistics in Society) 179(3) 683–706 (2016). https://doi.org/10.1111/rssa.12140. MR3501428
Lane, P. W. (2013). Meta-analysis of incidence of rare events. Statistical Methods in Medical Research 22(2) 117–132. https://doi.org/10.1177/0962280211432218. MR3190650
Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., Skora, A. D., Luber, B. S., Azad, N. S., Laheru, D., Biedrzycki, B., Donehower, R. C., Zaheer, A., Fisher, G. A., Crocenzi, T. S., Lee, J. J., Duffy, S. M., Goldberg, R. M., de la Chapelle, A., Koshiji, M., Bhaijee, F., Huebner, T., Hruban, R. H., Wood, L. D., Cuka, N., Pardoll, D. M., Papadopoulos, N., Kinzler, K. W., Zhou, S., Cornish, T. C., Taube, J. M., Anders, R. A., Eshleman, J. R., Vogelstein, B. and Diaz, L. A. (2015). PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New England Journal of Medicine 372(26) 2509–2520. PMID: 26028255. https://doi.org/10.1056/NEJMoa1500596.
Little, R. J. and Rubin, D. B. (2019) Statistical Analysis with Missing Data 793. John Wiley & Sons. https://doi.org/10.1002/9781119013563. MR1925014
Liu, D., Liu, R. Y. and Xie, M.-g. (2014). Exact meta-analysis approach for discrete data and its application to $2\times 2$ tables with rare events. Journal of the American Statistical Association 109(508) 1450–1465. https://doi.org/10.1080/01621459.2014.946318. MR3293603
Ma, Y., Chu, H. and Mazumdar, M. (2016). Meta-analysis of proportions of rare events–a comparison of exact likelihood methods with robust variance estimation. Communications in Statistics – Simulation and Computation 45(8) 3036–3052. https://doi.org/10.1080/03610918.2014.911901. MR3514856
Peizer, D. B. and Pratt, J. W. (1968). A normal approximation for binomial, F, beta, and other common, related tail probabilities, I. Journal of the American Statistical Association 63(324) 1416–1456. MR0235650
Plummer, M. (2012). SOURCEFORGE JAGS: Just Another Gibbs Sampler Help Forum: dinterval(). https://sourceforge.net/p/mcmc-jags/discussion/610037/thread/fd7f3f7e/.
Powles, T., Durán, I., Van der Heijden, M. S., Loriot, Y., Vogelzang, N. J., De Giorgi, U., Oudard, S., Retz, M. M., Castellano, D., Bamias, A. et al. (2018). Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. The Lancet 391(10122) 748–757.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4) 583–639. https://doi.org/10.1111/1467-9868.00353. MR1979380
Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27(5) 1413–1432. https://doi.org/10.1007/s11222-016-9696-4. MR3647105
Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11(12) 3571–3594 (2010). MR2756194
White, I. R., Higgins, J. P. and Wood, A. M. (2008). Allowing for uncertainty due to missing data in meta-analysis—part 1: two-stage methods. Statistics in Medicine 27(5) 711–727. https://doi.org/10.1002/sim.3008. MR2418509
White, I. R., Welton, N. J., Wood, A. M., Ades, A. and Higgins, J. P. (2008). Allowing for uncertainty due to missing data in meta-analysis—part 2: hierarchical models. Statistics in Medicine 27(5) 728–745. https://doi.org/10.1002/sim.3007. MR2418510
Zhang, Z. and Sun, J. (2010). Interval censoring. Statistical Methods in Medical Research 19(1) 53–70. https://doi.org/10.1177/0962280209105023. MR2744492
Zhou, S. (2023). Posterior Averaging Information Criterion. Entropy 25(3) 468. https://doi.org/10.3390/e25030468. MR4575164